/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.backend.fu import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import difftest._ import freechips.rocketchip.util._ import utility.MaskedRegMap.WritableMask import utils._ import utility._ import xiangshan.ExceptionNO._ import xiangshan._ import xiangshan.backend.fu.util._ import xiangshan.cache._ import xiangshan.backend.Bundles.{ExceptionInfo, TrapInstInfo} import xiangshan.backend.fu.NewCSR.CSREvents.TargetPCBundle import xiangshan.backend.fu.NewCSR.CSRNamedConstant.ContextStatus import xiangshan.backend.rob.RobPtr import utils.MathUtils.{BigIntGenMask, BigIntNot} import xiangshan.backend.trace._ import freechips.rocketchip.rocket.CSRs class FpuCsrIO extends Bundle { val fflags = Output(Valid(UInt(5.W))) val isIllegal = Output(Bool()) val dirty_fs = Output(Bool()) val frm = Input(UInt(3.W)) } class VpuCsrIO(implicit p: Parameters) extends XSBundle { val vstart = Input(UInt(XLEN.W)) val vxrm = Input(UInt(2.W)) val vl = Output(UInt(XLEN.W)) val set_vstart = Output(Valid(UInt(XLEN.W))) val set_vtype = Output(Valid(UInt(XLEN.W))) val set_vxsat = Output(Valid(UInt(1.W))) val dirty_vs = Output(Bool()) } class PerfCounterIO(implicit p: Parameters) extends XSBundle { val perfEventsFrontend = Vec(numCSRPCntFrontend, new PerfEvent) val perfEventsBackend = Vec(numCSRPCntCtrl, new PerfEvent) val perfEventsLsu = Vec(numCSRPCntLsu, new PerfEvent) val perfEventsHc = Vec(numPCntHc * coreParams.L2NBanks + 1, new PerfEvent) val retiredInstr = UInt(7.W) val frontendInfo = new Bundle { val ibufFull = Bool() val bpuInfo = new Bundle { val bpRight = UInt(XLEN.W) val bpWrong = UInt(XLEN.W) } } val ctrlInfo = new Bundle { val robFull = Bool() val intdqFull = Bool() val fpdqFull = Bool() val lsdqFull = Bool() } val memInfo = new Bundle { val sqFull = Bool() val lqFull = Bool() val dcacheMSHRFull = Bool() } } class CSRFileIO(implicit p: Parameters) extends XSBundle { val hartId = Input(UInt(hartIdLen.W)) // output (for func === CSROpType.jmp) val perf = Input(new PerfCounterIO) val criticalErrorState = Output(Bool()) val isPerfCnt = Output(Bool()) // to FPU val fpu = Flipped(new FpuCsrIO) // to VPU val vpu = Flipped(new VpuCsrIO) // from rob val exception = Flipped(ValidIO(new ExceptionInfo)) val robDeqPtr = Input(new RobPtr) // to ROB val isXRet = Output(Bool()) val trapTarget = Output(new TargetPCBundle) val interrupt = Output(Bool()) val wfi_event = Output(Bool()) //trace val traceCSR = Output(new TraceCSR) // from LSQ val memExceptionVAddr = Input(UInt(XLEN.W)) val memExceptionGPAddr = Input(UInt(XLEN.W)) val memExceptionIsForVSnonLeafPTE = Input(Bool()) // from outside cpu,externalInterrupt val externalInterrupt = Input(new ExternalInterruptIO) // TLB val tlb = Output(new TlbCsrBundle) // Debug Mode // val singleStep = Output(Bool()) val debugMode = Output(Bool()) // Custom microarchiture ctrl signal val customCtrl = Output(new CustomCSRCtrlIO) // instruction fetch address translation type val instrAddrTransType = Output(new AddrTransType) // ack for axireg from imsic. which indicates imsic can work actively val msiAck = Output(Bool()) } class VtypeStruct(implicit p: Parameters) extends XSBundle { val vill = UInt(1.W) val reserved = UInt((XLEN - 9).W) val vma = UInt(1.W) val vta = UInt(1.W) val vsew = UInt(3.W) val vlmul = UInt(3.W) } /* class CSR(cfg: FuConfig)(implicit p: Parameters) extends FuncUnit(cfg) with HasCSRConst with PMPMethod with PMAMethod with HasXSParameter with SdtrigExt with DebugCSR { val csrio = io.csrio.get val flushPipe = Wire(Bool()) val (valid, src1, src2, func) = ( io.in.valid, io.in.bits.data.src(0), io.in.bits.data.imm, io.in.bits.ctrl.fuOpType ) // CSR define val virtMode = RegInit(false.B) csrio.customCtrl.virtMode := virtMode class Priv extends Bundle { val m = Output(Bool()) val h = Output(Bool()) // unused val s = Output(Bool()) val u = Output(Bool()) } class MstatusStruct extends Bundle { val sd = Output(UInt(1.W)) val pad1 = if (XLEN == 64 && HasHExtension) Output(UInt(23.W)) else if (XLEN == 64) Output(UInt(25.W)) else null val mpv = if (XLEN == 64 && HasHExtension) Output(UInt(1.W)) else null val gva = if (XLEN == 64 && HasHExtension) Output(UInt(1.W)) else null val mbe = if (XLEN == 64) Output(UInt(1.W)) else null val sbe = if (XLEN == 64) Output(UInt(1.W)) else null val sxl = if (XLEN == 64) Output(UInt(2.W)) else null val uxl = if (XLEN == 64) Output(UInt(2.W)) else null val pad0 = if (XLEN == 64) Output(UInt(9.W)) else Output(UInt(8.W)) val tsr = Output(UInt(1.W)) val tw = Output(UInt(1.W)) val tvm = Output(UInt(1.W)) val mxr = Output(UInt(1.W)) val sum = Output(UInt(1.W)) val mprv = Output(UInt(1.W)) val xs = Output(UInt(2.W)) val fs = Output(UInt(2.W)) val mpp = Output(UInt(2.W)) val vs = Output(UInt(2.W)) val spp = Output(UInt(1.W)) val pie = new Priv val ie = new Priv assert(this.getWidth == XLEN) def ube = pie.h // a little ugly def ube_(r: UInt): Unit = { pie.h := r(0) } } class HstatusStruct extends Bundle { val pad4 = if (HSXLEN == 64) Output(UInt(30.W)) else null val vsxl = if (HSXLEN == 64) Output(UInt(2.W)) else null val pad3 = Output(UInt(9.W)) val vtsr = Output(UInt(1.W)) val vtw = Output(UInt(1.W)) val vtvm = Output(UInt(1.W)) val pad2 = Output(UInt(2.W)) val vgein = Output(UInt(6.W)) val pad1 = Output(UInt(2.W)) val hu = Output(UInt(1.W)) val spvp = Output(UInt(1.W)) val spv = Output(UInt(1.W)) val gva = Output(UInt(1.W)) val vsbe = Output(UInt(1.W)) val pad0 = Output(UInt(5.W)) assert(this.getWidth == XLEN) } class Interrupt extends Bundle { // val d = Output(Bool()) // Debug val e = new Priv val t = new Priv val s = new Priv } // Debug CSRs val dcsr = RegInit(UInt(32.W), DcsrStruct.init) val dpc = Reg(UInt(64.W)) val dscratch0 = Reg(UInt(64.W)) val dscratch1 = Reg(UInt(64.W)) val debugMode = RegInit(false.B) val debugIntrEnable = RegInit(true.B) // debug interrupt will be handle only when debugIntrEnable csrio.debugMode := debugMode val dpcPrev = RegNext(dpc) XSDebug(dpcPrev =/= dpc, "Debug Mode: dpc is altered! Current is %x, previous is %x\n", dpc, dpcPrev) val dcsrData = Wire(new DcsrStruct) dcsrData := dcsr.asTypeOf(new DcsrStruct) val dcsrMask = ZeroExt(GenMask(15) | GenMask(13, 11) | GenMask(4) | GenMask(2, 0), XLEN)// Dcsr write mask def dcsrUpdateSideEffect(dcsr: UInt): UInt = { val dcsrOld = WireInit(dcsr.asTypeOf(new DcsrStruct)) val dcsrNew = dcsr | (dcsrOld.prv(0) | dcsrOld.prv(1)).asUInt // turn 10 priv into 11 dcsrNew } // csrio.singleStep := dcsrData.step csrio.customCtrl.singlestep := dcsrData.step && !debugMode // Trigger CSRs private val tselectPhy = RegInit(0.U(log2Up(TriggerNum).W)) private val tdata1RegVec = RegInit(VecInit(Seq.fill(TriggerNum)(Tdata1Bundle.default))) private val tdata2RegVec = RegInit(VecInit(Seq.fill(TriggerNum)(0.U(64.W)))) private val tdata1WireVec = tdata1RegVec.map(_.asTypeOf(new Tdata1Bundle)) private val tdata2WireVec = tdata2RegVec private val tdata1Selected = tdata1RegVec(tselectPhy).asTypeOf(new Tdata1Bundle) private val tdata2Selected = tdata2RegVec(tselectPhy) private val newTriggerChainVec = UIntToOH(tselectPhy, TriggerNum).asBools | tdata1WireVec.map(_.data.asTypeOf(new MControlData).chain) private val newTriggerChainIsLegal = TriggerCheckChainLegal(newTriggerChainVec, TriggerChainMaxLength) val tinfo = RegInit((BigInt(1) << TrigTypeEnum.MCONTROL.litValue.toInt).U(XLEN.W)) // This value should be 4.U def WriteTselect(wdata: UInt) = { Mux(wdata < TriggerNum.U, wdata(log2Up(TriggerNum) - 1, 0), tselectPhy) } def GenTdataDistribute(tdata1: Tdata1Bundle, tdata2: UInt): MatchTriggerIO = { val res = Wire(new MatchTriggerIO) val mcontrol: MControlData = WireInit(tdata1.data.asTypeOf(new MControlData)) res.matchType := mcontrol.match_.asUInt res.select := mcontrol.select res.timing := mcontrol.timing res.action := mcontrol.action.asUInt