/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. * * * Acknowledgement * * This implementation is inspired by several key papers: * [1] James E. Smith, and Andrew R. Pleszkun. "[Implementation of precise interrupts in pipelined processors.] * (https://dl.acm.org/doi/10.5555/327010.327125)" 12th Annual International Symposium on Computer Architecture (ISCA). * 1985. ***************************************************************************************/ package xiangshan.backend.rob import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import chisel3.experimental.BundleLiterals._ import difftest._ import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} import utility._ import utils._ import xiangshan._ import xiangshan.backend.GPAMemEntry import xiangshan.backend.{BackendParams, RatToVecExcpMod, RegWriteFromRab, VecExcpInfo} import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} import xiangshan.backend.decode.isa.bitfield.XSInstBitFields import xiangshan.backend.fu.{FuConfig, FuType} import xiangshan.frontend.FtqPtr import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} import xiangshan.backend.fu.vector.Bundles.VType import xiangshan.backend.rename.SnapshotGenerator import yunsuan.VfaluType import xiangshan.backend.rob.RobBundles._ import xiangshan.backend.trace._ import chisel3.experimental.BundleLiterals._ class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { override def shouldBeInlined: Boolean = false lazy val module = new RobImp(this)(p, params) } class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents with HasCriticalErrors { private val LduCnt = params.LduCnt private val StaCnt = params.StaCnt private val HyuCnt = params.HyuCnt val io = IO(new Bundle() { val hartId = Input(UInt(hartIdLen.W)) val redirect = Input(Valid(new Redirect)) val enq = new RobEnqIO val flushOut = ValidIO(new Redirect) val exception = ValidIO(new ExceptionInfo) // exu + brq val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) val exuWriteback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool())) val commits = Output(new RobCommitIO) val trace = new Bundle { val blockCommit = Input(Bool()) val traceCommitInfo = new TraceBundle(hasIaddr = false, CommitWidth, IretireWidthInPipe) } val rabCommits = Output(new RabCommitIO) val diffCommits = if (backendParams.basicDebugEn) Some(Output(new DiffCommitIO)) else None val isVsetFlushPipe = Output(Bool()) val lsq = new RobLsqIO val robDeqPtr = Output(new RobPtr) val csr = new RobCSRIO val snpt = Input(new SnapshotPort) val robFull = Output(Bool()) val headNotReady = Output(Bool()) val cpu_halt = Output(Bool()) val wfi_enable = Input(Bool()) val toDecode = new Bundle { val isResumeVType = Output(Bool()) val walkToArchVType = Output(Bool()) val walkVType = ValidIO(VType()) val commitVType = new Bundle { val vtype = ValidIO(VType()) val hasVsetvl = Output(Bool()) } } val fromVecExcpMod = Input(new Bundle { val busy = Bool() }) val readGPAMemAddr = ValidIO(new Bundle { val ftqPtr = new FtqPtr() val ftqOffset = UInt(log2Up(PredictWidth).W) }) val readGPAMemData = Input(new GPAMemEntry) val vstartIsZero = Input(Bool()) val toVecExcpMod = Output(new Bundle { val logicPhyRegMap = Vec(RabCommitWidth, ValidIO(new RegWriteFromRab)) val excpInfo = ValidIO(new VecExcpInfo) }) val debug_ls = Flipped(new DebugLSIO) val debugRobHead = Output(new DynInst) val debugEnqLsq = Input(new LsqEnqIO) val debugHeadLsIssue = Input(Bool()) val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) val debugTopDown = new Bundle { val toCore = new RobCoreTopDownIO val toDispatch = new RobDispatchTopDownIO val robHeadLqIdx = Valid(new LqPtr) } val debugRolling = new RobDebugRollingIO // store event difftest information val storeDebugInfo = Vec(EnsbufferWidth, new Bundle { val robidx = Input(new RobPtr) val pc = Output(UInt(VAddrBits.W)) }) }) val exuWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(!_.bits.params.hasStdFu).toSeq val stdWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasStdFu).toSeq val vldWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasVLoadFu).toSeq val fflagsWBs = io.exuWriteback.filter(x => x.bits.fflags.nonEmpty).toSeq val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty).toSeq val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty).toSeq val vxsatWBs = io.exuWriteback.filter(x => x.bits.vxsat.nonEmpty).toSeq val branchWBs = io.exuWriteback.filter(_.bits.params.hasBrhFu).toSeq val jmpWBs = io.exuWriteback.filter(_.bits.params.hasJmpFu).toSeq val csrWBs = io.exuWriteback.filter(x => x.bits.params.hasCSR).toSeq PerfCCT.tick(clock, reset) io.exuWriteback.zipWithIndex.foreach{ case (wb, i) => PerfCCT.updateInstPos(wb.bits.debug_seqNum, PerfCCT.InstPos.AtWriteVal.id.U, wb.valid, clock, reset) } val numExuWbPorts = exuWBs.length val numStdWbPorts = stdWBs.length val bankAddrWidth = log2Up(CommitWidth) println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") val rab = Module(new RenameBuffer(RabSize)) val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) val bankNum = 8 assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0") val robEntries = RegInit(VecInit.fill(RobSize)((new RobEntryBundle).Lit(_.valid -> false.B))) // pointers // For enqueue ptr, we don't duplicate it since only enqueue needs it. val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) val walkPtrTrue = Reg(new RobPtr) val lastWalkPtr = Reg(new RobPtr) val allowEnqueue = RegInit(true.B) val allowEnqueueForDispatch = RegInit(true.B) val vecExcpInfo = RegInit(ValidIO(new VecExcpInfo).Lit( _.valid -> false.B, )) /** * Enqueue (from dispatch) */ // special cases val hasBlockBackward = RegInit(false.B) val hasWaitForward = RegInit(false.B) val enqPtr = enqPtrVec(0) val deqPtr = deqPtrVec(0) val walkPtr = walkPtrVec(0) val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq && !io.fromVecExcpMod.busy io.enq.canAcceptForDispatch := allowEnqueueForDispatch && !hasBlockBackward && rab.io.canEnqForDispatch && vtypeBuffer.io.canEnqForDispatch && !io.fromVecExcpMod.busy io.enq.resp := allocatePtrVec val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) val timer = GTimer() // robEntries enqueue for (i <- 0 until RobSize) { val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") when(enqOH.asUInt.orR && !io.redirect.valid){ connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits))) } } // robBanks0 include robidx : 0 8 16 24 32 ... val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1)))) // each Bank has 20 Entries, read addr is one hot // all banks use same raddr val eachBankEntrieNum = robBanks(0).length val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W)) val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W)) robBanksRaddrThisLine := robBanksRaddrNextLine val bankNumWidth = log2Up(bankNum) val deqPtrWidth = deqPtr.value.getWidth val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W)))) val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W)))) // robBanks read val robBanksRdataThisLine = VecInit(robBanks.map{ case bank => Mux1H(robBanksRaddrThisLine, bank) }) val robBanksRdataNextLine = VecInit(robBanks.map{ case bank => val shiftBank = bank.drop(1) :+ bank(0) Mux1H(robBanksRaddrThisLine, shiftBank) }) val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) val commitValidThisLine = Wire(Vec(CommitWidth, Bool())) val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) val allCommitted = Wire(Bool()) when(allCommitted) { hasCommitted := 0.U.asTypeOf(hasCommitted) }.elsewhen(io.commits.isCommit){ for (i <- 0 until CommitWidth){ hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i) } } allCommitted := io.commits.isCommit && commitValidThisLine.last val walkPtrHead = Wire(new RobPtr) val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr when(io.redirect.valid){ robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth)) }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){ robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1) }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){ robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth)) }.otherwise( robBanksRaddrNextLine := robBanksRaddrThisLine ) val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle)) val rawInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq for (i <- 0 until CommitWidth) { connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i)) when(allCommitted){ connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i)) } } // In each robentry, the ftqIdx and ftqOffset belong to the first instruction that was compressed, // That is Necessary when exceptions happen. // Update the ftqOffset to correctly notify the frontend which instructions have been committed. // Instructions in multiple Ftq entries compressed to one RobEntry do not occur. for (i <- 0 until CommitWidth) { val lastOffset = (rawInfo(i).traceBlockInPipe.iretire - (1.U << rawInfo(i).traceBlockInPipe.ilastsize.asUInt).asUInt) + rawInfo(i).ftqOffset commitInfo(i).ftqOffset := Mux(CommitType.isFused(rawInfo(i).commitType), rawInfo(i).ftqOffset, lastOffset) } // data for debug // Warn: debug_* prefix should not exist in generated verilog. val debug_microOp = DebugMem(RobSize, new DynInst) val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) val isEmpty = enqPtr === deqPtr val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr)) snapshotPtrVec(0) := io.enq.req(0).bits.robIdx for (i <- 1 until CommitWidth) { snapshotPtrVec(i) := snapshotPtrVec(0) + i.U } val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) val debug_lsIssue = WireDefault(debug_lsIssued) debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue /** * states of Rob */ val s_idle :: s_walk :: Nil = Enum(2) val state = RegInit(s_idle) val state_next = Wire(chiselTypeOf(state)) val tip_computing :: tip_stalled :: tip_walk :: tip_drained :: Nil = Enum(4) val tip_state = WireInit(0.U(4.W)) when(!isEmpty) { // One or more inst in ROB when(state === s_walk || io.redirect.valid) { tip_state := tip_walk }.elsewhen(io.commits.isCommit && PopCount(io.commits.commitValid) =/= 0.U) { tip_state := tip_computing }.otherwise { tip_state := tip_stalled } }.otherwise { tip_state := tip_drained } class TipEntry()(implicit p: Parameters) extends XSBundle { val state = UInt(4.W) val commits = new RobCommitIO() // info of commit val redirect = Valid(new Redirect) // info of redirect val redirect_pc = UInt(VAddrBits.W) // PC of the redirect uop val debugLsInfo = new DebugLsInfo() } val tip_table = ChiselDB.createTable("Tip_" + p(XSCoreParamsKey).HartId.toString, new TipEntry) val tip_data = Wire(new TipEntry()) tip_data.state := tip_state tip_data.commits := io.commits tip_data.redirect := io.redirect tip_data.redirect_pc := debug_microOp(io.redirect.bits.robIdx.value).pc tip_data.debugLsInfo := debug_lsInfo(io.commits.robIdx(0).value) tip_table.log(tip_data, true.B, "", clock, reset) val exceptionGen = Module(new ExceptionGen(params)) val exceptionDataRead = exceptionGen.io.state val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) io.robDeqPtr := deqPtr io.debugRobHead := debug_microOp(deqPtr.value) /** * connection of [[rab]] */ rab.io.redirect.valid := io.redirect.valid rab.io.req.zip(io.enq.req).map { case (dest, src) => dest.bits := src.bits dest.valid := src.valid && io.enq.canAccept } val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)}) val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)}) val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _))) val walkSizeSumSeq = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _))) val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit}) val walkSizeSumCond = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk}) val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) val deqVlsExceptionNeedCommit = RegInit(false.B) val deqVlsExceptionCommitSize = RegInit(0.U(log2Up(MaxUopSize + 1).W)) val deqVlsCanCommit= RegInit(false.B) rab.io.fromRob.commitSize := Mux(deqVlsExceptionNeedCommit, deqVlsExceptionCommitSize, commitSizeSum) rab.io.fromRob.walkSize := walkSizeSum rab.io.fromRob.vecLoadExcp.valid := RegNext(exceptionDataRead.valid && exceptionDataRead.bits.isVecLoad) rab.io.fromRob.vecLoadExcp.bits.isStrided := RegEnable(exceptionDataRead.bits.isStrided, exceptionDataRead.valid) rab.io.fromRob.vecLoadExcp.bits.isVlm := RegEnable(exceptionDataRead.bits.isVlm, exceptionDataRead.valid) rab.io.snpt := io.snpt rab.io.snpt.snptEnq := snptEnq // pipe rab commits for better timing and area io.rabCommits := RegNext(rab.io.commits) io.diffCommits.foreach(_ := rab.io.diffCommits.get) /** * connection of [[vtypeBuffer]] */ vtypeBuffer.io.redirect.valid := io.redirect.valid vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => sink.valid := source.valid && io.enq.canAccept sink.bits := source.bits } private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) vtypeBuffer.io.snpt := io.snpt vtypeBuffer.io.snpt.snptEnq := snptEnq io.toDecode.walkToArchVType := vtypeBuffer.io.toDecode.walkToArchVType io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. when(isEmpty) { hasBlockBackward := false.B } // When any instruction commits, hasNoSpecExec should be set to false.B when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward := false.B } // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. val hasWFI = RegInit(false.B) io.cpu_halt := hasWFI // WFI Timeout: 2^20 = 1M cycles val wfi_cycles = RegInit(0.U(20.W)) if (wfiResume) { when(hasWFI) { wfi_cycles := wfi_cycles + 1.U }.elsewhen(!hasWFI && RegNext(hasWFI)) { wfi_cycles := 0.U } } val wfi_timeout = wfi_cycles.andR when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { hasWFI := false.B } for (i <- 0 until RenameWidth) { // we don't check whether io.redirect is valid here since redirect has higher priority when(canEnqueue(i)) { val enqUop = io.enq.req(i).bits val enqIndex = allocatePtrVec(i).value // store uop in data module and debug_microOp Vec debug_microOp(enqIndex) := enqUop debug_microOp(enqIndex).debugInfo.dispatchTime := timer debug_microOp(enqIndex).debugInfo.enqRsTime := timer debug_microOp(enqIndex).debugInfo.selectTime := timer debug_microOp(enqIndex).debugInfo.issueTime := timer debug_microOp(enqIndex).debugInfo.writebackTime := timer debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer debug_microOp(enqIndex).debugInfo.tlbRespTime := timer debug_lsInfo(enqIndex) := DebugLsInfo.init debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init debug_lqIdxValid(enqIndex) := false.B debug_lsIssued(enqIndex) := false.B when (enqUop.waitForward) { hasWaitForward := true.B } val enqTriggerActionIsDebugMode = TriggerAction.isDmode(io.enq.req(i).bits.trigger) val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR when(enqUop.isWFI && !enqHasException && !enqTriggerActionIsDebugMode) { hasWFI := true.B } robEntries(enqIndex).mmio := false.B robEntries(enqIndex).vls := enqUop.vlsInstr } } for (i <- 0 until RenameWidth) { val enqUop = io.enq.req(i) when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) { hasBlockBackward := true.B } } val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) when(!io.wfi_enable) { hasWFI := false.B } // sel vsetvl's flush position val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) val vsetvlState = RegInit(vs_idle) val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) val enq0 = io.enq.req(0) val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire } // for vs_idle val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) // for vs_waitVinstr val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) when(vsetvlState === vs_idle) { firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset firstVInstrRobIdx := firstVInstrIdle.bits.robIdx }.elsewhen(vsetvlState === vs_waitVinstr) { when(Cat(enqIsVInstrOrVset).orR) { firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset firstVInstrRobIdx := firstVInstrWait.bits.robIdx } } val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR when(vsetvlState === vs_idle && !io.redirect.valid) { when(enq0IsVsetFlush) { vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) } }.elsewhen(vsetvlState === vs_waitVinstr) { when(io.redirect.valid) { vsetvlState := vs_idle }.elsewhen(Cat(enqIsVInstrOrVset).orR) { vsetvlState := vs_waitFlush } }.elsewhen(vsetvlState === vs_waitFlush) { when(io.redirect.valid) { vsetvlState := vs_idle } } // lqEnq io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => when(io.debugEnqLsq.canAccept && alloc && req.valid) { debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx debug_lqIdxValid(req.bits.robIdx.value) := true.B } } // lsIssue when(io.debugHeadLsIssue) { debug_lsIssued(deqPtr.value) := true.B } /** * Writeback (from execution units) */ for (wb <- exuWBs) { val wbIdx = wb.bits.robIdx.value val debug_Uop = debug_microOp(wbIdx) when(wb.valid) { debug_exuData(wbIdx) := wb.bits.data(0) debug_exuDebug(wbIdx) := wb.bits.debug debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime // debug for lqidx and sqidx debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) } XSInfo(wb.valid, p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + p"skip ${wb.bits.debug.isSkipDiff} robIdx: ${wb.bits.robIdx}\n" ) } val writebackNum = PopCount(exuWBs.map(_.valid)) XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) for (i <- 0 until LoadPipelineWidth) { when(RegNext(io.lsq.mmio(i))) { robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B } } /** * RedirectOut: Interrupt and Exceptions */ val debug_deqUop = debug_microOp(deqPtr.value) val deqPtrEntry = rawInfo(0) val deqPtrEntryValid = deqPtrEntry.commit_v val deqHasFlushed = RegInit(false.B) val intrBitSetReg = RegNext(io.csr.intrBitSet) val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe && !deqHasFlushed val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || TriggerAction.isDmode(exceptionDataRead.bits.trigger) val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w))) val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe && !deqHasException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w))) val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst val deqIsVlsException = deqHasException && deqPtrEntry.isVls && !exceptionDataRead.bits.isEnqExcp // delay 2 cycle wait exceptionGen out // vls exception can be committed only when RAB commit all its reg pairs deqVlsCanCommit := RegNext(RegNext(deqIsVlsException && deqPtrEntry.commit_w)) && rab.io.status.commitEnd // lock at assertion of deqVlsExceptionNeedCommit until condition not assert val deqVlsExcpLock = RegInit(false.B) val handleVlsExcp = deqIsVlsException && deqVlsCanCommit && !deqVlsExcpLock && state === s_idle when(handleVlsExcp) { deqVlsExcpLock := true.B }.elsewhen(deqPtrVec.head =/= deqPtrVec_next.head) { deqVlsExcpLock := false.B } // Only assert once when deqVlsExcp occurs until condition not assert to avoid multi message passed to RAB when (deqVlsExceptionNeedCommit) { deqVlsExceptionNeedCommit := false.B }.elsewhen(handleVlsExcp){ deqVlsExceptionCommitSize := deqPtrEntry.realDestSize deqVlsExceptionNeedCommit := true.B } XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") XSDebug(deqHasException && TriggerAction.isDmode(exceptionDataRead.bits.trigger), "Debug Mode: Deq has trigger entry debug Mode\n") val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst) // vsetvl instruction need another one cycle to write to vtype gen val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushed && exceptionDataRead.bits.isVset val isVsetFlushPipeReg = RegNext(isVsetFlushPipe) // val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) val needModifyFtqIdxOffset = false.B io.isVsetFlushPipe := isVsetFlushPipe io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType || isVsetFlushPipeReg // io.flushOut will trigger redirect at the next cycle. // Block any redirect or commit at the next cycle. val lastCycleFlush = RegNext(io.flushOut.valid) io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit) || isFlushPipe) && !lastCycleFlush io.flushOut.bits := DontCare io.flushOut.bits.isRVC := deqPtrEntry.isRVC io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqPtrEntry.ftqIdx) io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqPtrEntry.ftqOffset) io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" io.flushOut.bits.interrupt := true.B XSPerfAccumulate("flush_num", io.flushOut.valid) XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException) XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit)) && !lastCycleFlush io.exception.valid := RegNext(exceptionHappen) io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) io.exception.bits.gpaddr := io.readGPAMemData.gpaddr io.exception.bits.isForVSnonLeafPTE := io.readGPAMemData.isForVSnonLeafPTE io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) io.exception.bits.commitType := RegEnable(deqPtrEntry.commitType, exceptionHappen) io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) // fetch trigger fire or execute ebreak io.exception.bits.isPcBkpt := RegEnable( exceptionDataRead.bits.exceptionVec(ExceptionNO.EX_BP) && ( exceptionDataRead.bits.isEnqExcp || exceptionDataRead.bits.trigger === TriggerAction.None ), exceptionHappen, ) io.exception.bits.isFetchMalAddr := RegEnable(exceptionDataRead.bits.isFetchMalAddr && deqHasException, exceptionHappen) io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) io.exception.bits.isHls := RegEnable(deqPtrEntry.isHls, exceptionHappen) io.exception.bits.vls := RegEnable(deqPtrEntry.vls, exceptionHappen) io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) // data will be one cycle after valid io.readGPAMemAddr.valid := exceptionHappen io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset XSDebug(io.flushOut.valid, p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + p"excp $deqHasException flushPipe $isFlushPipe " + p"Trap_target 0x${Hexadecimal(io.csr.trapTarget.pc)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") /** * Commits (and walk) * They share the same width. */ // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2 val shouldWalkVec = Wire(Vec(CommitWidth,Bool())) val walkingPtrVec = RegNext(walkPtrVec) when(io.redirect.valid){ shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) }.elsewhen(RegNext(io.redirect.valid)){ shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) }.elsewhen(state === s_walk){ shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2)) }.otherwise( shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) ) val walkFinished = walkPtrTrue > lastWalkPtr rab.io.fromRob.walkEnd := state === s_walk && walkFinished vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished require(RenameWidth <= CommitWidth) // wiring to csr val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { val v = io.commits.commitValid(i) val info = io.commits.info(i) (v & info.wflags, v & info.dirtyFs) }).unzip val fflags = Wire(Valid(UInt(5.W))) fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR fflags.bits := wflags.zip(fflagsDataRead).map({ case (w, f) => Mux(w, f, 0.U) }).reduce(_ | _) val dirtyVs = (0 until CommitWidth).map(i => { val v = io.commits.commitValid(i) val info = io.commits.info(i) v & info.dirtyVs }) val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR val resetVstart = dirty_vs && !io.vstartIsZero vecExcpInfo.valid := exceptionHappen && !intrEnable && exceptionDataRead.bits.vstartEn && exceptionDataRead.bits.isVecLoad && !exceptionDataRead.bits.isEnqExcp when (exceptionHappen) { vecExcpInfo.bits.nf := exceptionDataRead.bits.nf vecExcpInfo.bits.vsew := exceptionDataRead.bits.vsew vecExcpInfo.bits.veew := exceptionDataRead.bits.veew vecExcpInfo.bits.vlmul := exceptionDataRead.bits.vlmul vecExcpInfo.bits.isStride := exceptionDataRead.bits.isStrided vecExcpInfo.bits.isIndexed := exceptionDataRead.bits.isIndexed vecExcpInfo.bits.isWhole := exceptionDataRead.bits.isWhole vecExcpInfo.bits.isVlm := exceptionDataRead.bits.isVlm vecExcpInfo.bits.vstart := exceptionDataRead.bits.vstart } io.csr.vstart.valid := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstartEn, resetVstart)) io.csr.vstart.bits := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstart, 0.U)) val vxsat = Wire(Valid(Bool())) vxsat.valid := io.commits.isCommit && vxsat.bits vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { case (valid, vxsat) => valid & vxsat }.reduce(_ | _) // when mispredict branches writeback, stop commit in the next 2 cycles // TODO: don't check all exu write back val misPredWb = Cat(VecInit(redirectWBs.map(wb => wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid ).toSeq)).orR val misPredBlockCounter = Reg(UInt(3.W)) misPredBlockCounter := Mux(misPredWb, "b111".U, misPredBlockCounter >> 1.U ) val misPredBlock = misPredBlockCounter(0) val deqFlushBlockCounter = Reg(UInt(3.W)) val deqFlushBlock = deqFlushBlockCounter(0) val deqHasCommitted = io.commits.isCommit && io.commits.commitValid(0) // TODO *** WARNING *** // Blocking commit. Don't change this before we fully understand the logic. val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr) || RegNext(RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr)) val criticalErrorState = io.csr.criticalErrorState when(deqNeedFlush && deqHitRedirectReg){ deqFlushBlockCounter := "b111".U }.otherwise{ deqFlushBlockCounter := deqFlushBlockCounter >> 1.U } when(deqHasCommitted){ deqHasFlushed := false.B }.elsewhen(deqNeedFlush && io.flushOut.valid && !io.flushOut.bits.flushItself()){ deqHasFlushed := true.B } val traceBlock = io.trace.blockCommit val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid || (deqNeedFlush && !deqHasFlushed) || deqFlushBlock || criticalErrorState || traceBlock io.commits.isWalk := state === s_walk io.commits.isCommit := state === s_idle && !blockCommit val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid)) val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v)) val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w)) val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U) val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i))) val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg // for instructions that may block others, we don't allow them to commit io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid))) for (i <- 0 until CommitWidth) { // defaults: state === s_idle and instructions commit // when intrBitSetReg, allow only one instruction to commit at each clock cycle val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed) val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i) io.commits.info(i) := commitInfo(i) io.commits.robIdx(i) := deqPtrVec(i) val deqDebugInst = debug_microOp(deqPtrVec(i).value) PerfCCT.commitInstMeta(i.U, deqDebugInst.debug_seqNum, deqDebugInst.instrSize, io.commits.isCommit && io.commits.commitValid(i), clock, reset) io.commits.walkValid(i) := shouldWalkVec(i) XSError( state === s_walk && io.commits.isWalk && state === s_walk && shouldWalkVec(i) && !walk_v(i), s"The walking entry($i) should be valid\n") XSInfo(io.commits.isCommit && io.commits.commitValid(i), "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", debug_microOp(deqPtrVec(i).value).pc, io.commits.info(i).rfWen, io.commits.info(i).debug_ldest.getOrElse(0.U), io.commits.info(i).debug_pdest.getOrElse(0.U), debug_exuData(deqPtrVec(i).value), fflagsDataRead(i), vxsatDataRead(i) ) XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", debug_microOp(walkPtrVec(i).value).pc, io.commits.info(i).rfWen, io.commits.info(i).debug_ldest.getOrElse(0.U), debug_exuData(walkPtrVec(i).value) ) } // sync fflags/dirty_fs/vxsat to csr io.csr.fflags := RegNextWithEnable(fflags) io.csr.dirty_fs := GatedValidRegNext(dirty_fs) io.csr.dirty_vs := GatedValidRegNext(dirty_vs) io.csr.vxsat := RegNextWithEnable(vxsat) // commit load/store to lsq val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) // TODO: Check if meet the require that only set scommit when commit scala store uop val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls )) io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) // indicate a pending load or store io.lsq.pendingMMIOld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && deqPtrEntryValid && deqPtrEntry.mmio) io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && deqPtrEntryValid) // TODO: Check if need deassert pendingst when it is vst io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && deqPtrEntryValid) // TODO: Check if set correctly when vector store is at the head of ROB io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && deqPtrEntryValid && deqPtrEntry.vls) io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) io.lsq.pendingPtr := RegNext(deqPtr) io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) /** * state changes * (1) redirect: switch to s_walk * (2) walk: when walking comes to the end, switch to s_idle */ state_next := Mux( io.redirect.valid || RegNext(io.redirect.valid), s_walk, Mux( state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, state ) ) XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) state := state_next /** * pointers and counters */ val deqPtrGenModule = Module(new NewRobDeqPtrWrapper) deqPtrGenModule.io.state := state deqPtrGenModule.io.deq_v := commit_vDeqGroup deqPtrGenModule.io.deq_w := commit_wDeqGroup deqPtrGenModule.io.exception_state := exceptionDataRead deqPtrGenModule.io.intrBitSetReg := intrBitSetReg deqPtrGenModule.io.hasNoSpecExec := hasWaitForward deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe deqPtrGenModule.io.blockCommit := blockCommit deqPtrGenModule.io.hasCommitted := hasCommitted deqPtrGenModule.io.allCommitted := allCommitted deqPtrVec := deqPtrGenModule.io.out deqPtrVec_next := deqPtrGenModule.io.next_out val enqPtrGenModule = Module(new RobEnqPtrWrapper) enqPtrGenModule.io.redirect := io.redirect enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq && !io.fromVecExcpMod.busy enqPtrGenModule.io.hasBlockBackward := hasBlockBackward enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) enqPtrVec := enqPtrGenModule.io.out // next walkPtrVec: // (1) redirect occurs: update according to state // (2) walk: move forwards val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U)) val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U)) val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid, Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk), Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) ) val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid, Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)), Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue) ) walkPtrHead := walkPtrVec_next.head walkPtrVec := walkPtrVec_next walkPtrTrue := walkPtrTrue_next // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update val walkPtrLowBits = Reg(UInt(bankAddrWidth.W)) when(io.redirect.valid){ walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0)) } when(io.redirect.valid) { donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk) }.elsewhen(RegNext(io.redirect.valid)){ donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits)) }.otherwise{ donotNeedWalk := 0.U.asTypeOf(donotNeedWalk) } walkDestSizeDeqGroup.zip(walkPtrVec_next).map { case (reg, ptrNext) => reg := deqPtrEntry.realDestSize } val numValidEntries = distanceBetween(enqPtr, deqPtr) val commitCnt = PopCount(io.commits.commitValid) allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U allowEnqueueForDispatch := numValidEntries + dispatchNum <= (RobSize - 2 * RenameWidth).U val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) when(io.redirect.valid) { lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) } /** * States * We put all the stage bits changes here. * * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); * All states: (1) valid; (2) writebacked; (3) flagBkup */ val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr)) deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U } val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) val redirectValidReg = RegNext(io.redirect.valid) val redirectBegin = Reg(UInt(log2Up(RobSize).W)) val redirectEnd = Reg(UInt(log2Up(RobSize).W)) val redirectAll = RegInit(false.B) when(io.redirect.valid){ redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value) redirectEnd := enqPtr.value redirectAll := io.redirect.bits.flushItself() && (io.redirect.bits.robIdx.value === enqPtr.value) && (io.redirect.bits.robIdx.flag ^ enqPtr.flag) } // update robEntries valid for (i <- 0 until RobSize) { val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _) assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") val needFlush = redirectValidReg && (Mux( redirectEnd > redirectBegin, (i.U > redirectBegin) && (i.U < redirectEnd), (i.U > redirectBegin) || (i.U < redirectEnd) ) || redirectAll) when(commitCond) { robEntries(i).valid := false.B }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) { robEntries(i).valid := true.B }.elsewhen(needFlush){ robEntries(i).valid := false.B } } // debug_inst update for (i <- 0 until (LduCnt + StaCnt)) { debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i)) } for (i <- 0 until LduCnt) { debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) } // status field: writebacked // enqueue logic set 6 writebacked to false // writeback logic set numWbPorts writebacked to true // if the first uop of an instruction is valid , write writebackedCounter val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop) val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) val enqHasExcpSeq = io.enq.req.map(_.bits.hasException) val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { req => FuType.isStore(req.bits.fuType) }) val fflags_wb = fflagsWBs val vxsat_wb = vxsatWBs for (i <- 0 until RobSize) { val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } val instCanEnqFlag = Cat(instCanEnqSeq).orR val hasExcpSeq = enqHasExcpSeq.lazyZip(robIdxMatchSeq).lazyZip(uopEnqValidSeq).map { case (excp, isMatch, valid) => excp && isMatch && valid } val hasExcpFlag = Cat(hasExcpSeq).orR val isFirstEnq = !robEntries(i).valid && instCanEnqFlag val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) when(isFirstEnq){ robEntries(i).realDestSize := realDestEnqNum //Mux(hasExcpFlag, 0.U, realDestEnqNum) }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){ robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum } val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) val needFlush = robEntries(i).needFlush val needFlushWriteBack = Wire(Bool()) needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) when(robEntries(i).valid){ needFlush := needFlush || needFlushWriteBack } when(robEntries(i).valid && (needFlush || needFlushWriteBack)) { // exception flush robEntries(i).uopNum := robEntries(i).uopNum - wbCnt robEntries(i).stdWritebacked := true.B }.elsewhen(!robEntries(i).valid && instCanEnqFlag) { // enq set num of uops robEntries(i).uopNum := enqWBNum robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) }.elsewhen(robEntries(i).valid) { // update by writing back robEntries(i).uopNum := robEntries(i).uopNum - wbCnt assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!") when(canStdWbSeq.asUInt.orR) { robEntries(i).stdWritebacked := true.B } } val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) when(isFirstEnq) { robEntries(i).fflags := 0.U }.elsewhen(fflagsRes.orR) { robEntries(i).fflags := robEntries(i).fflags | fflagsRes } val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) when(isFirstEnq) { robEntries(i).vxsat := 0.U }.elsewhen(vxsatRes.orR) { robEntries(i).vxsat := robEntries(i).vxsat | vxsatRes } // trace val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) when(robEntries(i).valid && Itype.isBranchType(robEntries(i).traceBlockInPipe.itype) && taken){ // BranchType code(notaken itype = 4) must be correctly replaced! robEntries(i).traceBlockInPipe.itype := Itype.Taken } } // begin update robBanksRdata val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle)) needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine for (i <- 0 until 2 * CommitWidth) { val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i)) val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } val instCanEnqFlag = Cat(instCanEnqSeq).orR val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) when(!needUpdate(i).valid && instCanEnqFlag) { needUpdate(i).realDestSize := realDestEnqNum }.elsewhen(needUpdate(i).valid && instCanEnqFlag) { needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum } val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))) val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i))) val needFlush = robBanksRdata(i).needFlush val needFlushWriteBack = Wire(Bool()) needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) when(needUpdate(i).valid) { needUpdate(i).needFlush := needFlush || needFlushWriteBack } when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) { // exception flush needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt needUpdate(i).stdWritebacked := true.B }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) { // enq set num of uops needUpdate(i).uopNum := enqWBNum needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) }.elsewhen(needUpdate(i).valid) { // update by writing back needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt when(canStdWbSeq.asUInt.orR) { needUpdate(i).stdWritebacked := true.B } } val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B)) val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes) val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes) // trace val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) when(robBanksRdata(i).valid && Itype.isBranchType(robBanksRdata(i).traceBlockInPipe.itype) && taken){ // BranchType code(notaken itype = 4) must be correctly replaced! needUpdate(i).traceBlockInPipe.itype := Itype.Taken } } robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8)) robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8)) // end update robBanksRdata // interrupt_safe for (i <- 0 until RenameWidth) { when(canEnqueue(i)) { // For now, we allow non-load-store instructions to trigger interrupts // For MMIO instructions, they should not trigger interrupts since they may // be sent to lower level before it writes back. // However, we cannot determine whether a load/store instruction is MMIO. // Thus, we don't allow load/store instructions to trigger an interrupt. // TODO: support non-MMIO load-store instructions to trigger interrupts val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) && !FuType.isFence(io.enq.req(i).bits.fuType) && !FuType.isCsr(io.enq.req(i).bits.fuType) && !FuType.isVset(io.enq.req(i).bits.fuType) robEntries(allocatePtrVec(i).value).interrupt_safe := allow_interrupts } } /** * read and write of data modules */ val commitReadAddr_next = Mux(state_next === s_idle, VecInit(deqPtrVec_next.map(_.value)), VecInit(walkPtrVec_next.map(_.value)) ) exceptionGen.io.redirect <> io.redirect exceptionGen.io.flush := io.flushOut.valid val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) for (i <- 0 until RenameWidth) { exceptionGen.io.enq(i).valid := canEnqueueEG(i) exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) exceptionGen.io.enq(i).bits.hasException := io.enq.req(i).bits.hasException exceptionGen.io.enq(i).bits.isEnqExcp := io.enq.req(i).bits.hasException exceptionGen.io.enq(i).bits.isFetchMalAddr := io.enq.req(i).bits.isFetchMalAddr exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset exceptionGen.io.enq(i).bits.replayInst := false.B XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.trigger exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare exceptionGen.io.enq(i).bits.vuopIdx := 0.U exceptionGen.io.enq(i).bits.isVecLoad := false.B exceptionGen.io.enq(i).bits.isVlm := false.B exceptionGen.io.enq(i).bits.isStrided := false.B exceptionGen.io.enq(i).bits.isIndexed := false.B exceptionGen.io.enq(i).bits.isWhole := false.B exceptionGen.io.enq(i).bits.nf := 0.U exceptionGen.io.enq(i).bits.vsew := 0.U exceptionGen.io.enq(i).bits.veew := 0.U exceptionGen.io.enq(i).bits.vlmul := 0.U } println(s"ExceptionGen:") println(s"num of exceptions: ${params.numException}") require(exceptionWBs.length == exceptionGen.io.wb.length, f"exceptionWBs.length: ${exceptionWBs.length}, " + f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { exc_wb.valid := wb.valid exc_wb.bits.robIdx := wb.bits.robIdx // only enq inst use ftqPtr to read gpa exc_wb.bits.ftqPtr := 0.U.asTypeOf(exc_wb.bits.ftqPtr) exc_wb.bits.ftqOffset := 0.U.asTypeOf(exc_wb.bits.ftqOffset) exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get exc_wb.bits.hasException := wb.bits.exceptionVec.get.asUInt.orR // Todo: use io.writebackNeedFlush(i) instead exc_wb.bits.isEnqExcp := false.B exc_wb.bits.isFetchMalAddr := false.B exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) exc_wb.bits.isVset := false.B exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) exc_wb.bits.singleStep := false.B exc_wb.bits.crossPageIPFFix := false.B val trigger = wb.bits.trigger.getOrElse(TriggerAction.None).asTypeOf(exc_wb.bits.trigger) exc_wb.bits.trigger := trigger exc_wb.bits.vstartEn := (if (wb.bits.vls.nonEmpty) wb.bits.exceptionVec.get.asUInt.orR || TriggerAction.isDmode(trigger) else 0.U) exc_wb.bits.vstart := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vstart else 0.U) exc_wb.bits.vuopIdx := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vuopIdx else 0.U) exc_wb.bits.isVecLoad := wb.bits.vls.map(_.isVecLoad).getOrElse(false.B) exc_wb.bits.isVlm := wb.bits.vls.map(_.isVlm).getOrElse(false.B) exc_wb.bits.isStrided := wb.bits.vls.map(_.isStrided).getOrElse(false.B) // strided need two mode tmp vreg exc_wb.bits.isIndexed := wb.bits.vls.map(_.isIndexed).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx exc_wb.bits.isWhole := wb.bits.vls.map(_.isWhole).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx exc_wb.bits.nf := wb.bits.vls.map(_.vpu.nf).getOrElse(0.U) exc_wb.bits.vsew := wb.bits.vls.map(_.vpu.vsew).getOrElse(0.U) exc_wb.bits.veew := wb.bits.vls.map(_.vpu.veew).getOrElse(0.U) exc_wb.bits.vlmul := wb.bits.vls.map(_.vpu.vlmul).getOrElse(0.U) } fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags) vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat) val isCommit = io.commits.isCommit val isCommitReg = GatedValidRegNext(io.commits.isCommit) val instrCntReg = RegInit(0.U(64.W)) val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegEnable(v && CommitType.isFused(i.commitType), isCommit) }) val trueCommitCnt = RegEnable(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _), isCommit) +& fuseCommitCnt val retireCounter = Mux(isCommitReg, trueCommitCnt, 0.U) val instrCnt = instrCntReg + retireCounter when(isCommitReg){ instrCntReg := instrCnt } io.csr.perfinfo.retiredInstr := retireCounter io.robFull := !allowEnqueue io.headNotReady := commit_vDeqGroup(deqPtr.value(bankNumWidth-1, 0)) && !commit_wDeqGroup(deqPtr.value(bankNumWidth-1, 0)) io.toVecExcpMod.logicPhyRegMap := rab.io.toVecExcpMod.logicPhyRegMap io.toVecExcpMod.excpInfo := vecExcpInfo /** * trace */ // trace output val traceValids = io.trace.traceCommitInfo.blocks.map(_.valid) val traceBlocks = io.trace.traceCommitInfo.blocks val traceBlockInPipe = io.trace.traceCommitInfo.blocks.map(_.bits.tracePipe) // The reg 'isTraceXret' only for trace xret instructions. xret only occur in block(0). val isTraceXret = RegInit(false.B) when(io.csr.isXRet){ isTraceXret := true.B }.elsewhen(isTraceXret && io.commits.isCommit && io.commits.commitValid(0)){ isTraceXret := false.B } for (i <- 0 until CommitWidth) { traceBlocks(i).bits.ftqIdx.foreach(_ := rawInfo(i).ftqIdx) traceBlocks(i).bits.ftqOffset.foreach(_ := rawInfo(i).ftqOffset) traceBlockInPipe(i).itype := rawInfo(i).traceBlockInPipe.itype traceBlockInPipe(i).iretire := rawInfo(i).traceBlockInPipe.iretire traceBlockInPipe(i).ilastsize := rawInfo(i).traceBlockInPipe.ilastsize traceValids(i) := io.commits.isCommit && io.commits.commitValid(i) // exception/xret only occur in block(0). if(i == 0) { when(isTraceXret && io.commits.isCommit && io.commits.commitValid(0)){ // trace xret traceBlocks(i).bits.tracePipe.itype := Itype.ExpIntReturn }.elsewhen(io.exception.valid){ // trace exception traceBlocks(i).bits.tracePipe.itype := Mux(io.exception.bits.isInterrupt, Itype.Interrupt, Itype.Exception ) traceValids(i) := true.B traceBlockInPipe(i).iretire := 0.U } } } /** * debug info */ XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") XSDebug("") XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") for (i <- 0 until RobSize) { XSDebug(false, !robEntries(i).valid, "-") XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w") XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v") } XSDebug(false, true.B, "\n") for (i <- 0 until RobSize) { if (i % 4 == 0) XSDebug("") XSDebug(false, true.B, "%x ", debug_microOp(i).pc) XSDebug(false, !robEntries(i).valid, "- ") XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ") XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ") if (i % 4 == 3) XSDebug(false, true.B, "\n") } def ifCommit(counter: UInt): UInt = Mux(isCommit, counter, 0.U) def ifCommitReg(counter: UInt): UInt = Mux(isCommitReg, counter, 0.U) val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) XSPerfAccumulate("clock_cycle", 1.U, XSPerfLevel.CRITICAL) QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) XSPerfAccumulate("commitUop", ifCommit(commitCnt)) XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt), XSPerfLevel.CRITICAL) XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t } XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t } XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }))) XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked))) // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) XSPerfAccumulate("walkCycleTotal", state === s_walk) XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) private val walkCycle = RegInit(0.U(8.W)) private val waitRabWalkCycle = RegInit(0.U(8.W)) walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked private val deqHeadInfo = debug_microOp(deqPtr.value) val deqUopCommitType = debug_microOp(deqPtr.value).commitType XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U) XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U) XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U) val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax, VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt, VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum) vfalufuop.zipWithIndex.map{ case(fuoptype,i) => XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U) } XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U)) XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U })) (2 to RenameWidth).foreach(i => XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U })) ) XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) } for (fuType <- FuType.functionNameMap.keys) { val fuName = FuType.functionNameMap(fuType) val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U) XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) } XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) // top-down info io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx // rolling io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) /** * DataBase info: * log trigger is at writeback valid * */ if (!env.FPGAPlatform) { val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) for (wb <- exuWBs) { when(wb.valid) { val debug_instData = Wire(new InstInfoEntry) val idx = wb.bits.robIdx.value debug_instData.robIdx := idx debug_instData.dvaddr := wb.bits.debug.vaddr debug_instData.dpaddr := wb.bits.debug.paddr debug_instData.issueTime := wb.bits.debugInfo.issueTime debug_instData.writebackTime := wb.bits.debugInfo.writebackTime debug_instData.dispatchLatency := wb.bits.debugInfo.dispatchTime - wb.bits.debugInfo.renameTime debug_instData.enqRsLatency := wb.bits.debugInfo.enqRsTime - wb.bits.debugInfo.dispatchTime debug_instData.selectLatency := wb.bits.debugInfo.selectTime - wb.bits.debugInfo.enqRsTime debug_instData.issueLatency := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime debug_instData.rsFuLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.enqRsTime debug_instData.tlbLatency := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime debug_instData.exceptType := Cat(wb.bits.exceptionVec.getOrElse(ExceptionVec(false.B))) debug_instData.lsInfo := debug_lsInfo(idx) // debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID // debug_instData.instType := wb.bits.uop.ctrl.fuType // debug_instData.ivaddr := wb.bits.uop.cf.pc // debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid // debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit debug_instTable.log( data = debug_instData, en = wb.valid, site = instSiteName, clock = clock, reset = reset ) } } } val debug_VecOtherPdest = RegInit(VecInit.fill(RobSize)(VecInit.fill(8)(0.U(PhyRegIdxWidth.W)))) vldWBs.map{ vldWb => val vldWbPdest = vldWb.bits.pdest val vldWbRobIdx = vldWb.bits.robIdx.value val vldWbvdIdx = vldWb.bits.vls.get.vdIdx when (vldWb.fire && robEntries(vldWbRobIdx).valid && (vldWb.bits.vecWen.get || vldWb.bits.v0Wen.get)) { debug_VecOtherPdest(vldWbRobIdx)(vldWbvdIdx) := vldWbPdest } } //difftest signals