/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. * * * Acknowledgement * * This implementation is inspired by several key papers: * [1] Robert. M. Tomasulo. "[An efficient algorithm for exploiting multiple arithmetic units.] * (https://doi.org/10.1147/rd.111.0025)" IBM Journal of Research and Development (IBMJ) 11.1: 25-33. 1967. ***************************************************************************************/ package xiangshan.backend import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import difftest._ import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} import system.HasSoCParameter import utility._ import utility.sram.SramBroadcastBundle import xiangshan._ import xiangshan.backend.Bundles.{DynInst, IssueQueueIQWakeUpBundle, LoadShouldCancel, MemExuInput, MemExuOutput, VPUCtrlSignals} import xiangshan.backend.ctrlblock.{DebugLSIO, LsTopdownInfo} import xiangshan.backend.datapath.DataConfig.{IntData, VecData, FpData} import xiangshan.backend.datapath.RdConfig.{IntRD, VfRD} import xiangshan.backend.datapath.WbConfig._ import xiangshan.backend.datapath.DataConfig._ import xiangshan.backend.datapath._ import xiangshan.backend.dispatch.CoreDispatchTopDownIO import xiangshan.backend.exu.ExuBlock import xiangshan.backend.fu.vector.Bundles.{VConfig, VType} import xiangshan.backend.fu.{FenceIO, FenceToSbuffer, FuConfig, FuType, PerfCounterIO} import xiangshan.backend.fu.NewCSR.PFEvent import xiangshan.backend.issue.EntryBundles._ import xiangshan.backend.issue.{Scheduler, SchedulerArithImp, SchedulerImpBase, SchedulerMemImp} import xiangshan.backend.rob.{RobCoreTopDownIO, RobDebugRollingIO, RobLsqIO, RobPtr} import xiangshan.backend.trace.TraceCoreInterface import xiangshan.frontend.{FtqPtr, FtqRead, PreDecodeInfo} import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} import scala.collection.mutable class Backend(val params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { override def shouldBeInlined: Boolean = false val inner = LazyModule(new BackendInlined(params)) lazy val module = new BackendImp(this) } class BackendImp(wrapper: Backend)(implicit p: Parameters) extends LazyModuleImp(wrapper) { val io = IO(new BackendIO()(p, wrapper.params)) io <> wrapper.inner.module.io if (p(DebugOptionsKey).ResetGen) { ResetGen(ResetGenNode(Seq(ModuleNode(wrapper.inner.module))), reset, sim = false, io.dft_reset) } } class BackendInlined(val params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { override def shouldBeInlined: Boolean = true // check read & write port config params.configChecks /* Only update the idx in mem-scheduler here * Idx in other schedulers can be updated the same way if needed * * Also note that we filter out the 'stData issue-queues' when counting */ for ((ibp, idx) <- params.memSchdParams.get.issueBlockParams.filter(iq => iq.StdCnt == 0).zipWithIndex) { ibp.updateIdx(idx) } println(params.iqWakeUpParams) for ((schdCfg, i) <- params.allSchdParams.zipWithIndex) { schdCfg.bindBackendParam(params) } for ((iqCfg, i) <- params.allIssueParams.zipWithIndex) { iqCfg.bindBackendParam(params) } for ((exuCfg, i) <- params.allExuParams.zipWithIndex) { exuCfg.bindBackendParam(params) exuCfg.updateIQWakeUpConfigs(params.iqWakeUpParams) exuCfg.updateExuIdx(i) } println("[Backend] ExuConfigs:") for (exuCfg <- params.allExuParams) { val fuConfigs = exuCfg.fuConfigs val wbPortConfigs = exuCfg.wbPortConfigs val immType = exuCfg.immType println("[Backend] " + s"${exuCfg.name}: " + (if (exuCfg.fakeUnit) "fake, " else "") + (if (exuCfg.hasLoadFu || exuCfg.hasHyldaFu) s"LdExuIdx(${backendParams.getLdExuIdx(exuCfg)})" else "") + s"${fuConfigs.map(_.name).mkString("fu(s): {", ",", "}")}, " + s"${wbPortConfigs.mkString("wb: {", ",", "}")}, " + s"${immType.map(SelImm.mkString(_)).mkString("imm: {", ",", "}")}, " + s"latMax(${exuCfg.latencyValMax}), ${exuCfg.fuLatancySet.mkString("lat: {", ",", "}")}, " + s"srcReg(${exuCfg.numRegSrc})" ) require( wbPortConfigs.collectFirst { case x: IntWB => x }.nonEmpty == fuConfigs.map(_.writeIntRf).reduce(_ || _), s"${exuCfg.name} int wb port has no priority" ) require( wbPortConfigs.collectFirst { case x: FpWB => x }.nonEmpty == fuConfigs.map(x => x.writeFpRf).reduce(_ || _), s"${exuCfg.name} fp wb port has no priority" ) require( wbPortConfigs.collectFirst { case x: VfWB => x }.nonEmpty == fuConfigs.map(x => x.writeVecRf).reduce(_ || _), s"${exuCfg.name} vec wb port has no priority" ) } println(s"[Backend] all fu configs") for (cfg <- FuConfig.allConfigs) { println(s"[Backend] $cfg") } println(s"[Backend] Int RdConfigs: ExuName(Priority)") for ((port, seq) <- params.getRdPortParams(IntData())) { println(s"[Backend] port($port): ${seq.map(x => params.getExuName(x._1) + "(" + x._2.toString + ")").mkString(",")}") } println(s"[Backend] Int WbConfigs: ExuName(Priority)") for ((port, seq) <- params.getWbPortParams(IntData())) { println(s"[Backend] port($port): ${seq.map(x => params.getExuName(x._1) + "(" + x._2.toString + ")").mkString(",")}") } println(s"[Backend] Fp RdConfigs: ExuName(Priority)") for ((port, seq) <- params.getRdPortParams(FpData())) { println(s"[Backend] port($port): ${seq.map(x => params.getExuName(x._1) + "(" + x._2.toString + ")").mkString(",")}") } println(s"[Backend] Fp WbConfigs: ExuName(Priority)") for ((port, seq) <- params.getWbPortParams(FpData())) { println(s"[Backend] port($port): ${seq.map(x => params.getExuName(x._1) + "(" + x._2.toString + ")").mkString(",")}") } println(s"[Backend] Vf RdConfigs: ExuName(Priority)") for ((port, seq) <- params.getRdPortParams(VecData())) { println(s"[Backend] port($port): ${seq.map(x => params.getExuName(x._1) + "(" + x._2.toString + ")").mkString(",")}") } println(s"[Backend] Vf WbConfigs: ExuName(Priority)") for ((port, seq) <- params.getWbPortParams(VecData())) { println(s"[Backend] port($port): ${seq.map(x => params.getExuName(x._1) + "(" + x._2.toString + ")").mkString(",")}") } println(s"[Backend] Dispatch Configs:") println(s"[Backend] Load IQ enq width(${params.numLoadDp}), Store IQ enq width(${params.numStoreDp})") println(s"[Backend] Load DP width(${LSQLdEnqWidth}), Store DP width(${LSQStEnqWidth})") params.updateCopyPdestInfo println(s"[Backend] copyPdestInfo ${params.copyPdestInfo}") params.allExuParams.map(_.copyNum) val ctrlBlock = LazyModule(new