res.chain := mcontrol.chain res.execute := mcontrol.execute res.load := mcontrol.load res.store := mcontrol.store res.tdata2 := tdata2 res } csrio.customCtrl.frontend_trigger.tUpdate.bits.addr := tselectPhy csrio.customCtrl.mem_trigger.tUpdate.bits.addr := tselectPhy csrio.customCtrl.frontend_trigger.tUpdate.bits.tdata := GenTdataDistribute(tdata1Selected, tdata2Selected) csrio.customCtrl.mem_trigger.tUpdate.bits.tdata := GenTdataDistribute(tdata1Selected, tdata2Selected) // Machine-Level CSRs // mtvec: {BASE (WARL), MODE (WARL)} where mode is 0 or 1 val mtvecMask = ~(0x2.U(XLEN.W)) val mtvec = RegInit(UInt(XLEN.W), 0.U) val mcounteren = RegInit(UInt(XLEN.W), 0.U) // Currently, XiangShan don't support Unprivileged Counter/Timers CSRs ("Zicntr" and "Zihpm") val mcounterenMask = 0.U(XLEN.W) val mcause = RegInit(UInt(XLEN.W), 0.U) val mtval = RegInit(UInt(XLEN.W), 0.U) val mtval2 = RegInit(UInt(XLEN.W), 0.U) val mtinst = RegInit(UInt(XLEN.W), 0.U) val mepc = RegInit(UInt(XLEN.W), 0.U) // Page 36 in riscv-priv: The low bit of mepc (mepc[0]) is always zero. val mepcMask = ~(0x1.U(XLEN.W)) val mie = RegInit(0.U(XLEN.W)) val mipWire = WireInit(0.U.asTypeOf(new Interrupt)) val mipReg = RegInit(0.U(XLEN.W)) val mipMask = ZeroExt(Array( 1, // SSIP 2, // VSSIP 3, // MSIP 5, // STIP 6, // VSTIP 7, // MTIP 9, // SEIP 10, // VSEIP 11, // MEIP 12, // SGEIP ).map(GenMask(_)).reduce(_ | _), XLEN) val mip = (mipWire.asUInt | mipReg).asTypeOf(new Interrupt) val mip_mie_WMask_H = if(HasHExtension){((1 << 2) | (1 << 6) | (1 << 10) | (1 << 12)).U(XLEN.W)}else{0.U(XLEN.W)} val vssip_Mask = (1 << 2).U(XLEN.W) val mipWMask = vssip_Mask | ((1 << 9) | (1 << 5) | (1 << 1)).U(XLEN.W) val mieWMask = mip_mie_WMask_H | "haaa".U(XLEN.W) def getMisaMxl(mxl: BigInt): BigInt = mxl << (XLEN - 2) def getMisaExt(ext: Char): Long = 1 << (ext.toInt - 'a'.toInt) var extList = List('a', 's', 'i', 'u') if (HasMExtension) { extList = extList :+ 'm' } if (HasCExtension) { extList = extList :+ 'c' } if (HasHExtension) { extList = extList :+ 'h' } if (HasFPU) { extList = extList ++ List('f', 'd') } if (HasVPU) { extList = extList :+ 'v' } val misaInitVal = getMisaMxl(2) | extList.foldLeft(0L)((sum, i) => sum | getMisaExt(i)) //"h8000000000141185".U val misa = RegInit(UInt(XLEN.W), misaInitVal.U) println(s"[CSR] supported isa ext: $extList") // MXL = 2 | 0 | EXT = b 00 0000 0100 0001 0001 0000 0101 // (XLEN-1, XLEN-2) | |(25, 0) ZY XWVU TSRQ PONM LKJI HGFE DCBA // Machine Configuration val menvcfg = RegInit(UInt(XLEN.W), 0.U) val mvendorid = RegInit(UInt(XLEN.W), 0.U) // this is a non-commercial implementation val marchid = RegInit(UInt(XLEN.W), 25.U) // architecture id for XiangShan is 25; see https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md val mimpid = RegInit(UInt(XLEN.W), 0.U) // provides a unique encoding of the version of the processor implementation val mhartid = Reg(UInt(XLEN.W)) // the hardware thread running the code when (RegNext(RegNext(reset.asBool) && !reset.asBool)) { mhartid := csrio.hartId } val mconfigptr = RegInit(UInt(XLEN.W), 0.U) // the read-only pointer pointing to the platform config structure, 0 for not supported. val mstatus = RegInit("ha00002200".U(XLEN.W)) // mstatus Value Table // | sd | Read Only // | pad1 | WPRI // | sxl | hardlinked to 10, use 00 to pass xv6 test // | uxl | hardlinked to 10 // | pad0 | // | tsr | // | tw | // | tvm | // | mxr | // | sum | // | mprv | // | xs | 00 | // | fs | 01 | // | mpp | 00 | // | vs | 01 | // | spp | 0 | // | pie | 0000 | pie.h is used as UBE // | ie | 0000 | uie hardlinked to 0, as N ext is not implemented val mstatusStruct = mstatus.asTypeOf(new MstatusStruct) def mstatusUpdateSideEffect(mstatus: UInt): UInt = { val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) // Cat(sd, other) val mstatusNew = Cat( mstatusOld.xs === ContextStatus.dirty || mstatusOld.fs === ContextStatus.dirty || mstatusOld.vs === ContextStatus.dirty, mstatus(XLEN-2, 0) ) mstatusNew } def vsstatusUpdateSideEffect(vsstatus: UInt): UInt = { val vsstatusOld = WireInit(vsstatus.asTypeOf(new MstatusStruct)) val vsstatusNew = Cat(vsstatusOld.xs === "b11".U || vsstatusOld.fs === "b11".U, vsstatus(XLEN-2, 0)) vsstatusNew } val mstatusWMask = (~ZeroExt(( GenMask(63) | // SD is read-only (if(HasHExtension) GenMask(62, 40) // WPRI else GenMask(62, 38) )| // WPRI GenMask(35, 32) | // SXL and UXL cannot be changed GenMask(31, 23) | // WPRI GenMask(16, 15) | // XS is read-only GenMask(6) | // UBE, always little-endian (0) GenMask(4) | // WPRI GenMask(2) | // WPRI GenMask(0) // WPRI ), 64)).asUInt val medeleg = RegInit(UInt(XLEN.W), 0.U) val midelegInit = if(HasHExtension){((1 << 12) | (1 << 10) | (1 << 6) | (1 << 2)).U}else{0.U} val medelegWMask = if(HasHExtension) { "hf0b7ff".U(XLEN.W) }else { "hb3ff".U(XLEN.W) } val mideleg = RegInit(UInt(XLEN.W), midelegInit) val mscratch = RegInit(UInt(XLEN.W), 0.U) val midelegWMask = "h222".U(XLEN.W) // PMP Mapping val pmp = Wire(Vec(NumPMP, new PMPEntry())) // just used for method parameter val pma = Wire(Vec(NumPMA, new PMPEntry())) // just used for method parameter val pmpMapping = pmp_gen_mapping(pmp_init, NumPMP, PmpcfgBase, PmpaddrBase, pmp) val pmaMapping = pmp_gen_mapping(pma_init, NumPMA, PmacfgBase, PmaaddrBase, pma) // !WARNNING: pmp and pma CSRs are not checked in difftest. // Supervisor-Level CSRs val sstatusWNmask: BigInt = ( BigIntGenMask(63) | // SD is read-only BigIntGenMask(62, 34) | // WPRI BigIntGenMask(33, 32) | // UXL is hard-wired to 64(b10) BigIntGenMask(31, 20) | // WPRI BigIntGenMask(17) | // WPRI BigIntGenMask(16, 15) | // XS is read-only to zero BigIntGenMask(12, 11) | // WPRI BigIntGenMask(7) | // WPRI BigIntGenMask(6) | // UBE is always little-endian (0) BigIntGenMask(4, 2) | // WPRI BigIntGenMask(0) // WPRI ) val sstatusWmask = BigIntNot(sstatusWNmask).U(XLEN.W) val sstatusRmask = ( BigIntGenMask(63) | // SD BigIntGenMask(33, 32) | // UXL BigIntGenMask(19) | // MXR BigIntGenMask(18) | // SUM BigIntGenMask(16, 15) | // XS BigIntGenMask(14, 13) | // FS BigIntGenMask(10, 9 ) | // VS BigIntGenMask(8) | // SPP BigIntGenMask(6) | // UBE: hard wired to 0 BigIntGenMask(5) | // SPIE BigIntGenMask(1) ).U(XLEN.W) println(s"sstatusWNmask: 0x${sstatusWNmask.toString(16)}") println(s"sstatusWmask: 0x${sstatusWmask.litValue.toString(16)}") println(s"sstatusRmask: 0x${sstatusRmask.litValue.toString(16)}") // stvec: {BASE (WARL), MODE (WARL)} where mode is 0 or 1 val stvecMask = ~(0x2.U(XLEN.W)) val stvec = RegInit(UInt(XLEN.W), 0.U) // val sie = RegInit(0.U(XLEN.W)) val sieMask = "h222".U & mideleg val sipMask = "h222".U & mideleg val sipWMask = "h2".U(XLEN.W) // ssip is writeable in smode val satp = if(EnbaleTlbDebug) RegInit(UInt(XLEN.W), "h8000000000087fbe".U) else RegInit(0.U(XLEN.W)) // val satp = RegInit(UInt(XLEN.W), "h8000000000087fbe".U) // only use for tlb naive debug // val satpMask = "h80000fffffffffff".U(XLEN.W) // disable asid, mode can only be 8 / 0 // TODO: use config to control the length of asid // val satpMask = "h8fffffffffffffff".U(XLEN.W) // enable asid, mode can only be 8 / 0 val satpMask = Cat("h8".U(Satp_Mode_len.W), satp_part_wmask(Satp_Asid_len, AsidLength), satp_part_wmask(Satp_Addr_len, PAddrBits-12)) val sepc = RegInit(UInt(XLEN.W), 0.U) // Page 60 in riscv-priv: The low bit of sepc (sepc[0]) is always zero. val sepcMask = ~(0x1.U(XLEN.W)) val scause = RegInit(UInt(XLEN.W), 0.U) val stval = RegInit(UInt(XLEN.W), 0.U) val sscratch = RegInit(UInt(XLEN.W), 0.U) val scounteren = RegInit(UInt(XLEN.W), 0.U) val senvcfg = RegInit(UInt(XLEN.W), 0.U) // !WARNING: there is no logic about this CSR. // Currently, XiangShan don't support Unprivileged Counter/Timers CSRs ("Zicntr" and "Zihpm") val scounterenMask = 0.U(XLEN.W) // sbpctl // Bits 0-7: {LOOP, RAS, SC, TAGE, BIM, BTB, uBTB} val sbpctl = RegInit(UInt(XLEN.W), "h7f".U) csrio.customCtrl.bp_ctrl.ubtb_enable := sbpctl(0) csrio.customCtrl.bp_ctrl.btb_enable := sbpctl(1) csrio.customCtrl.bp_ctrl.bim_enable := sbpctl(2) csrio.customCtrl.bp_ctrl.tage_enable := sbpctl(3) csrio.customCtrl.bp_ctrl.sc_enable := sbpctl(4) csrio.customCtrl.bp_ctrl.ras_enable := sbpctl(5) csrio.customCtrl.bp_ctrl.loop_enable := sbpctl(6) // spfctl Bit 0: L1I Cache Prefetcher Enable // spfctl Bit 1: L2Cache Prefetcher Enable // spfctl Bit 2: L1D Cache Prefetcher Enable // spfctl Bit 3: L1D train prefetch on hit // spfctl Bit 4: L1D prefetch enable agt // spfctl Bit 5: L1D prefetch enable pht // spfctl Bit [9:6]: L1D prefetch active page threshold // spfctl Bit [15:10]: L1D prefetch active page stride // turn off L2 BOP, turn on L1 SMS by default val spfctl = RegInit(UInt(XLEN.W), Seq( 0 << 17, // L2 pf store only [17] init: false 1 << 16, // L1D pf enable stride [16] init: true 30 << 10, // L1D active page stride [15:10] init: 30 12 << 6, // L1D active page threshold [9:6] init: 12 1 << 5, // L1D enable pht [5] init: true 1 << 4, // L1D enable agt [4] init: true 0 << 3, // L1D train on hit [3] init: false 1 << 2, // L1D pf enable [2] init: true 1 << 1, // L2 pf enable [1] init: true 1 << 0, // L1I pf enable [0] init: true ).reduce(_|_).U(XLEN.W)) csrio.customCtrl.l1I_pf_enable := spfctl(0) csrio.customCtrl.l2_pf_enable := spfctl(1) csrio.customCtrl.l1D_pf_enable := spfctl(2) csrio.customCtrl.l1D_pf_train_on_hit := spfctl(3) csrio.customCtrl.l1D_pf_enable_agt := spfctl(4) csrio.customCtrl.l1D_pf_enable_pht := spfctl(5) csrio.customCtrl.l1D_pf_active_threshold := spfctl(9, 6) csrio.customCtrl.l1D_pf_active_stride := spfctl(15, 10) csrio.customCtrl.l1D_pf_enable_stride := spfctl(16) csrio.customCtrl.l2_pf_store_only := spfctl(17) // slvpredctl: load violation predict settings // Default reset period: 2^16 // Why this number: reset more frequently while keeping the overhead low // Overhead: extra two redirections in every 64K cycles => ~0.1% overhead val slvpredctl = Reg(UInt(XLEN.W)) when(reset.asBool) { slvpredctl := Constantin.createRecord("slvpredctl", 0x60) } csrio.customCtrl.lvpred_disable := slvpredctl(0) csrio.customCtrl.no_spec_load := slvpredctl(1) csrio.customCtrl.storeset_wait_store := slvpredctl(2) csrio.customCtrl.storeset_no_fast_wakeup := slvpredctl(3) csrio.customCtrl.lvpred_timeout := slvpredctl(8, 4) // smblockctl: memory block configurations // +------------------------+---+---+---+----+----+-----+--------+ // |XLEN-1 10| 9 | 8 | 7 | 6 | 5 | 4 |3 0| // +------------------------+---+---+---+----+----+-----+--------+ // | Reserved | L | S | O | CE | SP | LVC | Th | // +------------------------+---+---+---+----+----+-----+--------+ // Description: // Bit 3-0 : Store buffer flush threshold (Th). // Bit 4 : Enable load violation check after reset (LVC). // Bit 5 : Enable soft-prefetch after reset (SP). // Bit 6 : Enable cache error after reset (CE). // Bit 7 : Enable uncache write outstanding (O). // Bit 8 : Enable unaligned store (S). // Bit 9 : Enable unaligned load (L). // Others : Reserved. val smblockctl_init_val = (0xf & StoreBufferThreshold) | (EnableLdVioCheckAfterReset.toInt << 4) | (EnableSoftPrefetchAfterReset.toInt << 5) | (EnableCacheErrorAfterReset.toInt << 6) | (EnableUncacheWriteOutstanding.toInt << 7) | (EnableHardwareStoreMisalign.toInt << 8) | (EnableHardwareLoadMisalign.toInt << 9) val smblockctl = RegInit(UInt(XLEN.W), smblockctl_init_val.U) csrio.customCtrl.sbuffer_threshold := smblockctl(3, 0) // bits 4: enable load load violation check csrio.customCtrl.ldld_vio_check_enable := smblockctl(4) csrio.customCtrl.soft_prefetch_enable := smblockctl(5) csrio.customCtrl.cache_error_enable := smblockctl(6) csrio.customCtrl.uncache_write_outstanding_enable := smblockctl(7) csrio.customCtrl.hd_misalign_st_enable := smblockctl(8) csrio.customCtrl.hd_misalign_ld_enable := smblockctl(9) println("CSR smblockctl init value:") println(" Store buffer replace threshold: " + StoreBufferThreshold) println(" Enable ld-ld vio check after reset: " + EnableLdVioCheckAfterReset) println(" Enable soft prefetch after reset: " + EnableSoftPrefetchAfterReset) println(" Enable cache error after reset: " + EnableCacheErrorAfterReset) println(" Enable uncache write outstanding: " + EnableUncacheWriteOutstanding) println(" Enable unaligned store: " + EnableHardwareStoreMisalign) println(" Enable unaligned load: " + EnableHardwareLoadMisalign) val srnctl = RegInit(UInt(XLEN.W), "h7".U) csrio.customCtrl.fusion_enable := srnctl(0) csrio.customCtrl.wfi_enable := srnctl(2) // Hypervisor CSRs val hstatusWMask = "h7003c0".U(XLEN.W) // hstatus: vtsr, vtw, vtvm, hu, spvp, spv, gva, val hstatus = RegInit("h200000000".U(XLEN.W)) val hstatusStruct = hstatus.asTypeOf(new HstatusStruct) val hedeleg = RegInit(UInt(XLEN.W), 0.U) val hideleg = RegInit(UInt(XLEN.W), 0.U) val hidelegRMask = mideleg val hidelegWMask = ((1 << 10) | (1 << 6) | (1 << 2)).U(XLEN.W) val hgeie = RegInit(UInt(XLEN.W), 0.U) val htval = RegInit(UInt(XLEN.W), 0.U) // hvip hip hie is part of mip or mie val hvipMask = ((1 << 10) | (1 << 6) | (1 << 2)).U(XLEN.W) val hipRMask = (((1 << 12).U | hvipMask) & mideleg) val hipWMask = ((1 << 2).U & mideleg)// vssip val hieMask = hipRMask val htinst = RegInit(UInt(XLEN.W), 0.U) val hgeip = RegInit(UInt(XLEN.W), 0.U) val henvcfg = RegInit(UInt(XLEN.W), 0.U) val hgatp = RegInit(UInt(XLEN.W), 0.U) val hgatpMask = Cat("h8".U(Hgatp_Mode_len.W), satp_part_wmask(Hgatp_Vmid_len, VmidLength), satp_part_wmask(Hgatp_Addr_len, PAddrBits-12)) // val htimedelta = RegInit(UInt(XLEN.W), 0.U) val hcounteren = RegInit(UInt(XLEN.W), 0.U) // Currently, XiangShan don't support Unprivileged Counter/Timers CSRs ("Zicntr" and "Zihpm") val hcounterenMask = 0.U(XLEN.W) val vsstatus = RegInit("h200002000".U(XLEN.W)) val vsstatusStruct = vsstatus.asTypeOf(new MstatusStruct) //vsie vsip val vsMask = ((1 << 10) | (1 << 6) | (1 << 2)).U(XLEN.W) val vsip_ie_Mask = ZeroExt((hideleg & mideleg & vsMask), XLEN) val vsip_WMask = ZeroExt((hideleg & mideleg & vssip_Mask), XLEN) val vstvec = RegInit(UInt(XLEN.W), 0.U) val vsscratch = RegInit(UInt(XLEN.W), 0.U) val vsepc = RegInit(UInt(XLEN.W), 0.U) val vscause = RegInit(UInt(XLEN.W), 0.U) val vstval = RegInit(UInt(XLEN.W), 0.U) val vsatp = RegInit(UInt(XLEN.W), 0.U) val tlbBundle = Wire(new TlbCsrBundle) tlbBundle.satp.apply(satp) tlbBundle.vsatp.apply(vsatp) tlbBundle.hgatp.apply(hgatp) csrio.tlb := tlbBundle // User-Level CSRs val uepc = Reg(UInt(XLEN.W)) // fcsr class FcsrStruct extends Bundle { val reserved = UInt((XLEN-3-5).W) val frm = UInt(3.W) val fflags = UInt(5.W) assert(this.getWidth == XLEN) } val fcsr = RegInit(0.U(XLEN.W)) // set mstatus->sd and mstatus->fs when true val csrw_dirty_fp_state = WireInit(false.B) def frm_wfn(wdata: UInt): UInt = { val fcsrOld = WireInit(fcsr.asTypeOf(new FcsrStruct)) csrw_dirty_fp_state := true.B fcsrOld.frm := wdata(2,0) fcsrOld.asUInt } def frm_rfn(rdata: UInt): UInt = rdata(7,5) def fflags_wfn(update: Boolean)(wdata: UInt): UInt = { val fcsrOld = fcsr.asTypeOf(new FcsrStruct) val fcsrNew = WireInit(fcsrOld) if (update) { fcsrNew.fflags := wdata(4,0) | fcsrOld.fflags } else { fcsrNew.fflags := wdata(4,0) } fcsrNew.asUInt } def fflags_rfn(rdata:UInt): UInt = rdata(4,0) def fcsr_wfn(wdata: UInt): UInt = { val fcsrOld = WireInit(fcsr.asTypeOf(new FcsrStruct)) csrw_dirty_fp_state := true.B Cat(fcsrOld.reserved, wdata.asTypeOf(fcsrOld).frm, wdata.asTypeOf(fcsrOld).fflags) } val fcsrMapping = Map( MaskedRegMap(Fflags, fcsr, wfn = fflags_wfn(update = false), rfn = fflags_rfn), MaskedRegMap(Frm, fcsr, wfn = frm_wfn, rfn = frm_rfn), MaskedRegMap(Fcsr, fcsr, wfn = fcsr_wfn) ) // Vector extension CSRs val vstart = RegInit(0.U(XLEN.W)) val vcsr = RegInit(0.U(XLEN.W)) val vl = Reg(UInt(XLEN.W)) val vtype = Reg(UInt(XLEN.W)) val vlenb = RegInit(VDataBytes.U(XLEN.W)) // set mstatus->sd and mstatus->vs when true val csrw_dirty_vs_state = WireInit(false.B) // vcsr is mapped to vxrm and vxsat class VcsrStruct extends Bundle { val reserved = UInt((XLEN-3).W) val vxrm = UInt(2.W) val vxsat = UInt(1.W) assert(this.getWidth == XLEN) } def vxrm_wfn(wdata: UInt): UInt = { val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) csrw_dirty_vs_state := true.B vcsrOld.vxrm := wdata(1,0) vcsrOld.asUInt } def vxrm_rfn(rdata: UInt): UInt = rdata(2,1) def vxsat_wfn(update: Boolean)(wdata: UInt): UInt = { val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) val vcsrNew = WireInit(vcsrOld) csrw_dirty_vs_state := true.B if (update) { vcsrNew.vxsat := wdata(0) | vcsrOld.vxsat } else { vcsrNew.vxsat := wdata(0) } vcsrNew.asUInt } def vxsat_rfn(rdata: UInt): UInt = rdata(0) def vcsr_wfn(wdata: UInt): UInt = { val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) csrw_dirty_vs_state := true.B vcsrOld.vxrm := wdata.asTypeOf(vcsrOld).vxrm vcsrOld.vxsat := wdata.asTypeOf(vcsrOld).vxsat vcsrOld.asUInt } val vcsrMapping = Map( MaskedRegMap(Vstart, vstart), MaskedRegMap(Vxrm, vcsr, wfn = vxrm_wfn, rfn = vxrm_rfn), MaskedRegMap(Vxsat, vcsr, wfn = vxsat_wfn(false), rfn = vxsat_rfn), MaskedRegMap(Vcsr, vcsr, wfn = vcsr_wfn), MaskedRegMap(Vl, vl), MaskedRegMap(Vtype, vtype), MaskedRegMap(Vlenb, vlenb), ) // Hart Privilege Mode val privilegeMode = RegInit(UInt(2.W), ModeM) //val perfEventscounten = List.fill(nrPerfCnts)(RegInit(false(Bool()))) // Perf Counter val nrPerfCnts = 29 // 3...31 val privilegeModeOH = UIntToOH(privilegeMode) val perfEventscounten = RegInit(0.U.asTypeOf(Vec(nrPerfCnts, Bool()))) val perfCnts = List.fill(nrPerfCnts)(RegInit(0.U(XLEN.W))) val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++ List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++ List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++ List.fill(5)(RegInit("hc0300c0300".U(XLEN.W))) for (i <-0 until nrPerfCnts) { perfEventscounten(i) := (perfEvents(i)(63,60) & privilegeModeOH).orR } val hpmEvents = Wire(Vec(numPCntHc * coreParams.L2NBanks, new PerfEvent)) for (i <- 0 until numPCntHc * coreParams.L2NBanks) { hpmEvents(i) := csrio.perf.perfEventsHc(i) } // print perfEvents val allPerfEvents = hpmEvents.map(x => (s"Hc", x.value)) if (printEventCoding) { for (((name, inc), i) <- allPerfEvents.zipWithIndex) { println("CSR perfEvents Set", name, inc, i) } } val csrevents = perfEvents.slice(24, 29) val hpm_hc = HPerfMonitor(csrevents, hpmEvents) val mcountinhibit = RegInit(0.U(XLEN.W)) val mcycle = RegInit(0.U(XLEN.W)) mcycle := mcycle + 1.U val minstret = RegInit(0.U(XLEN.W)) val perf_events = csrio.perf.perfEventsFrontend ++ csrio.perf.perfEventsBackend ++ csrio.perf.perfEventsLsu ++ hpm_hc.getPerf minstret := minstret + RegNext(csrio.perf.retiredInstr) for(i <- 0 until 29){ perfCnts(i) := Mux(mcountinhibit(i+3) | !perfEventscounten(i), perfCnts(i), perfCnts(i) + perf_events(i).value) } // CSR reg map val basicPrivMapping = Map( // Unprivileged Floating-Point CSRs // Has been mapped above // TODO: support Unprivileged Counter/Timers CSRs ("Zicntr" and "Zihpm") // Unprivileged Counter/Timers MaskedRegMap(Cycle, mcycle), // We don't support read time CSR. // MaskedRegMap(Time, mtime), MaskedRegMap(Instret, minstret), //--- Supervisor Trap Setup --- MaskedRegMap(Sstatus, mstatus, sstatusWmask, mstatusUpdateSideEffect, sstatusRmask), // MaskedRegMap(Sedeleg, Sedeleg), // MaskedRegMap(Sideleg, Sideleg), MaskedRegMap(Sie, mie, sieMask, MaskedRegMap.NoSideEffect, sieMask), MaskedRegMap(Stvec, stvec, stvecMask, MaskedRegMap.NoSideEffect, stvecMask), MaskedRegMap(Scounteren, scounteren, scounterenMask), //--- Supervisor Configuration --- MaskedRegMap(Senvcfg, senvcfg), //--- Supervisor Trap Handling --- MaskedRegMap(Sscratch, sscratch), MaskedRegMap(Sepc, sepc, sepcMask, MaskedRegMap.NoSideEffect, sepcMask), MaskedRegMap(Scause, scause), MaskedRegMap(Stval, stval), MaskedRegMap(Sip, mipReg.asUInt, sipWMask, MaskedRegMap.NoSideEffect, sipMask, x => (mipWire.asUInt | x) & sipMask), //--- Supervisor Protection and Translation --- MaskedRegMap(Satp, satp, satpMask, MaskedRegMap.NoSideEffect, satpMask), //--- Supervisor Custom Read/Write Registers MaskedRegMap(Sbpctl, sbpctl), MaskedRegMap(Spfctl, spfctl), MaskedRegMap(Slvpredctl, slvpredctl), MaskedRegMap(Smblockctl, smblockctl), MaskedRegMap(Srnctl, srnctl), //--- Machine Information Registers --- MaskedRegMap(Mvendorid, mvendorid, 0.U(XLEN.W), MaskedRegMap.Unwritable), MaskedRegMap(Marchid, marchid, 0.U(XLEN.W), MaskedRegMap.Unwritable), MaskedRegMap(Mimpid, mimpid, 0.U(XLEN.W), MaskedRegMap.Unwritable), MaskedRegMap(Mhartid, mhartid, 0.U(XLEN.W), MaskedRegMap.Unwritable), MaskedRegMap(Mconfigptr, mconfigptr, 0.U(XLEN.W), MaskedRegMap.Unwritable), //--- Machine Configuration Registers --- MaskedRegMap(Menvcfg, menvcfg), //--- Machine Trap Setup --- MaskedRegMap(Mstatus, mstatus, mstatusWMask, mstatusUpdateSideEffect), MaskedRegMap(Misa, misa, 0.U, MaskedRegMap.Unwritable), // now whole misa is unchangeable MaskedRegMap(Medeleg, medeleg, medelegWMask), MaskedRegMap(Mideleg, mideleg, midelegWMask), MaskedRegMap(Mie, mie, mieWMask), MaskedRegMap(Mtvec, mtvec, mtvecMask, MaskedRegMap.NoSideEffect, mtvecMask), MaskedRegMap(Mcounteren, mcounteren, mcounterenMask), //--- Machine Trap Handling --- MaskedRegMap(Mscratch, mscratch), MaskedRegMap(Mepc, mepc, mepcMask, MaskedRegMap.NoSideEffect, mepcMask), MaskedRegMap(Mcause, mcause), MaskedRegMap(Mtval, mtval), MaskedRegMap(Mip, mipReg.asUInt, mipWMask, MaskedRegMap.NoSideEffect, mipMask, x => (mipWire.asUInt | x) & mipMask), //--- Trigger --- MaskedRegMap(Tselect, tselectPhy, WritableMask, WriteTselect), // Todo: support chain length = 2 MaskedRegMap(Tdata1, tdata1RegVec(tselectPhy), WritableMask, x => Tdata1Bundle.Write(x, tdata1RegVec(tselectPhy), newTriggerChainIsLegal, debug_mode = debugMode), WritableMask, x => Tdata1Bundle.Read(x)), MaskedRegMap(Tdata2, tdata2RegVec(tselectPhy)), MaskedRegMap(Tinfo, tinfo, 0.U(XLEN.W), MaskedRegMap.Unwritable), //--- Debug Mode --- MaskedRegMap(Dcsr, dcsr, dcsrMask, dcsrUpdateSideEffect), MaskedRegMap(Dpc, dpc), MaskedRegMap(Dscratch0, dscratch0), MaskedRegMap(Dscratch1, dscratch1), MaskedRegMap(Mcountinhibit, mcountinhibit), MaskedRegMap(Mcycle, mcycle), MaskedRegMap(Minstret, minstret), ) // hypervisor csr map val hcsrMapping = Map( //--- Hypervisor Trap Setup --- MaskedRegMap(Hstatus, hstatus, hstatusWMask), MaskedRegMap(Hedeleg, hedeleg), MaskedRegMap(Hideleg, hideleg, hidelegWMask, MaskedRegMap.NoSideEffect, hidelegRMask), MaskedRegMap(Hie, mie, hieMask, MaskedRegMap.NoSideEffect, hieMask), MaskedRegMap(Hcounteren, hcounteren, hcounterenMask), MaskedRegMap(Hgeie, hgeie), //--- Hypervisor Trap Handling --- MaskedRegMap(Htval, htval), MaskedRegMap(Hip, mipReg.asUInt, hipWMask, MaskedRegMap.NoSideEffect, hipRMask, x => (mipWire.asUInt | x) & hipRMask), MaskedRegMap(Hvip, mipReg.asUInt, hvipMask, MaskedRegMap.NoSideEffect, hvipMask, x => (mipWire.asUInt | x) & hvipMask), MaskedRegMap(Htinst, htinst), MaskedRegMap(Hgeip, hgeip), //--- Hypervisor Configuration --- MaskedRegMap(Henvcfg, henvcfg), //--- Hypervisor Protection and Translation --- MaskedRegMap(Hgatp, hgatp, hgatpMask, MaskedRegMap.NoSideEffect, hgatpMask), //--- Hypervisor Counter/Timer Virtualization Registers --- // MaskedRegMap(Htimedelta, htimedelta), //--- Virtual Supervisor Registers --- MaskedRegMap(Vsstatus, vsstatus, rmask = sstatusRmask, wmask = sstatusWmask, wfn = vsstatusUpdateSideEffect), MaskedRegMap(Vsie, mie, rmask = vsip_ie_Mask, wmask = vsip_ie_Mask), MaskedRegMap(Vstvec, vstvec), MaskedRegMap(Vsscratch, vsscratch), MaskedRegMap(Vsepc, vsepc), MaskedRegMap(Vscause, vscause), MaskedRegMap(Vstval, vstval), MaskedRegMap(Vsip, mipReg.asUInt, vsip_WMask, MaskedRegMap.NoSideEffect, vsip_ie_Mask, x => mipWire.asUInt | x), MaskedRegMap(Vsatp, vsatp, satpMask, MaskedRegMap.NoSideEffect, satpMask), //--- Machine Registers --- MaskedRegMap(Mtval2, mtval2), MaskedRegMap(Mtinst, mtinst), ) val perfCntMapping = (0 until 29).map(i => {Map( MaskedRegMap(addr = Mhpmevent3 +i, reg = perfEvents(i), wmask = "hf87fff3fcff3fcff".U(XLEN.W)), MaskedRegMap(addr = Mhpmcounter3 +i, reg = perfCnts(i)), MaskedRegMap(addr = Hpmcounter3 + i, reg = perfCnts(i)) )}).fold(Map())((a,b) => a ++ b) // TODO: mechanism should be implemented later // val MhpmcounterStart = Mhpmcounter3 // val MhpmeventStart = Mhpmevent3 // for (i <- 0 until nrPerfCnts) { // perfCntMapping += MaskedRegMap(MhpmcounterStart + i, perfCnts(i)) // perfCntMapping += MaskedRegMap(MhpmeventStart + i, perfEvents(i)) // } val cacheopRegs = CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => { name -> RegInit(0.U(attribute("width").toInt.W)) }} val cacheopMapping = CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => { MaskedRegMap( Scachebase + attribute("offset").toInt, cacheopRegs(name) ) }} val mapping = basicPrivMapping ++ perfCntMapping ++ pmpMapping ++ pmaMapping ++ (if (HasFPU) fcsrMapping else Nil) ++ (if (HasVPU) vcsrMapping else Nil) ++ (if (HasCustomCSRCacheOp) cacheopMapping else Nil) ++ (if (HasHExtension) hcsrMapping else Nil) println("XiangShan CSR Lists") for (addr <- mapping.keys.toSeq.sorted) { println(f"$addr%#03x ${mapping(addr)._1}") } val vs_s_csr_map = List( Sstatus.U -> Vsstatus.U, Sie.U -> Vsie.U, Stvec.U -> Vstvec.U, Sscratch.U -> Vsscratch.U, Sepc.U -> Vsepc.U, Scause.U -> Vscause.U, Stval.U -> Vstval.U, Sip.U -> Vsip.U, Satp.U -> Vsatp.U ) val addr = Wire(UInt(12.W)) val vscsr_addr = LookupTreeDefault(src2(11, 0), src2(11, 0), vs_s_csr_map) when(virtMode){ addr := vscsr_addr }.otherwise{ addr := src2(11, 0) } val csri = ZeroExt(src2(16, 12), XLEN) val rdata = Wire(UInt(XLEN.W)) val rdata_tmp = Wire(UInt(XLEN.W)) val wdata_tmp = LookupTree(func, List( CSROpType.wrt -> src1, CSROpType.set -> (rdata | src1), CSROpType.clr -> (rdata & (~src1).asUInt), CSROpType.wrti -> csri, CSROpType.seti -> (rdata | csri), CSROpType.clri -> (rdata & (~csri).asUInt) )) val is_vsip_ie = addr === Vsip.U || addr === Vsie.U // for the difftest with NEMU(stay consistent with Spike) val is_satp = addr === Satp.U val is_vsatp = addr === Vsatp.U val is_hgatp = addr === Hgatp.U val check_apt_mode = wdata_tmp(wdata_tmp.getWidth-1, 64-Satp_Mode_len) === 8.U || wdata_tmp(wdata_tmp.getWidth-1, 64-Satp_Mode_len) === 0.U val wdata = MuxCase(wdata_tmp, Seq( is_vsip_ie -> ZeroExt(wdata_tmp << 1, XLEN), (is_satp && !check_apt_mode) -> satp, (is_vsatp && !check_apt_mode) -> vsatp, (is_hgatp && !check_apt_mode) -> hgatp )) val addrInPerfCnt = (addr >= Mcycle.U) && (addr <= Mhpmcounter31.U) || (addr >= Mcountinhibit.U) && (addr <= Mhpmevent31.U) || (addr >= Cycle.U) && (addr <= Hpmcounter31.U) || addr === Mip.U csrio.isPerfCnt := addrInPerfCnt && valid && func =/= CSROpType.jmp // satp wen check val satpLegalMode = (wdata.asTypeOf(new SatpStruct).mode===0.U) || (wdata.asTypeOf(new SatpStruct).mode===8.U) // csr access check, special case val tvmNotPermit = (privilegeMode === ModeS && !virtMode && mstatusStruct.tvm.asBool) val accessPermitted = !(addr === Satp.U && tvmNotPermit) val vtvmNotPermit = (privilegeMode === ModeS && virtMode && hstatusStruct.vtvm.asBool) val vaccessPermitted = !(addr === Vsatp.U && vtvmNotPermit) // csrio.disableSfence := (tvmNotPermit || !virtMode && privilegeMode < ModeS) || (vtvmNotPermit || virtMode && privilegeMode < ModeS) // csrio.disableHfenceg := !((!virtMode && privilegeMode === ModeS && !mstatusStruct.tvm.asBool) || (privilegeMode === ModeM)) // only valid in HS and mstatus.tvm == 0 or in M // csrio.disableHfencev := !(privilegeMode === ModeM || (!virtMode && privilegeMode === ModeS)) // general CSR wen check val wen = valid && CSROpType.isCsrAccess(func) && ((addr=/=Satp.U && addr =/= Vsatp.U) || satpLegalMode) val dcsrPermitted = dcsrPermissionCheck(addr, false.B, debugMode) val triggerPermitted = triggerPermissionCheck(addr, true.B, debugMode) // todo dmode val HasH = (HasHExtension == true).asBool val csrAccess = csrAccessPermissionCheck(addr, false.B, privilegeMode, virtMode, HasH) val modePermitted = csrAccess === 0.U && dcsrPermitted && triggerPermitted val perfcntPermitted = perfcntPermissionCheck(addr, privilegeMode, mcounteren, scounteren) val permitted = Mux(addrInPerfCnt, perfcntPermitted, modePermitted) && Mux(virtMode, vaccessPermitted, accessPermitted) MaskedRegMap.generate(mapping, addr, rdata_tmp, wen && permitted, wdata) rdata := Mux(is_vsip_ie, ZeroExt(rdata_tmp >> 1, XLEN), rdata_tmp) io.out.bits.res.data := rdata io.out.bits.ctrl.flushPipe.get := flushPipe connect0LatencyCtrlSingal // send distribute csr a w signal csrio.customCtrl.distribute_csr.w.valid := wen && permitted csrio.customCtrl.distribute_csr.w.bits.data := wdata csrio.customCtrl.distribute_csr.w.bits.addr := addr when (RegNext(csrio.fpu.fflags.valid)) { fcsr := fflags_wfn(update = true)(RegEnable(csrio.fpu.fflags.bits, csrio.fpu.fflags.valid)) } when(RegNext(csrio.vpu.set_vxsat.valid)) { vcsr := vxsat_wfn(update = true)(RegEnable(csrio.vpu.set_vxsat.bits, csrio.vpu.set_vxsat.valid)) } // set fs and sd in mstatus when (csrw_dirty_fp_state || RegNext(csrio.fpu.dirty_fs)) { val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) mstatusNew.fs := "b11".U mstatusNew.sd := true.B mstatus := mstatusNew.asUInt when(virtMode){ val vsstatusNew = WireInit(vsstatus.asTypeOf(new MstatusStruct)) vsstatusNew.fs := "b11".U vsstatusNew.sd := true.B vsstatus := vsstatusNew.asUInt } } csrio.fpu.frm := fcsr.asTypeOf(new FcsrStruct).frm when (RegNext(csrio.vpu.set_vstart.valid)) { vstart := RegEnable(csrio.vpu.set_vstart.bits, csrio.vpu.set_vstart.valid) } when (RegNext(csrio.vpu.set_vtype.valid)) { vtype := RegEnable(csrio.vpu.set_vtype.bits, csrio.vpu.set_vtype.valid) } vl := csrio.vpu.vl // set vs and sd in mstatus when(csrw_dirty_vs_state || RegNext(csrio.vpu.dirty_vs)) { val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) mstatusNew.vs := ContextStatus.dirty mstatusNew.sd := true.B mstatus := mstatusNew.asUInt } csrio.vpu.vstart := vstart csrio.vpu.vxrm := vcsr.asTypeOf(new VcsrStruct).vxrm // Trigger Ctrl val triggerEnableVec = tdata1RegVec.map { tdata1 => val mcontrolData = tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData) tdata1.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && ( mcontrolData.m && privilegeMode === ModeM || mcontrolData.s && privilegeMode === ModeS || mcontrolData.u && privilegeMode === ModeU) } val fetchTriggerEnableVec = triggerEnableVec.zip(tdata1WireVec).map { case (tEnable, tdata1) => tEnable && tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isFetchTrigger } val memAccTriggerEnableVec = triggerEnableVec.zip(tdata1WireVec).map { case (tEnable, tdata1) => tEnable && tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isMemAccTrigger } csrio.customCtrl.frontend_trigger.tEnableVec := fetchTriggerEnableVec csrio.customCtrl.mem_trigger.tEnableVec := memAccTriggerEnableVec val tdata1Update = wen && (addr === Tdata1.U) val tdata2Update = wen && (addr === Tdata2.U) val triggerUpdate = wen && (addr === Tdata1.U || addr === Tdata2.U) val frontendTriggerUpdate = tdata1Update && wdata.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && wdata.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isFetchTrigger || tdata1Selected.data.asTypeOf(new MControlData).isFetchTrigger && triggerUpdate val memTriggerUpdate = tdata1Update && wdata.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && wdata.