# ${generated_comment} # mypy: disable-error-code="type-arg" from typing import List, Literal, Optional, overload, Sequence, Tuple, Union from torch import memory_format, Tensor from torch.types import _bool, _device, _dtype, _int, _size # Defined in tools/autograd/templates/python_nn_functions.cpp ${c_nn_function_hints} # Defined in aten/src/ATen/native/mkldnn/Linear.cpp def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ... # Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp def mkldnn_reorder_conv2d_weight( self: Tensor, padding: List, stride: List, dilatation: List, groups: int, ) -> Tensor: ... def mkldnn_reorder_conv3d_weight( self: Tensor, padding: List, stride: List, dilatation: List, groups: int, ) -> Tensor: ... # Defined in aten/src/ATen/native/mkldnn/Prelu.cpp def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ... # Defined at tools/autograd/templates/python_nn_functions.cpp @overload def _parse_to( device: _device, dtype: _dtype, non_blocking: _bool, copy: _bool, *, memory_format: memory_format, ) -> Tuple[_device, _dtype, _bool, memory_format]: ... @overload def _parse_to( dtype: _dtype, non_blocking: _bool, copy: _bool, *, memory_format: memory_format, ) -> Tuple[_device, _dtype, _bool, memory_format]: ... @overload def _parse_to( tensor: Tensor, non_blocking: _bool, copy: _bool, *, memory_format: memory_format, ) -> Tuple[_device, _dtype, _bool, memory_format]: ... # Defined in aten/src/ATen/native/PackedSequence.cpp def pad_sequence( sequences: Union[List[Tensor], Tuple[Tensor, ...]], batch_first: bool = False, padding_value: float = 0.0, padding_side: Union[Literal["left", "right"], str] = "right", ) -> Tensor: ... def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ... def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ...