Lines Matching full:deg

105 	unsigned int deg;    /* polynomial degree */  member
308 static inline int deg(unsigned int poly) in deg() function
391 i = deg(poly); in compute_syndromes()
406 memcpy(dst, src, GF_POLY_SZ(src->deg)); in gf_poly_copy()
423 pelp->deg = 0; in compute_error_locator_polynomial()
425 elp->deg = 0; in compute_error_locator_polynomial()
429 for (i = 0; (i < t) && (elp->deg <= t); i++) { in compute_error_locator_polynomial()
435 for (j = 0; j <= pelp->deg; j++) { in compute_error_locator_polynomial()
442 tmp = pelp->deg+k; in compute_error_locator_polynomial()
443 if (tmp > elp->deg) { in compute_error_locator_polynomial()
444 elp->deg = tmp; in compute_error_locator_polynomial()
453 for (j = 1; j <= elp->deg; j++) in compute_error_locator_polynomial()
458 return (elp->deg > t) ? -1 : (int)elp->deg; in compute_error_locator_polynomial()
613 i = deg(v); in find_poly_deg2_roots()
732 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); in gf_poly_logrep()
747 const unsigned int d = b->deg; in gf_poly_mod()
749 if (a->deg < d) in gf_poly_mod()
758 for (j = a->deg; j >= d; j--) { in gf_poly_mod()
770 a->deg = d-1; in gf_poly_mod()
771 while (!c[a->deg] && a->deg) in gf_poly_mod()
772 a->deg--; in gf_poly_mod()
781 if (a->deg >= b->deg) { in gf_poly_div()
782 q->deg = a->deg-b->deg; in gf_poly_div()
786 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); in gf_poly_div()
788 q->deg = 0; in gf_poly_div()
801 if (a->deg < b->deg) in gf_poly_gcd()
804 while (b->deg > 0) { in gf_poly_gcd()
826 z->deg = 1; in compute_trace_bk_mod()
830 out->deg = 0; in compute_trace_bk_mod()
831 memset(out, 0, GF_POLY_SZ(f->deg)); in compute_trace_bk_mod()
838 for (j = z->deg; j >= 0; j--) { in compute_trace_bk_mod()
843 if (z->deg > out->deg) in compute_trace_bk_mod()
844 out->deg = z->deg; in compute_trace_bk_mod()
847 z->deg *= 2; in compute_trace_bk_mod()
852 while (!out->c[out->deg] && out->deg) in compute_trace_bk_mod()
853 out->deg--; in compute_trace_bk_mod()
878 if (tk->deg > 0) { in factor_polynomial()
882 if (gcd->deg < f->deg) { in factor_polynomial()
886 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; in factor_polynomial()
903 switch (poly->deg) { in find_poly_roots()
920 if (poly->deg && (k <= GF_M(bch))) { in find_poly_roots()
946 bch->cache[p->deg] = 0; in chien_search()
947 syn0 = gf_div(bch, p->c[0], p->c[p->deg]); in chien_search()
951 for (j = 1, syn = syn0; j <= p->deg; j++) { in chien_search()
958 if (count == p->deg) in chien_search()
962 return (count == p->deg) ? count : 0; in chien_search()
1079 const unsigned int k = 1 << deg(poly); in build_gf_tables()
1117 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ in build_mod8_tables()
1121 d = deg(data); in build_mod8_tables()
1122 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ in build_mod8_tables()
1217 g->deg = 0; in compute_generator_polynomial()
1223 g->c[g->deg+1] = 1; in compute_generator_polynomial()
1224 for (j = g->deg; j > 0; j--) in compute_generator_polynomial()
1228 g->deg++; in compute_generator_polynomial()
1232 n = g->deg+1; in compute_generator_polynomial()
1244 bch->ecc_bits = g->deg; in compute_generator_polynomial()