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isMemAccTrigger || tdata1Selected.data.asTypeOf(new MControlData).isMemAccTrigger && triggerUpdate csrio.customCtrl.frontend_trigger.tUpdate.valid := RegNext(RegNext(frontendTriggerUpdate)) csrio.customCtrl.mem_trigger.tUpdate.valid := RegNext(RegNext(memTriggerUpdate)) XSDebug(triggerEnableVec.reduce(_ || _), p"Debug Mode: At least 1 trigger is enabled," + p"trigger enable is ${Binary(triggerEnableVec.asUInt)}\n") // CSR inst decode val isEbreak = addr === privEbreak && func === CSROpType.jmp val isEcall = addr === privEcall && func === CSROpType.jmp val isMret = addr === privMret && func === CSROpType.jmp val isSret = addr === privSret && func === CSROpType.jmp val isUret = addr === privUret && func === CSROpType.jmp val isDret = addr === privDret && func === CSROpType.jmp val isWFI = func === CSROpType.wfi // Illegal privileged operation list val illegalMret = valid && isMret && privilegeMode < ModeM val illegalSret = valid && isSret && privilegeMode < ModeS val illegalSModeSret = valid && isSret && privilegeMode === ModeS && virtMode === false.B && mstatusStruct.tsr.asBool // when hstatus.vtsr == 1, if sret is executed in VS-mode, it will cause virtual instruction val illegalVSModeSret = valid && isSret && privilegeMode === ModeS && virtMode && hstatusStruct.vtsr.asBool // When TW=1, then if WFI is executed in any less-privileged mode, // and it does not complete within an implementation-specific, bounded time limit, // the WFI instruction causes an illegal instruction exception. // The time limit may always be 0, in which case WFI always causes // an illegal instruction exception in less-privileged modes when TW=1. val illegalWFI = valid && isWFI && (privilegeMode < ModeM && mstatusStruct.tw === 1.U || privilegeMode === ModeU && !virtMode) val illegalVWFI = valid && isWFI && ((virtMode && privilegeMode === ModeS && hstatusStruct.vtw === 1.U && mstatusStruct.tw === 0.U)|| (virtMode && privilegeMode === ModeU && mstatusStruct.tw === 0.U)) // Illegal privileged instruction check val isIllegalAddr = valid && CSROpType.isCsrAccess(func) && MaskedRegMap.isIllegalAddr(mapping, addr) val isIllegalAccess = !virtMode && wen && !(Mux(addrInPerfCnt, perfcntPermitted, csrAccess === 0.U && dcsrPermitted && triggerPermitted) && accessPermitted) val isIllegalPrivOp = illegalMret || illegalSret || illegalSModeSret || illegalWFI val isIllegalVAccess = virtMode && wen && (csrAccess === 2.U || !vaccessPermitted) val isIllegalVPrivOp = illegalVSModeSret || illegalVWFI // expose several csr bits for tlb tlbBundle.priv.mxr := mstatusStruct.mxr.asBool tlbBundle.priv.sum := mstatusStruct.sum.asBool tlbBundle.priv.vmxr := vsstatusStruct.mxr.asBool tlbBundle.priv.vsum := vsstatusStruct.sum.asBool tlbBundle.priv.spvp := hstatusStruct.spvp tlbBundle.priv.virt := Mux(mstatusStruct.mprv.asBool, mstatusStruct.mpv & (mstatusStruct.mpp =/= ModeM), virtMode) tlbBundle.priv.imode := privilegeMode tlbBundle.priv.dmode := Mux((debugMode && dcsr.asTypeOf(new DcsrStruct).mprven || !debugMode) && mstatusStruct.mprv.asBool, mstatusStruct.mpp, privilegeMode) // Branch control val retTarget = WireInit(0.U) val resetSatp = (addr === Satp.U || addr === Hgatp.U || addr === Vsatp.U) && wen // write to satp will cause the pipeline be flushed val writeVstart = addr === Vstart.U && wen // write to vstart will cause the pipeline be flushed dontTouch(writeVstart) val w_fcsr_change_rm = wen && addr === Fcsr.U && wdata(7, 5) =/= fcsr(7, 5) val w_frm_change_rm = wen && addr === Frm.U && wdata(2, 0) =/= fcsr(7, 5) val frm_change = w_fcsr_change_rm || w_frm_change_rm val isXRet = valid && func === CSROpType.jmp && !isEcall && !isEbreak flushPipe := resetSatp || frm_change || isXRet || frontendTriggerUpdate || writeVstart private val illegalRetTarget = WireInit(false.B) when(valid) { when(isDret) { retTarget := dpc(VAddrBits - 1, 0) }.elsewhen(isMret && !illegalMret) { retTarget := mepc(VAddrBits - 1, 0) }.elsewhen(isSret && !illegalSret && !illegalSModeSret && !illegalVSModeSret) { retTarget := Mux(virtMode, vsepc(VAddrBits - 1, 0), sepc(VAddrBits - 1, 0)) }.elsewhen(isUret) { retTarget := uepc(VAddrBits - 1, 0) }.otherwise { illegalRetTarget := true.B } }.otherwise { illegalRetTarget := true.B // when illegalRetTarget setted, retTarget should never be used } // Mux tree for regs when(valid) { when(isDret) { val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) val debugModeNew = WireInit(debugMode) when(dcsr.asTypeOf(new DcsrStruct).prv =/= ModeM) { mstatusNew.mprv := 0.U } //If the new privilege mode is less privileged than M-mode, MPRV in mstatus is cleared. mstatus := mstatusNew.asUInt privilegeMode := dcsr.asTypeOf(new DcsrStruct).prv debugModeNew := false.B debugIntrEnable := true.B debugMode := debugModeNew XSDebug("Debug Mode: Dret executed, returning to %x.", retTarget) }.elsewhen(isMret && !illegalMret) { val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) mstatusNew.ie.m := mstatusOld.pie.m privilegeMode := mstatusOld.mpp if (HasHExtension) { virtMode := mstatusOld.mpv mstatusNew.mpv := 0.U } mstatusNew.pie.m := true.B mstatusNew.mpp := ModeU when(mstatusOld.mpp =/= ModeM) { mstatusNew.mprv := 0.U } mstatus := mstatusNew.asUInt }.elsewhen(isSret && !illegalSret && !illegalSModeSret && !illegalVSModeSret) { val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) val hstatusOld = WireInit(hstatus.asTypeOf(new HstatusStruct)) val hstatusNew = WireInit(hstatus.asTypeOf(new HstatusStruct)) val vsstatusOld = WireInit(vsstatus.asTypeOf(new MstatusStruct)) val vsstatusNew = WireInit(vsstatus.asTypeOf(new MstatusStruct)) when(virtMode === 0.U) { virtMode := hstatusOld.spv hstatusNew.spv := 0.U mstatusNew.ie.s := mstatusOld.pie.s privilegeMode := Cat(0.U(1.W), mstatusOld.spp) mstatusNew.pie.s := true.B mstatusNew.spp := ModeU when(mstatusOld.spp =/= ModeM) { mstatusNew.mprv := 0.U } mstatus := mstatusNew.asUInt hstatus := hstatusNew.asUInt }.otherwise { privilegeMode := vsstatusOld.spp vsstatusNew.spp := ModeU vsstatusNew.ie.s := vsstatusOld.pie.s vsstatusNew.pie.s := 1.U vsstatus := vsstatusNew.asUInt } }.elsewhen(isUret) { val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) // mstatusNew.mpp.m := ModeU //TODO: add mode U mstatusNew.ie.u := mstatusOld.pie.u privilegeMode := ModeU mstatusNew.pie.u := true.B mstatus := mstatusNew.asUInt } } io.in.ready := true.B io.out.valid := valid // In this situation, hart will enter debug mode instead of handling a breakpoint exception simply. // Ebreak block instructions backwards, so it's ok to not keep extra info to distinguish between breakpoint // exception and enter-debug-mode exception. val ebreakEnterDebugMode = (privilegeMode === ModeM && dcsrData.ebreakm) || (privilegeMode === ModeS && dcsrData.ebreaks) || (privilegeMode === ModeU && dcsrData.ebreaku) // raise a debug exception waiting to enter debug mode, instead of a breakpoint exception val raiseDebugException = !debugMode && isEbreak && ebreakEnterDebugMode val csrExceptionVec = WireInit(0.U.asTypeOf(ExceptionVec())) csrExceptionVec(breakPoint) := io.in.valid && isEbreak csrExceptionVec(ecallM) := privilegeMode === ModeM && io.in.valid && isEcall csrExceptionVec(ecallVS) := privilegeMode === ModeS && virtMode && io.in.valid && isEcall csrExceptionVec(ecallS) := privilegeMode === ModeS && !virtMode && io.in.valid && isEcall csrExceptionVec(ecallU) := privilegeMode === ModeU && io.in.valid && isEcall // Trigger an illegal instr exception when: // * unimplemented csr is being read/written // * csr access is illegal csrExceptionVec(illegalInstr) := isIllegalAddr || isIllegalAccess || isIllegalPrivOp csrExceptionVec(virtualInstr) := isIllegalVAccess || isIllegalVPrivOp io.out.bits.ctrl.exceptionVec.get := csrExceptionVec XSDebug(io.in.valid, s"Debug Mode: an Ebreak is executed, ebreak cause enter-debug-mode exception ? ${raiseDebugException}\n") /** * Exception and Intr */ val