CtrlBlock(params)) val intScheduler = params.intSchdParams.map(x => LazyModule(new Scheduler(x))) val fpScheduler = params.fpSchdParams.map(x => LazyModule(new Scheduler(x))) val vfScheduler = params.vfSchdParams.map(x => LazyModule(new Scheduler(x))) val memScheduler = params.memSchdParams.map(x => LazyModule(new Scheduler(x))) val dataPath = LazyModule(new DataPath(params)) val intExuBlock = params.intSchdParams.map(x => LazyModule(new ExuBlock(x))) val fpExuBlock = params.fpSchdParams.map(x => LazyModule(new ExuBlock(x))) val vfExuBlock = params.vfSchdParams.map(x => LazyModule(new ExuBlock(x))) val wbFuBusyTable = LazyModule(new WbFuBusyTable(params)) lazy val module = new BackendInlinedImp(this) } class BackendInlinedImp(override val wrapper: BackendInlined)(implicit p: Parameters) extends LazyModuleImp(wrapper) with HasXSParameter with HasPerfEvents with HasCriticalErrors { implicit private val params: BackendParams = wrapper.params val io = IO(new BackendIO()(p, wrapper.params)) private val ctrlBlock = wrapper.ctrlBlock.module private val intScheduler: SchedulerImpBase = wrapper.intScheduler.get.module private val fpScheduler = wrapper.fpScheduler.get.module private val vfScheduler = wrapper.vfScheduler.get.module private val memScheduler = wrapper.memScheduler.get.module private val dataPath = wrapper.dataPath.module private val intExuBlock = wrapper.intExuBlock.get.module private val fpExuBlock = wrapper.fpExuBlock.get.module private val vfExuBlock = wrapper.vfExuBlock.get.module private val og2ForVector = Module(new Og2ForVector(params)) private val bypassNetwork = Module(new BypassNetwork) private val wbDataPath = Module(new WbDataPath(params)) private val wbFuBusyTable = wrapper.wbFuBusyTable.module private val vecExcpMod = Module(new VecExcpDataMergeModule) private val iqWakeUpMappedBundle: Map[Int, ValidIO[IssueQueueIQWakeUpBundle]] = ( intScheduler.io.toSchedulers.wakeupVec ++ fpScheduler.io.toSchedulers.wakeupVec ++ vfScheduler.io.toSchedulers.wakeupVec ++ memScheduler.io.toSchedulers.wakeupVec ).map(x => (x.bits.exuIdx, x)).toMap private val iqWakeUpMappedBundleDelayed: Map[Int, ValidIO[IssueQueueIQWakeUpBundle]] = ( intScheduler.io.toSchedulers.wakeupVec ++ fpScheduler.io.toSchedulers.wakeupVec ++ vfScheduler.io.toSchedulers.wakeupVec ++ memScheduler.io.toSchedulers.wakeupVec ).map{ case x => val delayed = Wire(chiselTypeOf(x)) // TODO: add clock gate use Wen, remove issuequeue wakeupToIQ logic Wen = Wen && valid delayed := RegNext(x) (x.bits.exuIdx, delayed) }.toMap println(s"[Backend] iq wake up keys: ${iqWakeUpMappedBundle.keys}") wbFuBusyTable.io.in.intSchdBusyTable := intScheduler.io.wbFuBusyTable wbFuBusyTable.io.in.fpSchdBusyTable := fpScheduler.io.wbFuBusyTable wbFuBusyTable.io.in.vfSchdBusyTable := vfScheduler.io.wbFuBusyTable wbFuBusyTable.io.in.memSchdBusyTable := memScheduler.io.wbFuBusyTable intScheduler.io.fromWbFuBusyTable.fuBusyTableRead := wbFuBusyTable.io.out.intRespRead fpScheduler.io.fromWbFuBusyTable.fuBusyTableRead := wbFuBusyTable.io.out.fpRespRead vfScheduler.io.fromWbFuBusyTable.fuBusyTableRead := wbFuBusyTable.io.out.vfRespRead memScheduler.io.fromWbFuBusyTable.fuBusyTableRead := wbFuBusyTable.io.out.memRespRead dataPath.io.wbConfictRead := wbFuBusyTable.io.out.wbConflictRead private val og1Cancel = dataPath.io.og1Cancel private val og0Cancel = dataPath.io.og0Cancel private val vlFromIntIsZero = intExuBlock.io.vlIsZero.get private val vlFromIntIsVlmax = intExuBlock.io.vlIsVlmax.get private val vlFromVfIsZero = vfExuBlock.io.vlIsZero.get private val vlFromVfIsVlmax = vfExuBlock.io.vlIsVlmax.get private val backendCriticalError = Wire(Bool()) ctrlBlock.io.fromTop.hartId := io.fromTop.hartId ctrlBlock.io.frontend <> io.frontend ctrlBlock.io.fromCSR.toDecode := intExuBlock.io.csrToDecode.get ctrlBlock.io.fromCSR.traceCSR := intExuBlock.io.csrio.get.traceCSR ctrlBlock.io.fromCSR.instrAddrTransType := RegNext(intExuBlock.io.csrio.get.instrAddrTransType) ctrlBlock.io.fromWB.wbData <> wbDataPath.io.toCtrlBlock.writeback ctrlBlock.io.fromMem.stIn <> io.mem.stIn ctrlBlock.io.fromMem.violation <> io.mem.memoryViolation ctrlBlock.io.lqCanAccept := io.mem.lqCanAccept ctrlBlock.io.sqCanAccept := io.mem.sqCanAccept io.mem.lsqEnqIO <> ctrlBlock.io.toMem.lsqEnqIO ctrlBlock.io.fromMemToDispatch.scommit := io.mem.sqDeq ctrlBlock.io.fromMemToDispatch.lcommit := io.mem.lqDeq ctrlBlock.io.fromMemToDispatch.sqDeqPtr := io.mem.sqDeqPtr ctrlBlock.io.fromMemToDispatch.lqDeqPtr := io.mem.lqDeqPtr ctrlBlock.io.fromMemToDispatch.sqCancelCnt := io.mem.sqCancelCnt ctrlBlock.io.fromMemToDispatch.lqCancelCnt := io.mem.lqCancelCnt ctrlBlock.io.toDispatch.wakeUpInt := intScheduler.io.toSchedulers.wakeupVec ctrlBlock.io.toDispatch.wakeUpFp := fpScheduler.io.toSchedulers.wakeupVec ctrlBlock.io.toDispatch.wakeUpVec := vfScheduler.io.toSchedulers.wakeupVec ctrlBlock.io.toDispatch.wakeUpMem := memScheduler.io.toSchedulers.wakeupVec ctrlBlock.io.toDispatch.IQValidNumVec := intScheduler.io.IQValidNumVec ++ fpScheduler.io.IQValidNumVec ++ vfScheduler.io.IQValidNumVec ++ memScheduler.io.IQValidNumVec ctrlBlock.io.toDispatch.ldCancel := io.mem.ldCancel ctrlBlock.io.toDispatch.og0Cancel := og0Cancel ctrlBlock.io.toDispatch.wbPregsInt.zip(wbDataPath.io.toIntPreg).map(x => { x._1.valid := x._2.wen && x._2.intWen x._1.bits := x._2.addr }) ctrlBlock.io.toDispatch.wbPregsFp.zip(wbDataPath.io.toFpPreg).map(x => { x._1.valid := x._2.wen && x._2.fpWen x._1.bits := x._2.addr }) ctrlBlock.io.toDispatch.wbPregsVec.zip(wbDataPath.io.toVfPreg).map(x => { x._1.valid := x._2.wen && x._2.vecWen x._1.bits := x._2.addr }) ctrlBlock.io.toDispatch.wbPregsV0.zip(wbDataPath.io.toV0Preg).map(x => { x._1.valid := x._2.wen && x._2.v0Wen x._1.bits := x._2.addr }) ctrlBlock.io.toDispatch.wbPregsVl.zip(wbDataPath.io.toVlPreg).map(x => { x._1.valid := x._2.wen && x._2.vlWen x._1.bits := x._2.addr }) ctrlBlock.io.toDispatch.vlWriteBackInfo.vlFromIntIsZero := vlFromIntIsZero ctrlBlock.io.toDispatch.vlWriteBackInfo.vlFromIntIsVlmax := vlFromIntIsVlmax ctrlBlock.io.toDispatch.vlWriteBackInfo.vlFromVfIsZero := vlFromVfIsZero ctrlBlock.io.toDispatch.vlWriteBackInfo.vlFromVfIsVlmax := vlFromVfIsVlmax ctrlBlock.io.csrCtrl <> intExuBlock.io.csrio.get.customCtrl ctrlBlock.io.robio.csr.intrBitSet := intExuBlock.io.csrio.get.interrupt