/*************************************************************************************** * Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) * Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. * * * Acknowledgement * * This implementation is inspired by several key papers: * [1] Glenn Reinman, Brad Calder, and Todd Austin. "[Fetch directed instruction prefetching.] * (https://doi.org/10.1109/MICRO.1999.809439)" 32nd Annual ACM/IEEE International Symposium on Microarchitecture * (MICRO). 1999. ***************************************************************************************/ package xiangshan.frontend.icache import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy.AddressSet import freechips.rocketchip.diplomacy.IdRange import freechips.rocketchip.diplomacy.LazyModule import freechips.rocketchip.diplomacy.LazyModuleImp import freechips.rocketchip.tilelink._ import freechips.rocketchip.util.BundleFieldBase import huancun.AliasField import huancun.PrefetchField import org.chipsalliance.cde.config.Parameters import utility._ import utility.mbist.MbistPipeline import utility.sram.SplittedSRAMTemplate import utility.sram.SRAMReadBus import utility.sram.SRAMTemplate import utility.sram.SRAMWriteBus import utils._ import xiangshan._ import xiangshan.cache._ import xiangshan.cache.mmu.TlbRequestIO import xiangshan.frontend._ case class ICacheParameters( nSets: Int = 256, nWays: Int = 4, rowBits: Int = 64, nTLBEntries: Int = 32, tagECC: Option[String] = None, dataECC: Option[String] = None, replacer: Option[String] = Some("random"), PortNumber: Int = 2, nFetchMshr: Int = 4, nPrefetchMshr: Int = 10, nWayLookupSize: Int = 32, DataCodeUnit: Int = 64, ICacheDataBanks: Int = 8, ICacheDataSRAMWidth: Int = 66, // TODO: hard code, need delete partWayNum: Int = 4, nMMIOs: Int = 1, blockBytes: Int = 64, cacheCtrlAddressOpt: Option[AddressSet] = None ) extends L1CacheParameters { val setBytes: Int = nSets * blockBytes val aliasBitsOpt: Option[Int] = Option.when(setBytes > pageSize)(log2Ceil(setBytes / pageSize)) val reqFields: Seq[BundleFieldBase] = Seq( PrefetchField(), ReqSourceField() ) ++ aliasBitsOpt.map(AliasField) val echoFields: Seq[BundleFieldBase] = Nil def tagCode: Code = Code.fromString(tagECC) def dataCode: Code = Code.fromString(dataECC) def replacement = ReplacementPolicy.fromString(replacer, nWays, nSets) } trait HasICacheParameters extends HasL1CacheParameters with HasInstrMMIOConst with HasIFUConst { val cacheParams: ICacheParameters = icacheParameters def ctrlUnitParamsOpt: Option[L1ICacheCtrlParams] = OptionWrapper( cacheParams.cacheCtrlAddressOpt.nonEmpty, L1ICacheCtrlParams( address = cacheParams.cacheCtrlAddressOpt.get, regWidth = XLEN ) ) def ICacheSets: Int = cacheParams.nSets def ICacheWays: Int = cacheParams.nWays def PortNumber: Int = cacheParams.PortNumber def nFetchMshr: Int = cacheParams.nFetchMshr def nPrefetchMshr: Int = cacheParams.nPrefetchMshr def nWayLookupSize: Int = cacheParams.nWayLookupSize def DataCodeUnit: Int = cacheParams.DataCodeUnit def ICacheDataBanks: Int = cacheParams.ICacheDataBanks def ICacheDataSRAMWidth: Int = cacheParams.ICacheDataSRAMWidth def partWayNum: Int = cacheParams.partWayNum def ICacheMetaBits: Int = tagBits // FIXME: unportable: maybe use somemethod to get width def ICacheMetaCodeBits: Int = 1 // FIXME: unportable: maybe use cacheParams.tagCode.somemethod to get width def ICacheMetaEntryBits: Int = ICacheMetaBits + ICacheMetaCodeBits def ICacheDataBits: Int = blockBits / ICacheDataBanks def ICacheDataCodeSegs: Int = math.ceil(ICacheDataBits / DataCodeUnit).toInt // split data to segments for ECC checking def ICacheDataCodeBits: Int = ICacheDataCodeSegs * 1 // FIXME: unportable: maybe use cacheParams.dataCode.somemethod to get width def ICacheDataEntryBits: Int = ICacheDataBits + ICacheDataCodeBits def ICacheBankVisitNum: Int = 32 * 8 / ICacheDataBits + 1 def highestIdxBit: Int = log2Ceil(nSets) - 1 require((ICacheDataBanks >= 2) && isPow2(ICacheDataBanks)) require(ICacheDataSRAMWidth >= ICacheDataEntryBits) require(isPow2(ICacheSets), s"nSets($ICacheSets) must be pow2") require(isPow2(ICacheWays), s"nWays($ICacheWays) must be pow2") def generatePipeControl(lastFire: Bool, thisFire: Bool, thisFlush: Bool, lastFlush: Bool): Bool = { val valid = RegInit(false.B) when(thisFlush)(valid := false.B) .elsewhen(lastFire && !lastFlush)(valid := true.B) .elsewhen(thisFire)(valid := false.B) valid } def ResultHoldBypass[T <: Data](data: T, valid: Bool): T = Mux(valid, data, RegEnable(data, valid)) def ResultHoldBypass[T <: Data](data: T, init: T, valid: Bool): T = Mux(valid, data, RegEnable(data, init, valid)) def holdReleaseLatch(valid: Bool, release: Bool, flush: Bool): Bool = { val bit = RegInit(false.B) when(flush)(bit := false.B) .elsewhen(valid && !release)(bit := true.B) .elsewhen(release)(bit := false.B) bit || valid } def blockCounter(block: Bool, flush: Bool, threshold: Int): Bool = { val counter = RegInit(0.U(log2Up(threshold + 1).W)) when(block)(counter := counter + 1.U) when(flush)(counter := 0.U) counter > threshold.U } def InitQueue[T <: Data](entry: T, size: Int): Vec[T] = RegInit(VecInit(Seq.fill(size)(0.U.asTypeOf(entry.cloneType)))) def getBankSel(blkOffset: UInt, valid: Bool = true.B): Vec[UInt] = { val bankIdxLow = (Cat(0.U(1.W), blkOffset) >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt val bankIdxHigh = ((Cat(0.U(1.W), blkOffset) + 32.U) >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt val bankSel = VecInit((0 until ICacheDataBanks * 2).map(i => (i.U >= bankIdxLow) && (i.U <= bankIdxHigh))) assert( !valid || PopCount(bankSel) === ICacheBankVisitNum.U, "The number of bank visits must be %d, but bankSel=0x%x", ICacheBankVisitNum.U, bankSel.asUInt ) bankSel.asTypeOf(UInt((ICacheDataBanks * 2).W)).asTypeOf(Vec(2, UInt(ICacheDataBanks.W))) } def getLineSel(blkOffset: UInt): Vec[Bool] = { val bankIdxLow = (blkOffset >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt val lineSel = VecInit((0 until ICacheDataBanks).map(i => i.U < bankIdxLow)) lineSel } def getBlkAddr(addr: UInt): UInt = (addr >> blockOffBits).asUInt def getPhyTagFromBlk(addr: UInt): UInt = (addr >> (pgUntagBits - blockOffBits)).asUInt def getIdxFromBlk(addr: UInt): UInt = addr(idxBits - 1, 0) def getPaddrFromPtag(vaddr: UInt, ptag: UInt): UInt = Cat(ptag, vaddr(pgUntagBits - 1, 0)) def getPaddrFromPtag(vaddrVec: Vec[UInt], ptagVec: Vec[UInt]): Vec[UInt] = VecInit((vaddrVec zip ptagVec).map { case (vaddr, ptag) => getPaddrFromPtag(vaddr, ptag) }) } trait HasICacheECCHelper extends HasICacheParameters { def encodeMetaECC(meta: UInt, poison: Bool = false.B): UInt = { require(meta.getWidth == ICacheMetaBits) val code = cacheParams.tagCode.encode(meta, poison) >> ICacheMetaBits code.asTypeOf(UInt(ICacheMetaCodeBits.W)) } def encodeDataECC(data: UInt, poison: Bool = false.B): UInt = { require(data.getWidth == ICacheDataBits) val datas = data.asTypeOf(Vec(ICacheDataCodeSegs, UInt((ICacheDataBits / ICacheDataCodeSegs).W))) val codes = VecInit(datas.map(cacheParams.dataCode.encode(_, poison) >> (ICacheDataBits / ICacheDataCodeSegs))) codes.asTypeOf(UInt(ICacheDataCodeBits.W)) } } abstract class ICacheBundle(implicit p: Parameters) extends XSBundle with HasICacheParameters abstract class ICacheModule(implicit p: Parameters) extends XSModule with HasICacheParameters abstract class ICacheArray(implicit p: Parameters) extends XSModule with HasICacheParameters class ICacheMetadata(implicit p: Parameters) extends ICacheBundle { val tag: UInt = UInt(tagBits.W) } object ICacheMetadata { def apply(tag: Bits)(implicit p: Parameters): ICacheMetadata = { val meta = Wire(new ICacheMetadata) meta.tag := tag meta } } class ICacheMetaArrayIO(implicit p: Parameters) extends ICacheBundle { val write: DecoupledIO[ICacheMetaWriteBundle] = Flipped(DecoupledIO(new ICacheMetaWriteBundle)) val read: DecoupledIO[ICacheReadBundle] = Flipped(DecoupledIO(new ICacheReadBundle)) val readResp: ICacheMetaRespBundle = Output(new ICacheMetaRespBundle) val flush: Vec[Valid[ICacheMetaFlushBundle]] = Vec(PortNumber, Flipped(ValidIO(new ICacheMetaFlushBundle))) val flushAll: Bool = Input(Bool()) } class ICacheMetaArray(implicit p: Parameters) extends ICacheArray with HasICacheECCHelper { class ICacheMetaEntry(implicit p: Parameters) extends ICacheBundle { val meta: ICacheMetadata = new ICacheMetadata val code: UInt = UInt(ICacheMetaCodeBits.W) } private object ICacheMetaEntry { def apply(meta: ICacheMetadata, poison: Bool)(implicit p: Parameters): ICacheMetaEntry = { val entry = Wire(new ICacheMetaEntry) entry.meta := meta entry.code := encodeMetaECC(meta.asUInt, poison) entry } } // sanity check require(ICacheMetaEntryBits == (new ICacheMetaEntry).getWidth) val io: ICacheMetaArrayIO = IO(new ICacheMetaArrayIO) private val port_0_read_0 = io.read.valid && !io.read.bits.vSetIdx(0)(0) private val port_0_read_1 = io.read.valid && io.read.bits.vSetIdx(0)(0) private val port_1_read_1 = io.read.valid && io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine private val port_1_read_0 = io.read.valid && !io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine private val port_0_read_0_reg = RegEnable(port_0_read_0, 0.U.asTypeOf(port_0_read_0), io.read.fire) private val port_0_read_1_reg = RegEnable(port_0_read_1, 0.U.asTypeOf(port_0_read_1), io.read.fire) private val port_1_read_1_reg = RegEnable(port_1_read_1, 0.U.asTypeOf(port_1_read_1), io.read.fire) private val port_1_read_0_reg = RegEnable(port_1_read_0, 0.U.asTypeOf(port_1_read_0), io.read.fire) private val bank_0_idx = Mux(port_0_read_0, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) private val bank_1_idx = Mux(port_0_read_1, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) private val write_bank_0 = io.write.valid && !io.write.bits.bankIdx private val write_bank_1 = io.write.valid && io.write.bits.bankIdx private val write_meta_bits = ICacheMetaEntry( meta = ICacheMetadata( tag = io.write.bits.phyTag ), poison = io.write.bits.poison ) private val tagArrays = (0 until PortNumber) map { bank => val tagArray = Module(new SplittedSRAMTemplate( new ICacheMetaEntry(), set = nSets / PortNumber, way = nWays, waySplit = 2, dataSplit = 1, shouldReset = true, holdRead = true, singlePort = true, withClockGate = true, hasMbist = hasMbist, hasSramCtl = hasSramCtl )) // meta connection if (bank == 0) { tagArray.io.r.req.valid := port_0_read_0 || port_1_read_0 tagArray.io.r.req.bits.apply(setIdx = bank_0_idx(highestIdxBit, 1)) tagArray.io.w.req.valid := write_bank_0 tagArray.io.w.req.bits.apply( data = write_meta_bits, setIdx = io.write.bits.virIdx(highestIdxBit, 1), waymask = io.write.bits.waymask ) } else { tagArray.io.r.req.valid := port_0_read_1 || port_1_read_1 tagArray.io.r.req.bits.apply(setIdx = bank_1_idx(highestIdxBit, 1)) tagArray.io.w.req.valid := write_bank_1 tagArray.io.w.req.bits.apply( data = write_meta_bits, setIdx = io.write.bits.virIdx(highestIdxBit, 1), waymask = io.write.bits.waymask ) } tagArray } private val mbistPl = MbistPipeline.PlaceMbistPipeline(1, "MbistPipeIcacheTag", hasMbist) private val read_set_idx_next = RegEnable(io.read.bits.vSetIdx, 0.U.asTypeOf(io.read.bits.vSetIdx), io.read.fire) private val valid_array = RegInit(VecInit(Seq.fill(nWays)(0.U(nSets.W)))) private val valid_metas = Wire(Vec(PortNumber, Vec(nWays, Bool()))) // valid read (0 until PortNumber).foreach(i => (0 until nWays).foreach(way => valid_metas(i)(way) := valid_array(way)(read_set_idx_next(i)) ) ) io.readResp.entryValid := valid_metas io.read.ready := !io.write.valid && !io.flush.map(_.valid).reduce(_ || _) && !io.flushAll && tagArrays.map(_.io.r.req.ready).reduce(_ && _) // valid write private val way_num = OHToUInt(io.write.bits.waymask) when(io.write.valid) { valid_array(way_num) := valid_array(way_num).bitSet(io.write.bits.virIdx, true.B) } XSPerfAccumulate("meta_refill_num", io.write.valid) io.readResp.metas <> DontCare io.readResp.codes <> DontCare private val readMetaEntries = tagArrays.map(port => port.io.r.resp.asTypeOf(Vec(nWays, new ICacheMetaEntry()))) private val readMetas = readMetaEntries.map(_.map(_.meta)) private val readCodes = readMetaEntries.map(_.map(_.code)) // TEST: force ECC to fail by setting readCodes to 0 if (ICacheForceMetaECCError) { readCodes.foreach(_.foreach(_ := 0.U)) } when(port_0_read_0_reg) { io.readResp.metas(0) := readMetas(0) io.readResp.codes(0) := readCodes(0) }.elsewhen(port_0_read_1_reg) { io.readResp.metas(0) := readMetas(1) io.readResp.codes(0) := readCodes(1) } when(port_1_read_0_reg) { io.readResp.metas(1) := readMetas(0) io.readResp.codes(1) := readCodes(0) }.elsewhen(port_1_read_1_reg) { io.readResp.metas(1) := readMetas(1) io.readResp.codes(1) := readCodes(1) } io.write.ready := true.B // TODO : has bug ? should be !io.cacheOp.req.valid /* * flush logic */ // flush standalone set (e.g. flushed by mainPipe before doing re-fetch) when(io.flush.map(_.valid).reduce(_ || _)) { (0 until nWays).foreach { w => valid_array(w) := (0 until PortNumber).map { i => Mux( // check if set `virIdx` in way `w` is requested to be flushed by port `i` io.flush(i).valid && io.flush(i).bits.waymask(w), valid_array(w).bitSet(io.flush(i).bits.virIdx, false.B), valid_array(w) ) }.reduce(_ & _) } } // flush all (e.g. fence.i) when(io.flushAll) { (0 until nWays).foreach(w => valid_array(w) := 0.U) } // PERF: flush counter XSPerfAccumulate("flush", io.flush.map(_.valid).reduce(_ || _)) XSPerfAccumulate("flush_all", io.flushAll) } class ICacheDataArrayIO(implicit p: Parameters) extends ICacheBundle { val write: DecoupledIO[ICacheDataWriteBundle] = Flipped(DecoupledIO(new ICacheDataWriteBundle)) val read: Vec[DecoupledIO[ICacheReadBundle]] = Flipped(Vec(partWayNum, DecoupledIO(new ICacheReadBundle))) val readResp: ICacheDataRespBundle = Output(new ICacheDataRespBundle) } class ICacheDataArray(implicit p: Parameters) extends ICacheArray with HasICacheECCHelper { class ICacheDataEntry(implicit p: Parameters) extends ICacheBundle { val data: UInt = UInt(ICacheDataBits.W) val code: UInt = UInt(ICacheDataCodeBits.W) } private object ICacheDataEntry { def apply(data: UInt, poison: Bool)(implicit p: Parameters): ICacheDataEntry = { val entry = Wire(new ICacheDataEntry) entry.data := data entry.code := encodeDataECC(data, poison) entry } } val io: ICacheDataArrayIO = IO(new ICacheDataArrayIO) /** ****************************************************************************** * data array ****************************************************************************** */ private val writeDatas = io.write.bits.data.asTypeOf(Vec(ICacheDataBanks, UInt(ICacheDataBits.W))) private val writeEntries = writeDatas.map(ICacheDataEntry(_, io.write.bits.poison).asUInt) // io.read() are copies to control fan-out, we can simply use .head here private val bankSel = getBankSel(io.read.head.bits.blkOffset, io.read.head.valid) private val lineSel = getLineSel(io.read.head.bits.blkOffset) private val waymasks = io.read.head.bits.waymask private val masks = Wire(Vec(nWays, Vec(ICacheDataBanks, Bool()))) (0 until nWays).foreach { way => (0 until ICacheDataBanks).foreach { bank => masks(way)(bank) := Mux( lineSel(bank), waymasks(1)(way) && bankSel(1)(bank).asBool, waymasks(0)(way) && bankSel(0)(bank).asBool ) } } private val dataArrays = (0 until nWays).map { way => val banks = (0 until ICacheDataBanks).map { bank => val sramBank = Module(new SRAMTemplateWithFixedWidth( UInt(ICacheDataEntryBits.W), set = nSets, width = ICacheDataSRAMWidth, shouldReset = true, holdRead = true, singlePort = true, withClockGate = false, // enable signal timing is bad, no gating here hasMbist = hasMbist, hasSramCtl = hasSramCtl )) // read sramBank.io.r.req.valid := io.read(bank % 4).valid && masks(way)(bank) sramBank.io.r.req.bits.apply(setIdx = Mux(lineSel(bank), io.read(bank % 4).bits.vSetIdx(1), io.read(bank % 4).bits.vSetIdx(0)) ) // write sramBank.io.w.req.valid := io.write.valid && io.write.bits.waymask(way).asBool sramBank.io.w.req.bits.apply( data = writeEntries(bank), setIdx = io.write.bits.virIdx, // waymask is invalid when way of SRAMTemplate <= 1 waymask = 0.U ) sramBank } MbistPipeline.PlaceMbistPipeline(1, s"MbistPipeIcacheDataWay${way}", hasMbist) banks } /** ****************************************************************************** * read logic ****************************************************************************** */ private val masksReg = RegEnable(masks, 0.U.asTypeOf(masks), io.read(0).valid) private val readDataWithCode = (0 until ICacheDataBanks).map { bank => Mux1H(VecInit(masksReg.map(_(bank))).asTypeOf(UInt(nWays.W)), dataArrays.map(_(bank).io.r.resp.asUInt)) } private val readEntries = readDataWithCode.map(_.asTypeOf(new ICacheDataEntry())) private val readDatas = VecInit(readEntries.map(_.data)) private val readCodes = VecInit(readEntries.map(_.code)) // TEST: force ECC to fail by setting readCodes to 0 if (ICacheForceDataECCError) { readCodes.foreach(_ := 0.U) } /** ****************************************************************************** * IO ****************************************************************************** */ io.readResp.datas := readDatas io.readResp.codes := readCodes io.write.ready := true.B io.read.foreach(_.ready := !io.write.valid) } class ICacheReplacerIO(implicit p: Parameters) extends ICacheBundle { val touch: Vec[Valid[ReplacerTouch]] = Vec(PortNumber, Flipped(ValidIO(new ReplacerTouch))) val victim: ReplacerVictim = Flipped(new ReplacerVictim) } class ICacheReplacer(implicit p: Parameters) extends ICacheModule { val io: ICacheReplacerIO = IO(new ICacheReplacerIO) private val replacers = Seq.fill(PortNumber)(ReplacementPolicy.fromString(cacheParams.replacer, nWays, nSets / PortNumber)) // touch private val touch_sets = Seq.fill(PortNumber)(Wire(Vec(PortNumber, UInt(log2Ceil(nSets / PortNumber).W)))) private val touch_ways = Seq.fill(PortNumber)(Wire(Vec(PortNumber, Valid(UInt(wayBits.W))))) (0 until PortNumber).foreach { i => touch_sets(i)(0) := Mux( io.touch(i).bits.vSetIdx(0), io.touch(1).bits.vSetIdx(highestIdxBit, 1), io.touch(0).bits.vSetIdx(highestIdxBit, 1) ) touch_ways(i)(0).bits := Mux(io.touch(i).bits.vSetIdx(0), io.touch(1).bits.way, io.touch(0).bits.way) touch_ways(i)(0).valid := Mux(io.touch(i).bits.vSetIdx(0), io.touch(1).valid, io.touch(0).valid) } // victim io.victim.way := Mux( io.victim.vSetIdx.bits(0), replacers(1).way(io.victim.vSetIdx.bits(highestIdxBit, 1)), replacers(0).way(io.victim.vSetIdx.bits(highestIdxBit, 1)) ) // touch the victim in next cycle private val victim_vSetIdx_reg = RegEnable(io.victim.vSetIdx.bits, 0.U.asTypeOf(io.victim.vSetIdx.bits), io.victim.vSetIdx.valid) private val victim_way_reg = RegEnable(io.victim.way, 0.U.asTypeOf(io.victim.way), io.victim.vSetIdx.valid) (0 until PortNumber).foreach { i => touch_sets(i)(1) := victim_vSetIdx_reg(highestIdxBit, 1) touch_ways(i)(1).bits := victim_way_reg touch_ways(i)(1).valid := RegNext(io.victim.vSetIdx.valid) && (victim_vSetIdx_reg(0) === i.U) } ((replacers zip touch_sets) zip touch_ways).foreach { case ((r, s), w) => r.access(s, w) } } class ICacheIO(implicit p: Parameters) extends ICacheBundle { val hartId: UInt = Input(UInt(hartIdLen.W)) // FTQ val fetch: ICacheMainPipeBundle = new ICacheMainPipeBundle val ftqPrefetch: FtqToPrefetchIO = Flipped(new FtqToPrefetchIO) // memblock val