idelegS = (mideleg & mip.asUInt) val idelegVS = (hideleg & mideleg & mip.asUInt) def privilegedEnableDetect(idelegS: Bool, idelegVS: Bool): Bool = Mux(idelegS, Mux(idelegVS, (virtMode && privilegeMode === ModeS && vsstatusStruct.ie.s) || (virtMode && privilegeMode < ModeS), ((privilegeMode === ModeS) && mstatusStruct.ie.s) || (privilegeMode < ModeS) || virtMode), ((privilegeMode === ModeM) && mstatusStruct.ie.m) || (privilegeMode < ModeM)) val debugIntr = csrio.externalInterrupt.debug & debugIntrEnable XSDebug(debugIntr, "Debug Mode: debug interrupt is asserted and valid!") // send interrupt information to ROB val intrVecEnable = Wire(Vec(13, Bool())) val disableInterrupt = debugMode || (dcsrData.step && !dcsrData.stepie) intrVecEnable.zip(idelegS.asBools).zip(idelegVS.asBools).map{case((x,y),z) => x := privilegedEnableDetect(y, z) && !disableInterrupt} val intrVec = Cat(debugIntr && !debugMode, (mie(11,0) & mip.asUInt & intrVecEnable.asUInt)) val intrBitSet = intrVec.orR csrio.interrupt := intrBitSet // Page 45 in RISC-V Privileged Specification // The WFI instruction can also be executed when interrupts are disabled. The operation of WFI // must be unaffected by the global interrupt bits in mstatus (MIE and SIE) and the delegation // register mideleg, but should honor the individual interrupt enables (e.g, MTIE). csrio.wfi_event := debugIntr || (mie(11, 0) & mip.asUInt).orR mipWire.t.m := csrio.externalInterrupt.mtip mipWire.s.m := csrio.externalInterrupt.msip mipWire.e.m := csrio.externalInterrupt.meip mipWire.e.s := csrio.externalInterrupt.seip // interrupts val intrNO = IntPriority.foldRight(0.U)((i: Int, sum: UInt) => Mux(intrVec(i), i.U, sum)) val hasIntr = csrio.exception.valid && csrio.exception.bits.isInterrupt val ivmEnable = tlbBundle.priv.imode < ModeM && satp.asTypeOf(new SatpStruct).mode === 8.U val iexceptionPC = Mux(ivmEnable, SignExt(csrio.exception.bits.pc, XLEN), csrio.exception.bits.pc) val iexceptionGPAddr = Mux(ivmEnable, SignExt(csrio.exception.bits.gpaddr, XLEN), csrio.exception.bits.gpaddr) val dvmEnable = tlbBundle.priv.dmode < ModeM && satp.asTypeOf(new SatpStruct).mode === 8.U val dexceptionPC = Mux(dvmEnable, SignExt(csrio.exception.bits.pc, XLEN), csrio.exception.bits.pc) XSDebug(hasIntr, "interrupt: pc=0x%x, %d\n", dexceptionPC, intrNO) val hasDebugIntr = intrNO === IRQ_DEBUG.U && hasIntr // exceptions from rob need to handle val exceptionVecFromRob = csrio.exception.bits.exceptionVec val hasException = csrio.exception.valid && !csrio.exception.bits.isInterrupt val hasInstrPageFault = hasException && exceptionVecFromRob(instrPageFault) val hasLoadPageFault = hasException && exceptionVecFromRob(loadPageFault) val hasStorePageFault = hasException && exceptionVecFromRob(storePageFault) val hasStoreAddrMisalign = hasException && exceptionVecFromRob(storeAddrMisaligned) val hasLoadAddrMisalign = hasException && exceptionVecFromRob(loadAddrMisaligned) val hasInstrAccessFault = hasException && exceptionVecFromRob(instrAccessFault) val hasLoadAccessFault = hasException && exceptionVecFromRob(loadAccessFault) val hasStoreAccessFault = hasException && exceptionVecFromRob(storeAccessFault) val hasBreakPoint = hasException && exceptionVecFromRob(breakPoint) val hasInstGuestPageFault = hasException && exceptionVecFromRob(instrGuestPageFault) val hasLoadGuestPageFault = hasException && exceptionVecFromRob(loadGuestPageFault) val hasStoreGuestPageFault = hasException && exceptionVecFromRob(storeGuestPageFault) val hasSingleStep = hasException && csrio.exception.bits.singleStep val hasTriggerFire = hasException && csrio.exception.bits.trigger.canFire val triggerFrontendHitVec = csrio.exception.bits.trigger.frontendHit val triggerMemHitVec = csrio.exception.bits.trigger.backendHit val triggerHitVec = triggerFrontendHitVec | triggerMemHitVec // Todo: update mcontrol.hit val triggerCanFireVec = csrio.exception.bits.trigger.frontendCanFire | csrio.exception.bits.trigger.backendCanFire // More than one triggers can hit at the same time, but only fire one // We select the first hit trigger to fire val triggerFireOH = PriorityEncoderOH(triggerCanFireVec) val triggerFireAction = PriorityMux(triggerFireOH, tdata1WireVec.map(_.getTriggerAction)).asUInt XSDebug(hasSingleStep, "Debug Mode: single step exception\n") XSDebug(hasTriggerFire, p"Debug Mode: trigger fire, frontend hit vec ${Binary(csrio.exception.bits.trigger.frontendHit.asUInt)} " + p"backend hit vec ${Binary(csrio.exception.bits.trigger.backendHit.asUInt)}\n") val hasExceptionVec = csrio.exception.bits.exceptionVec val regularExceptionNO = ExceptionNO.priorities.foldRight(0.U)((i: Int, sum: UInt) => Mux(hasExceptionVec(i), i.U, sum)) val exceptionNO = Mux(hasSingleStep || hasTriggerFire, 3.U, regularExceptionNO) val causeNO = (hasIntr << (XLEN - 1)).asUInt | Mux(hasIntr, intrNO, exceptionNO) val hasExceptionIntr = csrio.exception.valid val hasDebugEbreakException = hasBreakPoint && ebreakEnterDebugMode val hasDebugTriggerException = hasTriggerFire && triggerFireAction === TrigActionEnum.DEBUG_MODE val hasDebugException = hasDebugEbreakException || hasDebugTriggerException || hasSingleStep val hasDebugTrap = hasDebugException || hasDebugIntr val ebreakEnterParkLoop = debugMode && hasExceptionIntr XSDebug(hasExceptionIntr, "int/exc: pc %x int (%d):%x exc: (%d):%x\n", dexceptionPC, intrNO, intrVec, exceptionNO, hasExceptionVec.asUInt ) XSDebug(hasExceptionIntr, "pc %x mstatus %x mideleg %x medeleg %x mode %x\n", dexceptionPC, mstatus, mideleg, medeleg, privilegeMode ) // mtval write logic // Due to timing reasons of memExceptionVAddr, we delay the write of mtval and stval val memExceptionAddr = SignExt(csrio.memExceptionVAddr, XLEN) val memExceptionGPAddr = SignExt(csrio.memExceptionGPAddr, XLEN) val updateTval = VecInit(Seq( hasInstrPageFault, hasLoadPageFault, hasStorePageFault, hasInstrAccessFault, hasLoadAccessFault, hasStoreAccessFault, hasLoadAddrMisalign, hasStoreAddrMisalign, hasInstGuestPageFault, hasLoadGuestPageFault, hasStoreGuestPageFault, hasBreakPoint, )).asUInt.orR val updateTval_h = VecInit(Seq( hasInstGuestPageFault, hasLoadGuestPageFault, hasStoreGuestPageFault )).asUInt.orR when (RegNext(RegNext(updateTval))) { val tval = Mux( RegNext(RegNext(hasInstrPageFault || hasInstrAccessFault || hasInstGuestPageFault || hasBreakPoint)), RegNext(RegNext(Mux( csrio.exception.bits.crossPageIPFFix, SignExt(csrio.exception.bits.pc + 2.U, XLEN), iexceptionPC ))), memExceptionAddr ) // because we update tval two beats later, we can choose xtval according to the privilegeMode which has been updated when (RegNext(privilegeMode === ModeM)) { mtval := tval }.otherwise { when (virtMode){ vstval := tval }.otherwise{ stval := tval } } } when(RegNext(RegNext(updateTval_h))) { val tval_tmp = Mux( RegNext(RegNext(hasInstGuestPageFault)), RegNext(RegNext(Mux( csrio.exception.bits.crossPageIPFFix, SignExt(csrio.exception.bits.gpaddr + 2.U, XLEN), iexceptionGPAddr ))), memExceptionGPAddr ) val tval = tval_tmp >> 2 when(RegNext(privilegeMode === ModeM)) { mtval2 := tval }.otherwise { htval := tval } } val debugTrapTarget = Mux(!isEbreak && debugMode, 0x38020808.U, 0x38020800.U) // 0x808 is when an exception occurs in debug mode prog buf exec val deleg = Mux(hasIntr, mideleg , medeleg) val hdeleg = Mux(hasIntr, hideleg, hedeleg) // val delegS = ((deleg & (1 << (causeNO & 0xf))) != 0) && (privilegeMode < ModeM); val delegS = deleg(causeNO(7,0)) && (privilegeMode < ModeM) val delegVS = virtMode && delegS && hdeleg(causeNO(7, 0)) && (privilegeMode < ModeM) val clearTval = !updateTval || hasIntr val clearTval_h = !updateTval_h || hasIntr val isHyperInst = csrio.exception.bits.isHls // ctrl block will use theses later for flush val isXRetFlag = RegInit(false.B) when (DelayN(io.flush.valid, 5)) { isXRetFlag := false.B }.elsewhen (isXRet) { isXRetFlag := true.B } csrio.isXRet := isXRetFlag private val retTargetReg = RegEnable(retTarget, isXRet && !illegalRetTarget) private val illegalXret = RegEnable(illegalMret || illegalSret || illegalSModeSret || illegalVSModeSret, isXRet) private val xtvec = Mux(delegS, Mux(delegVS, vstvec, stvec), mtvec) private val xtvecBase = xtvec(VAddrBits - 1, 2) // When MODE=Vectored, all synchronous exceptions into M/S mode // cause the pc to be set to the address in the BASE field, whereas // interrupts cause the pc to be set to the address in the BASE field // plus four times the interrupt cause number. private val pcFromXtvec = Cat(xtvecBase + Mux(xtvec(0) && hasIntr, causeNO(3, 0), 0.U), 0.U(2.W)) // XRet sends redirect instead of Flush and isXRetFlag is true.B before redirect.valid. // ROB sends exception at T0 while CSR receives at T2. // We add a RegNext here and trapTarget is valid at T3. csrio.trapTarget := RegEnable( MuxCase(pcFromXtvec, Seq( (isXRetFlag && !illegalXret) -> retTargetReg, ((hasDebugTrap && !debugMode) || ebreakEnterParkLoop) -> debugTrapTarget )), isXRetFlag || csrio.exception.valid) when(hasExceptionIntr) { val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) val hstatusOld = WireInit(hstatus.asTypeOf(new HstatusStruct)) val hstatusNew = WireInit(hstatus.asTypeOf(new HstatusStruct)) val vsstatusOld = WireInit(vsstatus.asTypeOf(new MstatusStruct)) val vsstatusNew = WireInit(vsstatus.asTypeOf(new MstatusStruct)) val dcsrNew = WireInit(dcsr.asTypeOf(new DcsrStruct)) val debugModeNew = WireInit(debugMode) when(hasDebugTrap && !debugMode) { import DcsrStruct._ debugModeNew := true.B dcsrNew.prv := privilegeMode privilegeMode := ModeM when(hasDebugIntr) { dpc := iexceptionPC dcsrNew.cause := CAUSE_HALTREQ XSDebug(hasDebugIntr, "Debug Mode: Trap to %x at pc %x\n", debugTrapTarget, dpc) }.otherwise { // hasDebugException dpc := iexceptionPC // TODO: check it when hasSingleStep dcsrNew.cause := MuxCase(0.U, Seq( hasTriggerFire -> CAUSE_TRIGGER, raiseDebugException -> CAUSE_EBREAK, hasBreakPoint -> CAUSE_HALTREQ, hasSingleStep -> CAUSE_STEP )) } dcsr := dcsrNew.asUInt debugIntrEnable := false.B }.elsewhen (debugMode) { //do nothing }.elsewhen (delegVS) { vscause := (hasIntr << (XLEN-1)).asUInt | Mux(hasIntr, intrNO - 1.U, exceptionNO) vsepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC) vsstatusNew.spp := privilegeMode vsstatusNew.pie.s := vsstatusOld.ie.s vsstatusNew.ie.s := false.B when (clearTval) {vstval := 0.U} virtMode := true.B privilegeMode := ModeS }.elsewhen (delegS) { val virt = Mux(mstatusOld.mprv.asBool, mstatusOld.mpv, virtMode) // to do hld st hstatusNew.gva := (hasInstGuestPageFault || hasLoadGuestPageFault || hasStoreGuestPageFault || ((virt.asBool || isHyperInst) && ((hasException && 0.U <= exceptionNO && exceptionNO <= 7.U && exceptionNO =/= 2.U) || hasInstrPageFault || hasLoadPageFault || hasStorePageFault))) hstatusNew.spv := virtMode when(virtMode){ hstatusNew.spvp := privilegeMode } virtMode := false.B scause := causeNO sepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC) mstatusNew.spp := privilegeMode mstatusNew.pie.s := mstatusOld.ie.s mstatusNew.ie.s := false.B privilegeMode := ModeS when (clearTval) { stval := 0.U } when (clearTval_h) {htval := 0.U} }.otherwise { val virt = Mux(mstatusOld.mprv.asBool, mstatusOld.mpv, virtMode) // to do hld st mstatusNew.gva := (hasInstGuestPageFault || hasLoadGuestPageFault || hasStoreGuestPageFault || ((virt.asBool || isHyperInst) && ((hasException && 0.U <= exceptionNO && exceptionNO <= 7.U && exceptionNO =/= 2.U) || hasInstrPageFault || hasLoadPageFault || hasStorePageFault))) mstatusNew.mpv := virtMode virtMode := false.B mcause := causeNO mepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC) mstatusNew.mpp := privilegeMode mstatusNew.pie.m := mstatusOld.ie.m mstatusNew.ie.m := false.B privilegeMode := ModeM when (clearTval) { mtval := 0.U } when (clearTval_h) {mtval2 := 0.U} } mstatus := mstatusNew.asUInt vsstatus := vsstatusNew.asUInt hstatus := hstatusNew.asUInt debugMode := debugModeNew } // Cache error debug support if(HasCustomCSRCacheOp){ val cache_error_decoder = Module(new CSRCacheErrorDecoder) cache_error_decoder.io.encoded_cache_error := cacheopRegs("CACHE_ERROR") } // Implicit add reset values for mepc[0] and sepc[0] // TODO: rewrite mepc and sepc using a struct-like style with the LSB always being 0 when (RegNext(RegNext(reset.asBool) && !reset.asBool)) { mepc := Cat(mepc(XLEN - 1, 1), 0.U(1.W)) sepc := Cat(sepc(XLEN - 1, 1), 0.U(1.W)) vsepc := Cat(vsepc(XLEN - 1, 1), 0.U(1.W)) } def readWithScala(addr: Int): UInt = mapping(addr)._1 val difftestIntrNO = Mux(hasIntr, causeNO, 0.U) // Always instantiate basic difftest modules. if (env.AlwaysBasicDiff || env.EnableDifftest) { val difftest = DifftestModule(new DiffArchEvent, delay = 3, dontCare = true) difftest.coreid := csrio.hartId difftest.valid := csrio.exception.valid difftest.interrupt := Mux(hasIntr, causeNO, 0.U) difftest.exception := Mux(hasException, causeNO, 0.U) difftest.exceptionPC := dexceptionPC if (env.EnableDifftest) { difftest.exceptionInst := csrio.exception.bits.instr } } // Always instantiate basic difftest modules. if (env.AlwaysBasicDiff || env.EnableDifftest) { val difftest = DifftestModule(new DiffCSRState) difftest.coreid := csrio.hartId difftest.privilegeMode := privilegeMode difftest.mstatus := mstatus difftest.sstatus := mstatus & sstatusRmask difftest.mepc := mepc difftest.sepc := sepc difftest.mtval:= mtval difftest.stval:= stval difftest.mtvec := mtvec difftest.stvec := stvec difftest.mcause := mcause difftest.scause := scause difftest.satp := satp difftest.mip := mipReg difftest.mie := mie difftest.mscratch := mscratch difftest.sscratch := sscratch difftest.mideleg := mideleg difftest.medeleg := medeleg } if (env.AlwaysBasicDiff || env.EnableDifftest) { val difftest = DifftestModule(new DiffHCSRState) difftest.coreid := csrio.hartId difftest.virtMode := virtMode difftest.mtval2 := mtval2 difftest.mtinst := mtinst difftest.hstatus := hstatus difftest.hideleg := hideleg difftest.hedeleg := hedeleg difftest.hcounteren := hcounteren difftest.htval := htval difftest.htinst := htinst difftest.hgatp := hgatp difftest.vsstatus := vsstatus difftest.vstvec := vstvec difftest.vsepc := vsepc difftest.vscause := vscause difftest.vstval := vstval difftest.vsatp := vsatp difftest.vsscratch := vsscratch } if(env.AlwaysBasicDiff || env.EnableDifftest) { val difftest = DifftestModule(new DiffDebugMode) difftest.coreid := csrio.hartId difftest.debugMode := debugMode difftest.dcsr := dcsr difftest.dpc := dpc difftest.dscratch0 := dscratch0 difftest.dscratch1 := dscratch1 } if (env.AlwaysBasicDiff || env.EnableDifftest) { val difftest = DifftestModule(new DiffVecCSRState) difftest.coreid := csrio.hartId difftest.vstart := vstart difftest.vxsat := vcsr.asTypeOf(new VcsrStruct).vxsat difftest.vxrm := vcsr.asTypeOf(new VcsrStruct).vxrm difftest.vcsr := vcsr difftest.vl := vl difftest.vtype := vtype difftest.vlenb := vlenb } } class PFEvent(implicit p: Parameters) extends XSModule { val io = IO(new Bundle { val distribute_csr = Flipped(new DistributedCSRIO()) val hpmevent = Output(Vec(29, UInt(XLEN.W))) }) val w = io.distribute_csr.w val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++ List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++ List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++ List.fill(5)(RegInit("hc0300c0300".U(XLEN.W))) val perfEventMapping = (0 until 29).map(i => {Map( MaskedRegMap(addr = CSRs.mhpmevent3 + i, reg = perfEvents(i), wmask = "hf87fff3fcff3fcff".U(XLEN.W)) )}).fold(Map())((a,b) => a ++ b) val rdata = Wire(UInt(XLEN.W)) MaskedRegMap.generate(perfEventMapping, w.bits.addr, rdata, w.valid, w.bits.data) for(i <- 0 until 29){ io.hpmevent(i) := perfEvents(i) } } */