ctrlBlock.io.robio.csr.trapTarget := intExuBlock.io.csrio.get.trapTarget ctrlBlock.io.robio.csr.isXRet := intExuBlock.io.csrio.get.isXRet ctrlBlock.io.robio.csr.wfiEvent := intExuBlock.io.csrio.get.wfi_event ctrlBlock.io.robio.csr.criticalErrorState := intExuBlock.io.csrio.get.criticalErrorState ctrlBlock.io.robio.lsq <> io.mem.robLsqIO ctrlBlock.io.robio.lsTopdownInfo <> io.mem.lsTopdownInfo ctrlBlock.io.robio.debug_ls <> io.mem.debugLS ctrlBlock.io.debugEnqLsq.canAccept := io.mem.lsqEnqIO.canAccept ctrlBlock.io.debugEnqLsq.resp := io.mem.lsqEnqIO.resp ctrlBlock.io.debugEnqLsq.req := ctrlBlock.io.toMem.lsqEnqIO.req ctrlBlock.io.debugEnqLsq.needAlloc := ctrlBlock.io.toMem.lsqEnqIO.needAlloc ctrlBlock.io.debugEnqLsq.iqAccept := ctrlBlock.io.toMem.lsqEnqIO.iqAccept ctrlBlock.io.fromVecExcpMod.busy := vecExcpMod.o.status.busy val intWriteBackDelayed = Wire(chiselTypeOf(wbDataPath.io.toIntPreg)) intWriteBackDelayed.zip(wbDataPath.io.toIntPreg).map{ case (sink, source) => sink := DontCare sink.wen := RegNext(source.wen) sink.intWen := RegNext(source.intWen) sink.addr := RegEnable(source.addr, source.wen) } val fpWriteBackDelayed = Wire(chiselTypeOf(wbDataPath.io.toFpPreg)) fpWriteBackDelayed.zip(wbDataPath.io.toFpPreg).map { case (sink, source) => sink := DontCare sink.wen := RegNext(source.wen) sink.fpWen := RegNext(source.fpWen) sink.addr := RegEnable(source.addr, source.wen) } val vfWriteBackDelayed = Wire(chiselTypeOf(wbDataPath.io.toVfPreg)) vfWriteBackDelayed.zip(wbDataPath.io.toVfPreg).map { case (sink, source) => sink := DontCare sink.wen := RegNext(source.wen) sink.vecWen := RegNext(source.vecWen) sink.addr := RegEnable(source.addr, source.wen) } val v0WriteBackDelayed = Wire(chiselTypeOf(wbDataPath.io.toV0Preg)) v0WriteBackDelayed.zip(wbDataPath.io.toV0Preg).map { case (sink, source) => sink := DontCare sink.wen := RegNext(source.wen) sink.v0Wen := RegNext(source.v0Wen) sink.addr := RegEnable(source.addr, source.wen) } val vlWriteBackDelayed = Wire(chiselTypeOf(wbDataPath.io.toVlPreg)) vlWriteBackDelayed.zip(wbDataPath.io.toVlPreg).map { case (sink, source) => sink := DontCare sink.wen := RegNext(source.wen) sink.vlWen := RegNext(source.vlWen) sink.addr := RegEnable(source.addr, source.wen) } intScheduler.io.fromTop.hartId := io.fromTop.hartId intScheduler.io.fromCtrlBlock.flush := ctrlBlock.io.toIssueBlock.flush intScheduler.io.fromDispatch.uops <> ctrlBlock.io.toIssueBlock.intUops intScheduler.io.intWriteBack := wbDataPath.io.toIntPreg intScheduler.io.fpWriteBack := 0.U.asTypeOf(intScheduler.io.fpWriteBack) intScheduler.io.vfWriteBack := 0.U.asTypeOf(intScheduler.io.vfWriteBack) intScheduler.io.v0WriteBack := 0.U.asTypeOf(intScheduler.io.v0WriteBack) intScheduler.io.vlWriteBack := 0.U.asTypeOf(intScheduler.io.vlWriteBack) intScheduler.io.intWriteBackDelayed := intWriteBackDelayed intScheduler.io.fpWriteBackDelayed := 0.U.asTypeOf(intScheduler.io.fpWriteBackDelayed) intScheduler.io.vfWriteBackDelayed := 0.U.asTypeOf(intScheduler.io.vfWriteBackDelayed) intScheduler.io.v0WriteBackDelayed := 0.U.asTypeOf(intScheduler.io.v0WriteBackDelayed) intScheduler.io.vlWriteBackDelayed := 0.U.asTypeOf(intScheduler.io.vlWriteBackDelayed) intScheduler.io.fromDataPath.resp := dataPath.io.toIntIQ intScheduler.io.fromSchedulers.wakeupVec.foreach { wakeup => wakeup := iqWakeUpMappedBundle(wakeup.bits.exuIdx) } intScheduler.io.fromSchedulers.wakeupVecDelayed.foreach { wakeup => wakeup := iqWakeUpMappedBundleDelayed(wakeup.bits.exuIdx) } intScheduler.io.fromDataPath.og0Cancel := og0Cancel intScheduler.io.fromDataPath.og1Cancel := og1Cancel intScheduler.io.ldCancel := io.mem.ldCancel intScheduler.io.fromDataPath.replaceRCIdx.get := dataPath.io.toWakeupQueueRCIdx.take(params.getIntExuRCWriteSize) intScheduler.io.vlWriteBackInfo.vlFromIntIsZero := false.B intScheduler.io.vlWriteBackInfo.vlFromIntIsVlmax := false.B intScheduler.io.vlWriteBackInfo.vlFromVfIsZero := false.B intScheduler.io.vlWriteBackInfo.vlFromVfIsVlmax := false.B fpScheduler.io.fromTop.hartId := io.fromTop.hartId fpScheduler.io.fromCtrlBlock.flush := ctrlBlock.io.toIssueBlock.flush fpScheduler.io.fromDispatch.uops <> ctrlBlock.io.toIssueBlock.fpUops fpScheduler.io.intWriteBack := 0.U.asTypeOf(fpScheduler.io.intWriteBack) fpScheduler.io.fpWriteBack := wbDataPath.io.toFpPreg fpScheduler.io.vfWriteBack := 0.U.asTypeOf(fpScheduler.io.vfWriteBack) fpScheduler.io.v0WriteBack := 0.U.asTypeOf(fpScheduler.io.v0WriteBack) fpScheduler.io.vlWriteBack := 0.U.asTypeOf(fpScheduler.io.vlWriteBack) fpScheduler.io.intWriteBackDelayed := 0.U.asTypeOf(intWriteBackDelayed) fpScheduler.io.fpWriteBackDelayed := fpWriteBackDelayed fpScheduler.io.vfWriteBackDelayed := 0.U.asTypeOf(intScheduler.io.vfWriteBackDelayed) fpScheduler.io.v0WriteBackDelayed := 0.U.asTypeOf(intScheduler.io.v0WriteBackDelayed) fpScheduler.io.vlWriteBackDelayed := 0.U.asTypeOf(intScheduler.io.vlWriteBackDelayed) fpScheduler.io.fromDataPath.resp := dataPath.io.toFpIQ fpScheduler.io.fromSchedulers.wakeupVec.foreach { wakeup => wakeup := iqWakeUpMappedBundle(wakeup.bits.exuIdx) } fpScheduler.io.fromSchedulers.wakeupVecDelayed.foreach { wakeup => wakeup := iqWakeUpMappedBundleDelayed(wakeup.bits.exuIdx) } fpScheduler.io.fromDataPath.og0Cancel := og0Cancel fpScheduler.io.fromDataPath.og1Cancel := og1Cancel fpScheduler.io.ldCancel := io.mem.ldCancel fpScheduler.io.vlWriteBackInfo.vlFromIntIsZero := false.B fpScheduler.io.vlWriteBackInfo.vlFromIntIsVlmax := false.B fpScheduler.io.vlWriteBackInfo.vlFromVfIsZero := false.B fpScheduler.io.vlWriteBackInfo.vlFromVfIsVlmax := false.B memScheduler.io.fromTop.hartId := io.fromTop.hartId memScheduler.io.fromCtrlBlock.flush := ctrlBlock.io.toIssueBlock.flush memScheduler.io.fromDispatch.uops <> ctrlBlock.io.toIssueBlock.memUops memScheduler.io.intWriteBack := wbDataPath.io.toIntPreg memScheduler.io.fpWriteBack := wbDataPath.io.toFpPreg memScheduler.io.vfWriteBack := wbDataPath.io.toVfPreg memScheduler.io.v0WriteBack := wbDataPath.io.toV0Preg memScheduler.io.vlWriteBack := wbDataPath.io.toVlPreg memScheduler.io.intWriteBackDelayed := intWriteBackDelayed memScheduler.io.fpWriteBackDelayed := fpWriteBackDelayed memScheduler.io.vfWriteBackDelayed := vfWriteBackDelayed memScheduler.io.v0WriteBackDelayed := v0WriteBackDelayed memScheduler.io.vlWriteBackDelayed := vlWriteBackDelayed memScheduler.io.fromMem.get.scommit := io.mem.sqDeq memScheduler.io.fromMem.get.lcommit := io.mem.lqDeq memScheduler.io.fromMem.get.wakeup := io.mem.wakeup memScheduler.io.fromMem.get.sqDeqPtr := io.mem.sqDeqPtr memScheduler.io.fromMem.get.lqDeqPtr := io.mem.lqDeqPtr memScheduler.io.fromMem.get.sqCancelCnt := io.mem.sqCancelCnt memScheduler.io.fromMem.get.lqCancelCnt := io.mem.lqCancelCnt memScheduler.io.fromMem.get.stIssuePtr := io.mem.stIssuePtr require(memScheduler.io.fromMem.get.memWaitUpdateReq.robIdx.length == io.mem.stIn.length) memScheduler.io.fromMem.get.memWaitUpdateReq.robIdx.zip(io.mem.stIn).foreach { case (sink, source) => sink.valid := source.valid sink.bits := source.bits.robIdx } memScheduler.io.fromMem.get.memWaitUpdateReq.sqIdx := DontCare // TODO memScheduler.io.fromDataPath.resp := dataPath.io.toMemIQ memScheduler.io.fromMem.get.ldaFeedback := io.mem.ldaIqFeedback memScheduler.io.fromMem.get.staFeedback := io.mem.staIqFeedback memScheduler.io.fromMem.get.hyuFeedback := io.mem.hyuIqFeedback memScheduler.io.fromMem.get.vstuFeedback := io.mem.vstuIqFeedback memScheduler.io.fromMem.get.vlduFeedback := io.mem.vlduIqFeedback memScheduler.io.fromSchedulers.wakeupVec.foreach { wakeup => wakeup := iqWakeUpMappedBundle(wakeup.bits.exuIdx) } memScheduler.io.fromSchedulers.wakeupVecDelayed.foreach { wakeup => wakeup := iqWakeUpMappedBundleDelayed(wakeup.bits.exuIdx) } memScheduler.io.fromDataPath.og0Cancel := og0Cancel memScheduler.io.fromDataPath.og1Cancel := og1Cancel memScheduler.io.ldCancel := io.mem.ldCancel memScheduler.io.fromDataPath.replaceRCIdx.get := dataPath.io.toWakeupQueueRCIdx.takeRight(params.getMemExuRCWriteSize) memScheduler.io.vlWriteBackInfo.vlFromIntIsZero := vlFromIntIsZero memScheduler.io.vlWriteBackInfo.vlFromIntIsVlmax := vlFromIntIsVlmax memScheduler.io.vlWriteBackInfo.vlFromVfIsZero := vlFromVfIsZero memScheduler.io.vlWriteBackInfo.vlFromVfIsVlmax := vlFromVfIsVlmax memScheduler.io.fromOg2Resp.get := og2ForVector.io.toMemIQOg2Resp vfScheduler.io.fromTop.hartId := io.fromTop.hartId vfScheduler.io.fromCtrlBlock.flush := ctrlBlock.io.toIssueBlock.flush vfScheduler.io.fromDispatch.uops <> ctrlBlock.io.toIssueBlock.vfUops vfScheduler.io.intWriteBack := 0.U.asTypeOf(vfScheduler.io.intWriteBack) vfScheduler.io.fpWriteBack := 0.U.asTypeOf(vfScheduler.io.fpWriteBack) vfScheduler.io.vfWriteBack := wbDataPath.io.toVfPreg vfScheduler.io.v0WriteBack := wbDataPath.io.toV0Preg vfScheduler.io.vlWriteBack := wbDataPath.io.toVlPreg vfScheduler.io.intWriteBackDelayed := 0.U.asTypeOf(intWriteBackDelayed) vfScheduler.io.fpWriteBackDelayed := 0.U.asTypeOf(fpWriteBackDelayed) vfScheduler.io.vfWriteBackDelayed := vfWriteBackDelayed vfScheduler.io.v0WriteBackDelayed := v0WriteBackDelayed vfScheduler.io.vlWriteBackDelayed := vlWriteBackDelayed vfScheduler.io.fromDataPath.resp := dataPath.io.toVfIQ vfScheduler.io.fromSchedulers.wakeupVec.foreach { wakeup => wakeup := iqWakeUpMappedBundle(wakeup.bits.exuIdx) } vfScheduler.io.fromSchedulers.wakeupVecDelayed.foreach { wakeup => wakeup := iqWakeUpMappedBundleDelayed(wakeup.bits.exuIdx) } vfScheduler.io.fromDataPath.og0Cancel := og0Cancel vfScheduler.io.fromDataPath.og1Cancel := og1Cancel vfScheduler.io.ldCancel := io.mem.ldCancel vfScheduler.io.vlWriteBackInfo.vlFromIntIsZero := vlFromIntIsZero vfScheduler.io.vlWriteBackInfo.vlFromIntIsVlmax := vlFromIntIsVlmax vfScheduler.io.vlWriteBackInfo.vlFromVfIsZero := vlFromVfIsZero vfScheduler.io.vlWriteBackInfo.vlFromVfIsVlmax := vlFromVfIsVlmax vfScheduler.io.fromOg2Resp.get := og2ForVector.io.toVfIQOg2Resp dataPath.io.hartId := io.fromTop.hartId dataPath.io.flush := ctrlBlock.io.toDataPath.flush dataPath.io.fromIntIQ <> intScheduler.io.toDataPathAfterDelay dataPath.io.fromFpIQ <> fpScheduler.io.toDataPathAfterDelay dataPath.io.fromVfIQ <> vfScheduler.io.toDataPathAfterDelay dataPath.io.fromMemIQ <> memScheduler.io.toDataPathAfterDelay dataPath.io.ldCancel := io.mem.ldCancel println(s"[Backend] wbDataPath.io.toIntPreg: ${wbDataPath.io.toIntPreg.size}, dataPath.io.fromIntWb: ${dataPath.io.fromIntWb.size}") println(s"[Backend] wbDataPath.io.toVfPreg: ${wbDataPath.io.toVfPreg.size}, dataPath.io.fromFpWb: ${dataPath.io.fromVfWb.size}") dataPath.io.fromIntWb := wbDataPath.io.toIntPreg dataPath.io.fromFpWb := wbDataPath.io.toFpPreg dataPath.io.fromVfWb := wbDataPath.io.toVfPreg dataPath.io.fromV0Wb := wbDataPath.io.toV0Preg dataPath.io.fromVlWb := wbDataPath.io.toVlPreg dataPath.io.diffIntRat.foreach(_ := ctrlBlock.io.diff_int_rat.get) dataPath.io.diffFpRat .foreach(_ := ctrlBlock.io.diff_fp_rat.get) dataPath.io.diffVecRat.foreach(_ := ctrlBlock.io.diff_vec_rat.get) dataPath.io.diffV0Rat .foreach(_ := ctrlBlock.io.diff_v0_rat.get) dataPath.io.diffVlRat .foreach(_ := ctrlBlock.io.diff_vl_rat.get) dataPath.io.fromBypassNetwork := bypassNetwork.io.toDataPath dataPath.io.fromVecExcpMod.r := vecExcpMod.o.toVPRF.r dataPath.io.fromVecExcpMod.w := vecExcpMod.o.toVPRF.w dataPath.io.topDownInfo.lqEmpty := DelayN(io.topDownInfo.lqEmpty, 2) dataPath.io.topDownInfo.sqEmpty := DelayN(io.topDownInfo.sqEmpty, 2) dataPath.io.topDownInfo.l1Miss := RegNext(io.topDownInfo.l1Miss) dataPath.io.topDownInfo.l2TopMiss.l2Miss := io.topDownInfo.l2TopMiss.l2Miss dataPath.io.topDownInfo.l2TopMiss.l3Miss := io.topDownInfo.l2TopMiss.l3Miss og2ForVector.io.flush := ctrlBlock.io.toDataPath.flush og2ForVector.io.ldCancel := io.mem.ldCancel og2ForVector.io.fromOg1VfArith <> dataPath.io.toVecExu og2ForVector.io.fromOg1VecMem.zip(dataPath.io.toMemExu.zip(params.memSchdParams.get.issueBlockParams).filter(_._2.needOg2Resp).map(_._1)) .foreach { case (og1Mem, datapathMem) => og1Mem <> datapathMem } og2ForVector.io.fromOg1ImmInfo := dataPath.io.og1ImmInfo.zip(params.allExuParams).filter(_._2.needOg2).map(_._1) println(s"[Backend] BypassNetwork OG1 Mem Size: ${bypassNetwork.io.fromDataPath.mem.zip(params.memSchdParams.get.issueBlockParams).filterNot(_._2.needOg2Resp).size}") println(s"[Backend] BypassNetwork OG2 Mem Size: ${bypassNetwork.io.fromDataPath.mem.zip(params.memSchdParams.get.issueBlockParams).filter(_._2.needOg2Resp).size}") println(s"[Backend] bypassNetwork.io.fromDataPath.mem: ${bypassNetwork.io.fromDataPath.mem.size}, dataPath.io.toMemExu: ${dataPath.io.toMemExu.size}") bypassNetwork.io.fromDataPath.int <> dataPath.io.toIntExu bypassNetwork.io.fromDataPath.fp <> dataPath.io.toFpExu bypassNetwork.io.fromDataPath.vf <> og2ForVector.io.toVfArithExu bypassNetwork.io.fromDataPath.mem.lazyZip(params.memSchdParams.get.issueBlockParams).lazyZip(dataPath.io.toMemExu).filterNot(_._2.needOg2Resp) .map(x => (x._1, x._3)).foreach { case (bypassMem, datapathMem) => bypassMem <> datapathMem } bypassNetwork.io.fromDataPath.mem.zip(params.memSchdParams.get.issueBlockParams).filter(_._2.needOg2Resp).map(_._1) .zip(og2ForVector.io.toVecMemExu).foreach { case (bypassMem, og2Mem) => bypassMem <> og2Mem } bypassNetwork.io.fromDataPath.immInfo := dataPath.io.og1ImmInfo bypassNetwork.io.fromDataPath.immInfo.zip(params.allExuParams).filter(_._2.needOg2).map(_._1) .zip(og2ForVector.io.toBypassNetworkImmInfo).foreach { case (immInfo, og2ImmInfo) => immInfo := og2ImmInfo } bypassNetwork.io.fromDataPath.rcData := dataPath.io.toBypassNetworkRCData bypassNetwork.io.fromExus.connectExuOutput(_.int)(intExuBlock.io.out) bypassNetwork.io.fromExus.connectExuOutput(_.fp)(fpExuBlock.io.out) bypassNetwork.io.fromExus.connectExuOutput(_.vf)(vfExuBlock.io.out) require(bypassNetwork.io.fromExus.mem.flatten.size == io.mem.writeBack.size, s"bypassNetwork.io.fromExus.mem.flatten.size(${bypassNetwork.io.fromExus.mem.flatten.size}: ${bypassNetwork.io.fromExus.mem.map(_.size)}, " + s"io.mem.writeback(${io.mem.writeBack.size})" ) bypassNetwork.io.fromExus.mem.flatten.zip(io.mem.writeBack).foreach { case (sink, source) => sink.valid := source.valid sink.bits.intWen := source.bits.uop.rfWen && source.bits.isFromLoadUnit sink.bits.pdest := source.bits.uop.pdest sink.bits.data := source.bits.data } intExuBlock.io.flush := ctrlBlock.io.toExuBlock.flush for (i <- 0 until intExuBlock.io.in.length) { for (j <- 0 until intExuBlock.io.in(i).length) { val shouldLdCancel = LoadShouldCancel(bypassNetwork.io.toExus.int(i)(j).bits.loadDependency, io.mem.ldCancel) NewPipelineConnect( bypassNetwork.io.toExus.int(i)(j), intExuBlock.io.in(i)(j), intExuBlock.io.in(i)(j).fire, Mux( bypassNetwork.io.toExus.int(i)(j).fire, bypassNetwork.io.toExus.int(i)(j).bits.robIdx.needFlush(ctrlBlock.io.toExuBlock.flush) || shouldLdCancel, intExuBlock.io.in(i)(j).bits.robIdx.needFlush(ctrlBlock.io.toExuBlock.flush) ), Option("bypassNetwork2intExuBlock") ) } } ctrlBlock.io.toDataPath.pcToDataPathIO <> dataPath.io.fromPcTargetMem private val csrin = intExuBlock.io.csrin.get csrin.hartId := io.fromTop.hartId csrin.msiInfo.valid := RegNext(io.fromTop.msiInfo.valid) csrin.msiInfo.bits := RegEnable(io.fromTop.msiInfo.bits, io.fromTop.msiInfo.valid) csrin.clintTime.valid := RegNext(io.fromTop.clintTime.valid) csrin.clintTime.bits := RegEnable(io.fromTop.clintTime.bits, io.fromTop.clintTime.valid) csrin.l2FlushDone := RegNext(io.fromTop.l2FlushDone) csrin.trapInstInfo := ctrlBlock.io.toCSR.trapInstInfo csrin.fromVecExcpMod.busy := vecExcpMod.o.status.busy csrin.criticalErrorState := backendCriticalError private val csrio = intExuBlock.io.csrio.get csrio.hartId := io.fromTop.hartId csrio.fpu.fflags := ctrlBlock.io.robio.csr.fflags csrio.fpu.isIllegal := false.B // Todo: remove it csrio.fpu.dirty_fs := ctrlBlock.io.robio.csr.dirty_fs csrio.vpu <> WireDefault(0.U.asTypeOf(csrio.vpu)) // Todo val fromIntExuVsetVType = intExuBlock.io.vtype.getOrElse(0.U.asTypeOf((Valid(new VType)))) val fromVfExuVsetVType = vfExuBlock.io.vtype.getOrElse(0.U.asTypeOf((Valid(new VType)))) val fromVsetVType = Mux(fromIntExuVsetVType.valid, fromIntExuVsetVType.bits, fromVfExuVsetVType.bits) val vsetvlVType = RegEnable(fromVsetVType, 0.U.asTypeOf(new VType), fromIntExuVsetVType.valid || fromVfExuVsetVType.valid) ctrlBlock.io.toDecode.vsetvlVType := vsetvlVType val commitVType = ctrlBlock.io.robio.commitVType.vtype val hasVsetvl = ctrlBlock.io.robio.commitVType.hasVsetvl val vtype = VType.toVtypeStruct(Mux(hasVsetvl, vsetvlVType, commitVType.bits)).asUInt // csr not store the value of vl, so when using difftest we assign the value of vl to debugVl val debugVl_s0 = WireInit(UInt(VlData().dataWidth.W), 0.U) val debugVl_s1 = WireInit(UInt(VlData().dataWidth.W), 0.U) debugVl_s0 := dataPath.io.diffVl.getOrElse(0.U.asTypeOf(UInt(VlData().dataWidth.W))) debugVl_s1 := RegNext(debugVl_s0) csrio.vpu.set_vxsat := ctrlBlock.io.robio.csr.vxsat csrio.vpu.set_vstart.valid := ctrlBlock.io.robio.csr.vstart.valid csrio.vpu.set_vstart.bits := ctrlBlock.io.robio.csr.vstart.bits ctrlBlock.io.toDecode.vstart := csrio.vpu.vstart //Todo here need change design csrio.vpu.set_vtype.valid := commitVType.valid csrio.vpu.set_vtype.bits := ZeroExt(vtype, XLEN) csrio.vpu.vl := ZeroExt(debugVl_s1, XLEN) csrio.vpu.dirty_vs := ctrlBlock.io.robio.csr.dirty_vs csrio.exception := ctrlBlock.io.robio.exception csrio.robDeqPtr := ctrlBlock.io.robio.robDeqPtr csrio.memExceptionVAddr := io.mem.exceptionAddr.vaddr csrio.memExceptionGPAddr := io.mem.exceptionAddr.gpaddr csrio.memExceptionIsForVSnonLeafPTE := io.mem.exceptionAddr.isForVSnonLeafPTE csrio.externalInterrupt := RegNext(io.fromTop.externalInterrupt) csrio.perf <> io.perf csrio.perf.retiredInstr <> ctrlBlock.io.robio.csr.perfinfo.retiredInstr csrio.perf.ctrlInfo <> ctrlBlock.io.perfInfo.ctrlInfo private val fenceio = intExuBlock.io.fenceio.get io.fenceio <> fenceio // to fpExuBlock fpExuBlock.io.flush := ctrlBlock.io.toExuBlock.flush for (i <- 0 until fpExuBlock.io.in.length) { for (j <- 0 until fpExuBlock.io.in(i).length) { val shouldLdCancel = LoadShouldCancel(bypassNetwork.io.toExus.fp(i)(j).bits.loadDependency, io.mem.ldCancel) NewPipelineConnect( bypassNetwork.io.toExus.fp(i)(j), fpExuBlock.io.in(i)(j), fpExuBlock.io.in(i)(j).fire, Mux( bypassNetwork.io.toExus.fp(i)(j).fire, bypassNetwork.io.toExus.fp(i)(j).bits.robIdx.needFlush(ctrlBlock.io.toExuBlock.flush) || shouldLdCancel, fpExuBlock.io.in(i)(j).bits.robIdx.needFlush(ctrlBlock.io.toExuBlock.flush) ), Option("bypassNetwork2fpExuBlock") ) } } vfExuBlock.io.flush := ctrlBlock.io.toExuBlock.flush for (i <- 0 until vfExuBlock.io.in.size) { for (j <- 0 until vfExuBlock.io.in(i).size) { val shouldLdCancel = LoadShouldCancel(bypassNetwork.io.toExus.vf(i)(j).bits.loadDependency, io.mem.ldCancel) NewPipelineConnect( bypassNetwork.io.toExus.vf(i)(j), vfExuBlock.io.in(i)(j), vfExuBlock.io.in(i)(j).fire, Mux( bypassNetwork.io.toExus.vf(i)(j).fire, bypassNetwork.io.toExus.vf(i)(j).bits.robIdx.needFlush(ctrlBlock.io.toExuBlock.flush) || shouldLdCancel, vfExuBlock.io.in(i)(j).bits.robIdx.needFlush(ctrlBlock.io.toExuBlock.flush) ), Option("bypassNetwork2vfExuBlock") ) } } intExuBlock.io.frm.foreach(_ := csrio.fpu.frm) fpExuBlock.io.frm.foreach(_ := csrio.fpu.frm) fpExuBlock.io.vxrm.foreach(_ := csrio.vpu.vxrm) vfExuBlock.io.frm.foreach(_ := csrio.fpu.frm) vfExuBlock.io.vxrm.foreach(_ := csrio.vpu.vxrm) wbDataPath.io.flush := ctrlBlock.io.redirect wbDataPath.io.fromTop.hartId := io.fromTop.hartId wbDataPath.io.fromIntExu <> intExuBlock.io.out wbDataPath.io.fromFpExu <> fpExuBlock.io.out wbDataPath.io.fromVfExu <> vfExuBlock.io.out wbDataPath.io.fromMemExu.flatten.zip(io.mem.writeBack).foreach { case (sink, source) => sink.valid := source.valid source.ready := sink.ready sink.bits.data := VecInit(Seq.fill(sink.bits.params.wbPathNum)(source.bits.data)) sink.bits.pdest := source.bits.uop.pdest sink.bits.robIdx := source.bits.uop.robIdx sink.bits.intWen.foreach(_ := source.bits.uop.rfWen) sink.bits.fpWen.foreach(_ := source.bits.uop.fpWen) sink.bits.vecWen.foreach(_ := source.bits.uop.vecWen) sink.bits.v0Wen.foreach(_ := source.bits.uop.v0Wen) sink.bits.vlWen.foreach(_ := source.bits.uop.vlWen) sink.bits.exceptionVec.foreach(_ := source.bits.uop.exceptionVec) sink.bits.flushPipe.foreach(_ := source.bits.uop.flushPipe) sink.bits.replay.foreach(_ := source.bits.uop.replayInst) sink.bits.debug := source.bits.debug sink.bits.debugInfo := source.bits.uop.debugInfo sink.bits.debug_seqNum := source.bits.uop.debug_seqNum sink.bits.lqIdx.foreach(_ := source.bits.uop.lqIdx) sink.bits.sqIdx.foreach(_ := source.bits.uop.sqIdx) sink.bits.predecodeInfo.foreach(_ := source.bits.uop.preDecodeInfo) sink.bits.vls.foreach(x => { x.vdIdx := source.bits.vdIdx.get x.vdIdxInField := source.bits.vdIdxInField.get x.vpu := source.bits.uop.vpu x.oldVdPsrc := source.bits.uop.psrc(2) x.isIndexed := VlduType.isIndexed(source.bits.uop.fuOpType) x.isMasked := VlduType.isMasked(source.bits.uop.fuOpType) x.isStrided := VlduType.isStrided(source.bits.uop.fuOpType) x.isWhole := VlduType.isWhole(source.bits.uop.fuOpType) x.isVecLoad := VlduType.isVecLd(source.bits.uop.fuOpType) x.isVlm := VlduType.isMasked(source.bits.uop.fuOpType) && VlduType.isVecLd(source.bits.uop.fuOpType) }) sink.bits.trigger.foreach(_ := source.bits.uop.trigger) } wbDataPath.io.fromCSR.vstart := csrio.vpu.vstart vecExcpMod.i.fromExceptionGen := ctrlBlock.io.toVecExcpMod.excpInfo vecExcpMod.i.fromRab.logicPhyRegMap := ctrlBlock.io.toVecExcpMod.logicPhyRegMap vecExcpMod.i.fromRat := ctrlBlock.io.toVecExcpMod.ratOldPest vecExcpMod.i.fromVprf := dataPath.io.toVecExcpMod // to mem private val memIssueParams = params.memSchdParams.get.issueBlockParams private val memExuBlocksHasLDU = memIssueParams.map(_.exuBlockParams.map(x => x.hasLoadFu || x.hasHyldaFu)) private val memExuBlocksHasVecLoad = memIssueParams.map(_.exuBlockParams.map(x => x.hasVLoadFu)) println(s"[Backend] memExuBlocksHasLDU: $memExuBlocksHasLDU") println(s"[Backend] memExuBlocksHasVecLoad: $memExuBlocksHasVecLoad") private val toMem = Wire(bypassNetwork.io.toExus.mem.cloneType) for (i <- toMem.indices) { for (j <- toMem(i).indices) { val shouldLdCancel = LoadShouldCancel(bypassNetwork.io.toExus.mem(i)(j).bits.loadDependency, io.mem.ldCancel) val needIssueTimeout = memExuBlocksHasLDU(i)(j) || memExuBlocksHasVecLoad(i)(j) val issueTimeout = if (needIssueTimeout) Counter(0 until 16, toMem(i)(j).valid && !toMem(i)(j).fire, bypassNetwork.io.toExus.mem(i)(j).fire)._2 else false.B if (memScheduler.io.loadFinalIssueResp(i).nonEmpty && memExuBlocksHasLDU(i)(j)) { memScheduler.io.loadFinalIssueResp(i)(j).valid := issueTimeout memScheduler.io.loadFinalIssueResp(i)(j).bits.fuType := toMem(i)(j).bits.fuType memScheduler.io.loadFinalIssueResp(i)(j).bits.resp := RespType.block memScheduler.io.loadFinalIssueResp(i)(j).bits.robIdx := toMem(i)(j).bits.robIdx memScheduler.io.loadFinalIssueResp(i)(j).bits.uopIdx.foreach(_ := toMem(i)(j).bits.vpu.get.vuopIdx) memScheduler.io.loadFinalIssueResp(i)(j).bits.sqIdx.foreach(_ := toMem(i)(j).bits.sqIdx.get) memScheduler.io.loadFinalIssueResp(i)(j).bits.lqIdx.foreach(_ := toMem(i)(j).bits.lqIdx.get) } if (memScheduler.io.vecLoadFinalIssueResp(i).nonEmpty && memExuBlocksHasVecLoad(i)(j)) { memScheduler.io.vecLoadFinalIssueResp(i)(j).valid := issueTimeout memScheduler.io.vecLoadFinalIssueResp(i)(j).bits.fuType := toMem(i)(j).bits.fuType memScheduler.io.vecLoadFinalIssueResp(i)(j).bits.resp := RespType.block memScheduler.io.vecLoadFinalIssueResp(i)(j).bits.robIdx := toMem(i)(j).bits.robIdx memScheduler.io.vecLoadFinalIssueResp(i)(j).bits.uopIdx.foreach(_ := toMem(i)(j).bits.vpu.get.vuopIdx) memScheduler.io.vecLoadFinalIssueResp(i)(j).bits.sqIdx.foreach(_ := toMem(i)(j).bits.sqIdx.get) memScheduler.io.vecLoadFinalIssueResp(i)(j).bits.lqIdx.foreach(_ := toMem(i)(j).bits.lqIdx.get) } NewPipelineConnect( bypassNetwork.io.toExus.mem(i)(j), toMem(i)(j), toMem(i)(j).fire, Mux( bypassNetwork.io.toExus.mem(i)(j).fire, bypassNetwork.io.toExus.mem(i)(j).bits.robIdx.needFlush(ctrlBlock.io.toExuBlock.flush) || shouldLdCancel, toMem(i)(j).bits.robIdx.needFlush(ctrlBlock.io.toExuBlock.flush) || issueTimeout ), Option("bypassNetwork2toMemExus") ) if (memScheduler.io.memAddrIssueResp(i).nonEmpty && memExuBlocksHasLDU(i)(j)) { memScheduler.io.memAddrIssueResp(i)(j).valid := toMem(i)(j).fire && FuType.isLoad(toMem(i)(j).bits.fuType) memScheduler.io.memAddrIssueResp(i)(j).bits.fuType := toMem(i)(j).bits.fuType memScheduler.io.memAddrIssueResp(i)(j).bits.robIdx := toMem(i)(j).bits.robIdx memScheduler.io.memAddrIssueResp(i)(j).bits.sqIdx.foreach(_ := toMem(i)(j).bits.sqIdx.get) memScheduler.io.memAddrIssueResp(i)(j).bits.lqIdx.foreach(_ := toMem(i)(j).bits.lqIdx.get) memScheduler.io.memAddrIssueResp(i)(j).bits.resp := RespType.success // for load inst, firing at toMem means issuing successfully } if (memScheduler.io.vecLoadIssueResp(i).nonEmpty && memExuBlocksHasVecLoad(i)(j)) { memScheduler.io.vecLoadIssueResp(i)(j) match { case resp => resp.valid := toMem(i)(j).fire && VlduType.isVecLd(toMem(i)(j).bits.fuOpType) resp.bits.fuType := toMem(i)(j).bits.fuType resp.bits.robIdx := toMem(i)(j).bits.robIdx resp.bits.uopIdx.get := toMem(i)(j).bits.vpu.get.vuopIdx resp.bits.sqIdx.get := toMem(i)(j).bits.sqIdx.get resp.bits.lqIdx.get := toMem(i)(j).bits.lqIdx.get resp.bits.resp := RespType.success } if (backendParams.debugEn){ dontTouch(memScheduler.io.vecLoadIssueResp(i)(j)) } } } } io.mem.redirect := ctrlBlock.io.redirect io.mem.issueUops.zip(toMem.flatten).foreach { case (sink, source) => val enableMdp = Constantin.createRecord("EnableMdp", true) sink.valid := source.valid source.ready := sink.ready sink.bits.iqIdx := source.bits.iqIdx sink.bits.isFirstIssue := source.bits.isFirstIssue sink.bits.uop := 0.U.asTypeOf(sink.bits.uop) sink.bits.src := 0.U.asTypeOf(sink.bits.src) sink.bits.src.zip(source.bits.src).foreach { case (l, r) => l := r} sink.bits.uop.fuType := source.bits.fuType sink.bits.uop.fuOpType := source.bits.fuOpType sink.bits.uop.imm := source.bits.imm sink.bits.uop.robIdx := source.bits.robIdx sink.bits.uop.pdest := source.bits.pdest sink.bits.uop.rfWen := source.bits.rfWen.getOrElse(false.B) sink.bits.uop.fpWen := source.bits.fpWen.getOrElse(false.B) sink.bits.uop.vecWen := source.bits.vecWen.getOrElse(false.B) sink.bits.uop.v0Wen := source.bits.v0Wen.getOrElse(false.B) sink.bits.uop.vlWen := source.bits.vlWen.getOrElse(false.B) sink.bits.uop.flushPipe := source.bits.flushPipe.getOrElse(false.B) sink.bits.uop.pc := source.bits.pc.getOrElse(0.U) + (source.bits.ftqOffset.getOrElse(0.U) << instOffsetBits) sink.bits.uop.loadWaitBit := Mux(enableMdp, source.bits.loadWaitBit.getOrElse(false.B), false.B) sink.bits.uop.waitForRobIdx := Mux(enableMdp, source.bits.waitForRobIdx.getOrElse(0.U.asTypeOf(new RobPtr)), 0.U.asTypeOf(new RobPtr)) sink.bits.uop.storeSetHit := Mux(enableMdp, source.bits.storeSetHit.getOrElse(false.B), false.B) sink.bits.uop.loadWaitStrict := Mux(enableMdp, source.bits.loadWaitStrict.getOrElse(false.B), false.B) sink.bits.uop.ssid := Mux(enableMdp, source.bits.ssid.getOrElse(0.U(SSIDWidth.W)), 0.U(SSIDWidth.W)) sink.bits.uop.lqIdx := source.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) sink.bits.uop.sqIdx := source.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) sink.bits.uop.ftqPtr := source.bits.ftqIdx.getOrElse(0.U.asTypeOf(new FtqPtr)) sink.bits.uop.ftqOffset := source.bits.ftqOffset.getOrElse(0.U) sink.bits.uop.debugInfo := source.bits.perfDebugInfo sink.bits.uop.debug_seqNum := source.bits.debug_seqNum sink.bits.uop.vpu := source.bits.vpu.getOrElse(0.U.asTypeOf(new VPUCtrlSignals)) sink.bits.uop.preDecodeInfo := source.bits.preDecode.getOrElse(0.U.asTypeOf(new PreDecodeInfo)) sink.bits.uop.numLsElem := source.bits.numLsElem.getOrElse(0.U) // Todo: remove this bundle, keep only the one below sink.bits.flowNum.foreach(_ := source.bits.numLsElem.get) } io.mem.loadFastMatch := memScheduler.io.toMem.get.loadFastMatch.map(_.fastMatch) io.mem.loadFastImm := memScheduler.io.toMem.get.loadFastMatch.map(_.fastImm) io.mem.tlbCsr := csrio.tlb io.mem.csrCtrl := csrio.customCtrl io.mem.sfence := fenceio.sfence io.mem.isStoreException := CommitType.lsInstIsStore(ctrlBlock.io.robio.exception.bits.commitType) io.mem.isVlsException := ctrlBlock.io.robio.exception.bits.vls io.mem.storePcRead.zipWithIndex.foreach { case (storePcRead, i) => storePcRead := ctrlBlock.io.memStPcRead(i).data ctrlBlock.io.memStPcRead(i).valid := io.mem.issueSta(i).valid ctrlBlock.io.memStPcRead(i).ptr := io.mem.issueSta(i).bits.uop.ftqPtr ctrlBlock.io.memStPcRead(i).offset := io.mem.issueSta(i).bits.uop.ftqOffset } io.mem.hyuPcRead.zipWithIndex.foreach( { case (hyuPcRead, i) => hyuPcRead := ctrlBlock.io.memHyPcRead(i).data ctrlBlock.io.memHyPcRead(i).valid := io.mem.issueHylda(i).valid ctrlBlock.io.memHyPcRead(i).ptr := io.mem.issueHylda(i).bits.uop.ftqPtr ctrlBlock.io.memHyPcRead(i).offset := io.mem.issueHylda(i).bits.uop.ftqOffset }) ctrlBlock.io.robio.robHeadLsIssue := io.mem.issueUops.map(deq => deq.fire && deq.bits.uop.robIdx === ctrlBlock.io.robio.robDeqPtr).reduce(_ || _) // mem io io.mem.robLsqIO <> ctrlBlock.io.robio.lsq io.mem.storeDebugInfo <> ctrlBlock.io.robio.storeDebugInfo io.frontendSfence := fenceio.sfence io.frontendTlbCsr := csrio.tlb io.frontendCsrCtrl := csrio.customCtrl io.tlb <> csrio.tlb io.csrCustomCtrl := csrio.customCtrl io.toTop.cpuHalted := ctrlBlock.io.toTop.cpuHalt io.traceCoreInterface <> ctrlBlock.io.traceCoreInterface io.debugTopDown.fromRob := ctrlBlock.io.debugTopDown.fromRob ctrlBlock.io.debugTopDown.fromCore := io.debugTopDown.fromCore io.debugRolling := ctrlBlock.io.debugRolling io.topDownInfo.noUopsIssued := RegNext(dataPath.io.topDownInfo.noUopsIssued) private val cg = ClockGate.genTeSrc dontTouch(cg) if(hasMbist) { cg.cgen := io.dft.get.cgen } else { cg.cgen := false.B } if(backendParams.debugEn) { dontTouch(memScheduler.io) dontTouch(dataPath.io.toMemExu) dontTouch(wbDataPath.io.fromMemExu) } // reset tree if (p(DebugOptionsKey).ResetGen) { val rightResetTree = ResetGenNode(Seq( ModuleNode(dataPath), ModuleNode(intExuBlock), ModuleNode(fpExuBlock), ModuleNode(vfExuBlock), ModuleNode(bypassNetwork), ModuleNode(wbDataPath) )) val leftResetTree = ResetGenNode(Seq( ModuleNode(intScheduler), ModuleNode(fpScheduler), ModuleNode(vfScheduler), ModuleNode(memScheduler), ModuleNode(og2ForVector), ModuleNode(wbFuBusyTable), ResetGenNode(Seq( ModuleNode(ctrlBlock), // ResetGenNode(Seq( CellNode(io.frontendReset) // )) )) )) ResetGen(leftResetTree, reset, sim = false, io.dft_reset) ResetGen(rightResetTree, reset, sim = false, io.dft_reset) } else { io.frontendReset := DontCare } // perf events val pfevent = Module(new PFEvent) pfevent.io.distribute_csr := RegNext(csrio.customCtrl.distribute_csr) val csrevents = pfevent.io.hpmevent.slice(8,16) val ctrlBlockPerf = ctrlBlock.getPerfEvents val intSchedulerPerf = intScheduler.asInstanceOf[SchedulerArithImp].getPerfEvents val fpSchedulerPerf = fpScheduler.asInstanceOf[SchedulerArithImp].getPerfEvents val vecSchedulerPerf = vfScheduler.asInstanceOf[SchedulerArithImp].getPerfEvents val memSchedulerPerf = memScheduler.asInstanceOf[SchedulerMemImp].getPerfEvents val dataPathPerf = dataPath.getPerfEvents val perfBackend = Seq() // let index = 0 be no event val allPerfEvents = Seq(("noEvent", 0.U)) ++ ctrlBlockPerf ++ dataPathPerf ++ intSchedulerPerf ++ fpSchedulerPerf ++ vecSchedulerPerf ++ memSchedulerPerf ++ perfBackend if (printEventCoding) { for (((name, inc), i) <- allPerfEvents.zipWithIndex) { println("backend perfEvents Set", name, inc, i) } } val allPerfInc = allPerfEvents.map(_._2.asTypeOf(new PerfEvent)) val perfEvents = HPerfMonitor(csrevents, allPerfInc).getPerfEvents csrio.perf.perfEventsBackend := VecInit(perfEvents.map(_._2.asTypeOf(new PerfEvent))) val ctrlBlockError = ctrlBlock.getCriticalErrors val intExuBlockError = intExuBlock.getCriticalErrors val criticalErrors = ctrlBlockError ++ intExuBlockError if (printCriticalError) { for (((name, error), _) <- criticalErrors.zipWithIndex) { XSError(error, s"critical error: $name \n") } } // expand to collect frontend/memblock/L2 critical errors backendCriticalError := criticalErrors.map(_._2).reduce(_ || _) io.toTop.cpuCriticalError := csrio.criticalErrorState io.toTop.msiAck := csrio.msiAck } class BackendMemIO(implicit p: Parameters, params: BackendParams) extends XSBundle { // Since fast load replay always use load unit 0, Backend flips two load port to avoid conflicts val flippedLda = true // params alias private val LoadQueueSize = VirtualLoadQueueSize // In/Out // Todo: split it into one-direction bundle val lsqEnqIO = Flipped(new LsqEnqIO) val robLsqIO = new RobLsqIO val ldaIqFeedback = Vec(params.LduCnt, Flipped(new MemRSFeedbackIO)) val staIqFeedback = Vec(params.StaCnt, Flipped(new MemRSFeedbackIO)) val hyuIqFeedback = Vec(params.HyuCnt, Flipped(new MemRSFeedbackIO)) val vstuIqFeedback = Flipped(Vec(params.VstuCnt, new MemRSFeedbackIO(isVector = true))) val vlduIqFeedback = Flipped(Vec(params.VlduCnt, new MemRSFeedbackIO(isVector = true))) val ldCancel = Vec(params.LdExuCnt, Input(new LoadCancelIO)) val wakeup = Vec(params.LdExuCnt, Flipped(Valid(new DynInst))) val storePcRead = Vec(params.StaCnt, Output(UInt(VAddrBits.W))) val hyuPcRead = Vec(params.HyuCnt, Output(UInt(VAddrBits.W))) // Input val writebackLda = Vec(params.LduCnt, Flipped(DecoupledIO(new MemExuOutput))) val writebackSta = Vec(params.StaCnt, Flipped(DecoupledIO(new MemExuOutput))) val writebackStd = Vec(params.StdCnt, Flipped(DecoupledIO(new MemExuOutput))) val writebackHyuLda = Vec(params.HyuCnt, Flipped(DecoupledIO(new MemExuOutput))) val writebackHyuSta = Vec(params.HyuCnt, Flipped(DecoupledIO(new MemExuOutput))) val writebackVldu = Vec(params.VlduCnt, Flipped(DecoupledIO(new MemExuOutput(true)))) val s3_delayed_load_error = Input(Vec(LoadPipelineWidth, Bool())) val stIn = Input(Vec(params.StaExuCnt, ValidIO(new DynInst()))) val memoryViolation = Flipped(ValidIO(new Redirect)) val exceptionAddr = Input(new Bundle { val vaddr = UInt(XLEN.W) val gpaddr = UInt(XLEN.W) val isForVSnonLeafPTE = Bool() }) val sqDeq = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) val lqDeq = Input(UInt(log2Up(CommitWidth + 1).W)) val sqDeqPtr = Input(new SqPtr) val lqDeqPtr = Input(new LqPtr) val lqCancelCnt = Input(UInt(log2Up(VirtualLoadQueueSize + 1).W)) val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W)) val lqCanAccept = Input(Bool()) val sqCanAccept = Input(Bool()) val otherFastWakeup = Flipped(Vec(params.LduCnt + params.HyuCnt, ValidIO(new DynInst))) val stIssuePtr = Input(new SqPtr()) val debugLS = Flipped(Output(new DebugLSIO)) val lsTopdownInfo = Vec(params.LduCnt + params.HyuCnt, Flipped(Output(new LsTopdownInfo))) // Output val redirect = ValidIO(new Redirect) // rob flush MemBlock val issueLda = MixedVec(Seq.fill(params.LduCnt)(DecoupledIO(new MemExuInput()))) val issueSta = MixedVec(Seq.fill(params.StaCnt)(DecoupledIO(new MemExuInput()))) val issueStd = MixedVec(Seq.fill(params.StdCnt)(DecoupledIO(new MemExuInput()))) val issueHylda = MixedVec(Seq.fill(params.HyuCnt)(DecoupledIO(new MemExuInput()))) val issueHysta = MixedVec(Seq.fill(params.HyuCnt)(DecoupledIO(new MemExuInput()))) val issueVldu = MixedVec(Seq.fill(params.VlduCnt)(DecoupledIO(new MemExuInput(true)))) val loadFastMatch = Vec(params.LduCnt, Output(UInt(params.LduCnt.W))) val loadFastImm = Vec(params.LduCnt, Output(UInt(12.W))) // Imm_I val tlbCsr = Output(new TlbCsrBundle) val csrCtrl = Output(new CustomCSRCtrlIO) val sfence = Output(new SfenceBundle) val isStoreException = Output(Bool()) val isVlsException = Output(Bool()) // ATTENTION: The issue ports' sequence order should be the same as IQs' deq config private [backend] def issueUops: Seq[DecoupledIO[MemExuInput]] = { issueSta ++ issueHylda ++ issueHysta ++ issueLda ++ issueVldu ++ issueStd }.toSeq // ATTENTION: The writeback ports' sequence order should be the same as IQs' deq config private [backend] def writeBack: Seq[DecoupledIO[MemExuOutput]] = { writebackSta ++ writebackHyuLda ++ writebackHyuSta ++ writebackLda ++ writebackVldu ++ writebackStd } // store event difftest information val storeDebugInfo = Vec(EnsbufferWidth, new Bundle { val robidx = Input(new RobPtr) val pc = Output(UInt(VAddrBits.W)) }) } class TopToBackendBundle(implicit p: Parameters) extends XSBundle with HasSoCParameter { val hartId = Output(UInt(hartIdLen.W)) val externalInterrupt = Output(new ExternalInterruptIO) val msiInfo = Output(ValidIO(UInt(soc.IMSICParams.MSI_INFO_WIDTH.W))) val clintTime = Output(ValidIO(UInt(64.W))) val l2FlushDone = Output(Bool()) } class BackendToTopBundle extends Bundle { val cpuHalted = Output(Bool()) val cpuCriticalError = Output(Bool()) val msiAck = Output(Bool()) } class BackendIO(implicit p: Parameters, params: BackendParams) extends XSBundle with HasSoCParameter { val fromTop = Flipped(new TopToBackendBundle) val toTop = new BackendToTopBundle val traceCoreInterface = new TraceCoreInterface(hasOffset = true) val fenceio = new FenceIO // Todo: merge these bundles into BackendFrontendIO val frontend = Flipped(new FrontendToCtrlIO) val frontendSfence = Output(new SfenceBundle) val frontendCsrCtrl = Output(new CustomCSRCtrlIO) val frontendTlbCsr = Output(new TlbCsrBundle) val frontendReset = Output(Reset()) val mem = new BackendMemIO val perf = Input(new PerfCounterIO) val tlb = Output(new TlbCsrBundle) val csrCustomCtrl = Output(new CustomCSRCtrlIO) val debugTopDown = new Bundle { val fromRob = new RobCoreTopDownIO val fromCore = new CoreDispatchTopDownIO } val debugRolling = new RobDebugRollingIO val topDownInfo = new TopDownInfo val dft = Option.when(hasDFT)(Input(new SramBroadcastBundle)) val dft_reset = Option.when(hasMbist)(Input(new DFTResetSignals())) }