softPrefetch: Vec[Valid[SoftIfetchPrefetchBundle]] = Vec(backendParams.LduCnt, Flipped(Valid(new SoftIfetchPrefetchBundle))) // IFU val stop: Bool = Input(Bool()) val toIFU: Bool = Output(Bool()) // PMP: mainPipe & prefetchPipe need PortNumber each val pmp: Vec[ICachePMPBundle] = Vec(2 * PortNumber, new ICachePMPBundle) // iTLB val itlb: Vec[TlbRequestIO] = Vec(PortNumber, new TlbRequestIO) val itlbFlushPipe: Bool = Bool() // backend/BEU val error: Valid[L1CacheErrorInfo] = ValidIO(new L1CacheErrorInfo) // backend/CSR val csr_pf_enable: Bool = Input(Bool()) // flush val fencei: Bool = Input(Bool()) val flush: Bool = Input(Bool()) // perf val perfInfo: ICachePerfInfo = Output(new ICachePerfInfo) } class ICache()(implicit p: Parameters) extends LazyModule with HasICacheParameters { override def shouldBeInlined: Boolean = false val clientParameters: TLMasterPortParameters = TLMasterPortParameters.v1( Seq(TLMasterParameters.v1( name = "icache", sourceId = IdRange(0, cacheParams.nFetchMshr + cacheParams.nPrefetchMshr + 1) )), requestFields = cacheParams.reqFields, echoFields = cacheParams.echoFields ) val clientNode: TLClientNode = TLClientNode(Seq(clientParameters)) val ctrlUnitOpt: Option[ICacheCtrlUnit] = ctrlUnitParamsOpt.map(params => LazyModule(new ICacheCtrlUnit(params))) lazy val module: ICacheImp = new ICacheImp(this) } class ICacheImp(outer: ICache) extends LazyModuleImp(outer) with HasICacheParameters with HasPerfEvents { val io: ICacheIO = IO(new ICacheIO) println("ICache:") println(" TagECC: " + cacheParams.tagECC) println(" DataECC: " + cacheParams.dataECC) println(" ICacheSets: " + cacheParams.nSets) println(" ICacheWays: " + cacheParams.nWays) println(" PortNumber: " + cacheParams.PortNumber) println(" nFetchMshr: " + cacheParams.nFetchMshr) println(" nPrefetchMshr: " + cacheParams.nPrefetchMshr) println(" nWayLookupSize: " + cacheParams.nWayLookupSize) println(" DataCodeUnit: " + cacheParams.DataCodeUnit) println(" ICacheDataBanks: " + cacheParams.ICacheDataBanks) println(" ICacheDataSRAMWidth: " + cacheParams.ICacheDataSRAMWidth) val (bus, edge) = outer.clientNode.out.head private val metaArray = Module(new ICacheMetaArray) private val dataArray = Module(new ICacheDataArray) private val mainPipe = Module(new ICacheMainPipe) private val missUnit = Module(new ICacheMissUnit(edge)) private val replacer = Module(new ICacheReplacer) private val prefetcher = Module(new IPrefetchPipe) private val wayLookup = Module(new WayLookup) private val ecc_enable = if (outer.ctrlUnitOpt.nonEmpty) outer.ctrlUnitOpt.get.module.io.ecc_enable else true.B // dataArray io if (outer.ctrlUnitOpt.nonEmpty) { val ctrlUnit = outer.ctrlUnitOpt.get.module when(ctrlUnit.io.injecting) { dataArray.io.write <> ctrlUnit.io.dataWrite missUnit.io.data_write.ready := false.B }.otherwise { ctrlUnit.io.dataWrite.ready := false.B dataArray.io.write <> missUnit.io.data_write } } else { dataArray.io.write <> missUnit.io.data_write } dataArray.io.read <> mainPipe.io.dataArray.toIData mainPipe.io.dataArray.fromIData := dataArray.io.readResp // metaArray io metaArray.io.flushAll := io.fencei metaArray.io.flush <> mainPipe.io.metaArrayFlush if (outer.ctrlUnitOpt.nonEmpty) { val ctrlUnit = outer.ctrlUnitOpt.get.module when(ctrlUnit.io.injecting) { metaArray.io.write <> ctrlUnit.io.metaWrite metaArray.io.read <> ctrlUnit.io.metaRead missUnit.io.meta_write.ready := false.B prefetcher.io.metaRead.toIMeta.ready := false.B }.otherwise { ctrlUnit.io.metaWrite.ready := false.B ctrlUnit.io.metaRead.ready := false.B metaArray.io.write <> missUnit.io.meta_write metaArray.io.read <> prefetcher.io.metaRead.toIMeta } ctrlUnit.io.metaReadResp := metaArray.io.readResp } else { metaArray.io.write <> missUnit.io.meta_write metaArray.io.read <> prefetcher.io.metaRead.toIMeta } prefetcher.io.metaRead.fromIMeta := metaArray.io.readResp prefetcher.io.flush := io.flush prefetcher.io.csr_pf_enable := io.csr_pf_enable prefetcher.io.ecc_enable := ecc_enable prefetcher.io.MSHRResp := missUnit.io.fetch_resp prefetcher.io.flushFromBpu := io.ftqPrefetch.flushFromBpu // cache softPrefetch private val softPrefetchValid = RegInit(false.B) private val softPrefetch = RegInit(0.U.asTypeOf(new IPrefetchReq)) /* FIXME: * If there is already a pending softPrefetch request, it will be overwritten. * Also, if there are multiple softPrefetch requests in the same cycle, only the first one will be accepted. * We should implement a softPrefetchQueue (like ibuffer, multi-in, single-out) to solve this. * However, the impact on performance still needs to be assessed. * Considering that the frequency of prefetch.i may not be high, let's start with a temporary dummy solution. */ when(io.softPrefetch.map(_.valid).reduce(_ || _)) { softPrefetchValid := true.B softPrefetch.fromSoftPrefetch(MuxCase( 0.U.asTypeOf(new SoftIfetchPrefetchBundle), io.softPrefetch.map(req => req.valid -> req.bits) )) }.elsewhen(prefetcher.io.req.fire) { softPrefetchValid := false.B } // pass ftqPrefetch private val ftqPrefetch = WireInit(0.U.asTypeOf(new IPrefetchReq)) ftqPrefetch.fromFtqICacheInfo(io.ftqPrefetch.req.bits) // software prefetch has higher priority prefetcher.io.req.valid := softPrefetchValid || io.ftqPrefetch.req.valid prefetcher.io.req.bits := Mux(softPrefetchValid, softPrefetch, ftqPrefetch) prefetcher.io.req.bits.backendException := io.ftqPrefetch.backendException io.ftqPrefetch.req.ready := prefetcher.io.req.ready && !softPrefetchValid missUnit.io.hartId := io.hartId missUnit.io.fencei := io.fencei missUnit.io.flush := io.flush missUnit.io.fetch_req <> mainPipe.io.mshr.req missUnit.io.prefetch_req <> prefetcher.io.MSHRReq missUnit.io.mem_grant.valid := false.B missUnit.io.mem_grant.bits := DontCare missUnit.io.mem_grant <> bus.d mainPipe.io.flush := io.flush mainPipe.io.respStall := io.stop mainPipe.io.ecc_enable := ecc_enable mainPipe.io.hartId := io.hartId mainPipe.io.mshr.resp := missUnit.io.fetch_resp mainPipe.io.fetch.req <> io.fetch.req mainPipe.io.wayLookupRead <> wayLookup.io.read wayLookup.io.flush := io.flush wayLookup.io.write <> prefetcher.io.wayLookupWrite wayLookup.io.update := missUnit.io.fetch_resp replacer.io.touch <> mainPipe.io.touch replacer.io.victim <> missUnit.io.victim io.pmp(0) <> mainPipe.io.pmp(0) io.pmp(1) <> mainPipe.io.pmp(1) io.pmp(2) <> prefetcher.io.pmp(0) io.pmp(3) <> prefetcher.io.pmp(1) io.itlb(0) <> prefetcher.io.itlb(0) io.itlb(1) <> prefetcher.io.itlb(1) io.itlbFlushPipe := prefetcher.io.itlbFlushPipe // notify IFU that Icache pipeline is available io.toIFU := mainPipe.io.fetch.req.ready io.perfInfo := mainPipe.io.perfInfo io.fetch.resp <> mainPipe.io.fetch.resp io.fetch.topdownIcacheMiss := mainPipe.io.fetch.topdownIcacheMiss io.fetch.topdownItlbMiss := mainPipe.io.fetch.topdownItlbMiss bus.b.ready := false.B bus.c.valid := false.B bus.c.bits := DontCare bus.e.valid := false.B bus.e.bits := DontCare bus.a <> missUnit.io.mem_acquire // Parity error port private val errors = mainPipe.io.errors private val errors_valid = errors.map(e => e.valid).reduce(_ | _) io.error.bits <> RegEnable( PriorityMux(errors.map(e => e.valid -> e.bits)), 0.U.asTypeOf(errors(0).bits), errors_valid ) io.error.valid := RegNext(errors_valid, false.B) XSPerfAccumulate( "softPrefetch_drop_not_ready", io.softPrefetch.map(_.valid).reduce(_ || _) && softPrefetchValid && !prefetcher.io.req.fire ) XSPerfAccumulate("softPrefetch_drop_multi_req", PopCount(io.softPrefetch.map(_.valid)) > 1.U) XSPerfAccumulate("softPrefetch_block_ftq", softPrefetchValid && io.ftqPrefetch.req.valid) val perfEvents: Seq[(String, Bool)] = Seq( ("icache_miss_cnt ", false.B), ("icache_miss_penalty", BoolStopWatch(start = false.B, stop = false.B || false.B, startHighPriority = true)) ) generatePerfEvent() } //class ICachePartWayReadBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) // extends ICacheBundle { // val req = Flipped(Vec( // PortNumber, // Decoupled(new Bundle { // val ridx = UInt((log2Ceil(nSets) - 1).W) // }) // )) // val resp = Output(new Bundle { // val rdata = Vec(PortNumber, Vec(pWay, gen)) // }) //} //class ICacheWriteBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) // extends ICacheBundle { // val wdata = gen // val widx = UInt((log2Ceil(nSets) - 1).W) // val wbankidx = Bool() // val wmask = Vec(pWay, Bool()) //} //class ICachePartWayArray[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheArray { // // // including part way data // val io = IO { // new Bundle { // val read = new ICachePartWayReadBundle(gen, pWay) // val write = Flipped(ValidIO(new ICacheWriteBundle(gen, pWay))) // } // } // // io.read.req.map(_.ready := !io.write.valid) // // val srams = (0 until PortNumber) map { bank => // val sramBank = Module(new SRAMTemplate( // gen, // set = nSets / 2, // way = pWay, // shouldReset = true, // holdRead = true, // singlePort = true, // withClockGate = true // )) // // sramBank.io.r.req.valid := io.read.req(bank).valid // sramBank.io.r.req.bits.apply(setIdx = io.read.req(bank).bits.ridx) // // if (bank == 0) sramBank.io.w.req.valid := io.write.valid && !io.write.bits.wbankidx // else sramBank.io.w.req.valid := io.write.valid && io.write.bits.wbankidx // sramBank.io.w.req.bits.apply( // data = io.write.bits.wdata, // setIdx = io.write.bits.widx, // waymask = io.write.bits.wmask.asUInt // ) // // sramBank // } // // io.read.req.map(_.ready := !io.write.valid && srams.map(_.io.r.req.ready).reduce(_ && _)) // // io.read.resp.rdata := VecInit(srams.map(bank => bank.io.r.resp.asTypeOf(Vec(pWay, gen)))) // //} class SRAMTemplateWithFixedWidthIO[T <: Data](gen: T, set: Int, way: Int) extends Bundle { val r: SRAMReadBus[T] = Flipped(new SRAMReadBus(gen, set, way)) val w: SRAMWriteBus[T] = Flipped(new SRAMWriteBus(gen, set, way)) } // Automatically partition the SRAM based on the width of the data and the desired width. // final SRAM width = width * way class SRAMTemplateWithFixedWidth[T <: Data]( gen: T, set: Int, width: Int, way: Int = 1, shouldReset: Boolean = false, holdRead: Boolean = false, singlePort: Boolean = false, bypassWrite: Boolean = false, withClockGate: Boolean = false, hasMbist: Boolean = false, hasSramCtl: Boolean = false ) extends Module { private val dataBits = gen.getWidth private val bankNum = math.ceil(dataBits.toDouble / width.toDouble).toInt private val totalBits = bankNum * width val io: SRAMTemplateWithFixedWidthIO[T] = IO(new SRAMTemplateWithFixedWidthIO(gen, set, way)) private val wordType = UInt(width.W) private val writeDatas = (0 until bankNum).map { bank => VecInit((0 until way).map { i => io.w.req.bits.data(i).asTypeOf(UInt(totalBits.W)).asTypeOf(Vec(bankNum, wordType))(bank) }) } private val srams = (0 until bankNum) map { bank => val sramBank = Module(new SRAMTemplate( wordType, set = set, way = way, shouldReset = shouldReset, holdRead = holdRead, singlePort = singlePort, bypassWrite = bypassWrite, withClockGate = withClockGate, hasMbist = hasMbist, hasSramCtl = hasSramCtl )) // read req sramBank.io.r.req.valid := io.r.req.valid sramBank.io.r.req.bits.setIdx := io.r.req.bits.setIdx // write req sramBank.io.w.req.valid := io.w.req.valid sramBank.io.w.req.bits.setIdx := io.w.req.bits.setIdx sramBank.io.w.req.bits.data := writeDatas(bank) sramBank.io.w.req.bits.waymask.foreach(_ := io.w.req.bits.waymask.get) sramBank } io.r.req.ready := !io.w.req.valid (0 until way).foreach { i => io.r.resp.data(i) := VecInit((0 until bankNum).map(bank => srams(bank).io.r.resp.data(i) )).asTypeOf(UInt(totalBits.W))(dataBits - 1, 0).asTypeOf(gen.cloneType) } io.r.req.ready := srams.head.io.r.req.ready io.w.req.ready := srams.head.io.w.req.ready }