val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) for (i <- 0 until CommitWidth) { val idx = deqPtrVec(i).value wdata(i) := debug_exuData(idx) wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) } if (env.EnableDifftest || env.AlwaysBasicDiff) { // These are the structures used by difftest only and should be optimized after synthesis. val dt_eliminatedMove = Mem(RobSize, Bool()) val dt_isRVC = Mem(RobSize, Bool()) val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) for (i <- 0 until RenameWidth) { when(canEnqueue(i)) { dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC } } for (wb <- exuWBs) { when(wb.valid) { val wbIdx = wb.bits.robIdx.value dt_exuDebug(wbIdx) := wb.bits.debug } } // Always instantiate basic difftest modules. for (i <- 0 until CommitWidth) { val uop = commitDebugUop(i) val commitInfo = io.commits.info(i) val ptr = deqPtrVec(i).value val exuOut = dt_exuDebug(ptr) val eliminatedMove = dt_eliminatedMove(ptr) val isRVC = dt_isRVC(ptr) val instr = uop.instr.asTypeOf(new XSInstBitFields) val isVLoad = instr.isVecLoad val difftest = DifftestModule(new DiffInstrCommit(MaxPhyRegs), delay = 3, dontCare = true) val dt_skip = Mux(eliminatedMove, false.B, exuOut.isSkipDiff) difftest.coreid := io.hartId difftest.index := i.U difftest.valid := io.commits.commitValid(i) && io.commits.isCommit difftest.skip := dt_skip difftest.isRVC := isRVC difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U difftest.fpwen := io.commits.commitValid(i) && uop.fpWen difftest.vecwen := io.commits.commitValid(i) && uop.vecWen difftest.v0wen := io.commits.commitValid(i) && (uop.v0Wen || isVLoad && instr.VD === 0.U) difftest.wpdest := commitInfo.debug_pdest.get difftest.wdest := Mux(isVLoad, instr.VD, commitInfo.debug_ldest.get) difftest.otherwpdest := debug_VecOtherPdest(ptr) difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U when(difftest.valid) { assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) } if (env.EnableDifftest) { val uop = commitDebugUop(i) difftest.pc := SignExt(uop.pc, XLEN) difftest.instr := uop.instr difftest.robIdx := ZeroExt(ptr, 10) difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD difftest.isStore := io.commits.info(i).commitType === CommitType.STORE // Check LoadEvent only when isAmo or isLoad and skip MMIO val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3) difftestLoadEvent.coreid := io.hartId difftestLoadEvent.index := i.U val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType) || isVLoad) && !dt_skip difftestLoadEvent.valid := io.commits.commitValid(i) && io.commits.isCommit && loadCheck difftestLoadEvent.paddr := exuOut.paddr difftestLoadEvent.opType := uop.fuOpType difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType) difftestLoadEvent.isLoad := FuType.isLoad(uop.fuType) difftestLoadEvent.isVLoad := isVLoad } } } if (env.EnableDifftest || env.AlwaysBasicDiff) { val dt_isXSTrap = Mem(RobSize, Bool()) for (i <- 0 until RenameWidth) { when(canEnqueue(i)) { dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap } } val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } val hitTrap = trapVec.reduce(_ || _) val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) difftest.coreid := io.hartId difftest.hasTrap := hitTrap difftest.cycleCnt := timer difftest.instrCnt := instrCnt difftest.hasWFI := hasWFI if (env.EnableDifftest) { val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN) difftest.code := trapCode difftest.pc := trapPC } } //store evetn difftest information io.storeDebugInfo := DontCare if (env.EnableDifftest) { io.storeDebugInfo.map{port => port.pc := debug_microOp(port.robidx.value).pc } } val brhMispred = PopCount(branchWBs.map(wb => wb.valid & wb.bits.redirect.get.valid)) val jmpMispred = PopCount(jmpWBs.map(wb => wb.valid && wb.bits.redirect.get.valid)) val misPred = brhMispred +& jmpMispred XSPerfAccumulate("br_mis_pred", misPred) val commitLoadVec = VecInit(commitLoadValid) val commitBranchVec = VecInit(commitBranchValid) val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }) val perfEvents = Seq( ("rob_interrupt_num ", io.flushOut.valid && intrEnable), ("rob_exception_num ", io.flushOut.valid && deqHasException), ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe), ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst), ("rob_commitUop ", ifCommit(commitCnt)), ("rob_commitInstr ", ifCommitReg(trueCommitCnt)), ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt)), ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegEnable(commitLoadVec, isCommit)))), ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegEnable(commitBranchVec, isCommit)))), ("rob_commitInstrStore ", ifCommitReg(PopCount(RegEnable(commitStoreVec, isCommit)))), ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)), ("rob_walkCycle ", (state === s_walk)), ("rob_1_4_valid ", numValidEntries <= (RobSize / 4).U), ("rob_2_4_valid ", numValidEntries > (RobSize / 4).U && numValidEntries <= (RobSize / 2).U), ("rob_3_4_valid ", numValidEntries > (RobSize / 2).U && numValidEntries <= (RobSize * 3 / 4).U), ("rob_4_4_valid ", numValidEntries > (RobSize * 3 / 4).U), ("BR_MIS_PRED ", misPred), ("TOTAL_FLUSH ", io.flushOut.valid) ) generatePerfEvent() // max commit-stuck cycle val deqismmio = Mux(robEntries(deqPtr.value).valid, robEntries(deqPtr.value).mmio, false.B) val commitStuck = (!io.commits.commitValid.reduce(_ || _) || !io.commits.isCommit) && !deqismmio val commitStuckCycle = RegInit(0.U(log2Up(maxCommitStuck).W)) when(commitStuck) { commitStuckCycle := commitStuckCycle + 1.U }.elsewhen(!commitStuck && RegNext(commitStuck)) { commitStuckCycle := 0.U } // check if stuck > 2^maxCommitStuckCycle val commitStuck_overflow = commitStuckCycle.andR && (if (wfiResume) true.B else (!hasWFI)) val criticalErrors = Seq( ("rob_commit_stuck ", commitStuck_overflow), ) generateCriticalErrors() // dontTouch for debug if (backendParams.debugEn) { dontTouch(enqPtrVec) dontTouch(deqPtrVec) dontTouch(robEntries) dontTouch(robDeqGroup) dontTouch(robBanks) dontTouch(robBanksRaddrThisLine) dontTouch(robBanksRaddrNextLine) dontTouch(robBanksRdataThisLine) dontTouch(robBanksRdataNextLine) dontTouch(robBanksRdataThisLineUpdate) dontTouch(robBanksRdataNextLineUpdate) dontTouch(needUpdate) val exceptionWBsVec = MixedVecInit(exceptionWBs) dontTouch(exceptionWBsVec) dontTouch(commit_wDeqGroup) dontTouch(commit_vDeqGroup) dontTouch(commitSizeSumSeq) dontTouch(walkSizeSumSeq) dontTouch(commitSizeSumCond) dontTouch(walkSizeSumCond) dontTouch(commitSizeSum) dontTouch(walkSizeSum) dontTouch(realDestSizeSeq) dontTouch(walkDestSizeSeq) dontTouch(io.commits) dontTouch(commitIsVTypeVec) dontTouch(walkIsVTypeVec) dontTouch(commitValidThisLine) dontTouch(commitReadAddr_next) dontTouch(donotNeedWalk) dontTouch(walkPtrVec_next) dontTouch(walkPtrVec) dontTouch(deqPtrVec_next) dontTouch(deqPtrVecForWalk) dontTouch(snapPtrReadBank) dontTouch(snapPtrVecForWalk) dontTouch(shouldWalkVec) dontTouch(walkFinished) dontTouch(changeBankAddrToDeqPtr) } if (env.EnableDifftest) { io.commits.info.map(info => dontTouch(info.debug_pc.get)) } }