/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.mem import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import utils._ import utility._ import xiangshan._ import xiangshan.backend.Bundles.{DynInst, MemExuOutput} import xiangshan.backend._ import xiangshan.backend.rob.RobLsqIO import xiangshan.backend.fu.FuType import xiangshan.mem.Bundles._ import xiangshan.cache._ import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} import xiangshan.cache.{CMOReq, CMOResp} import xiangshan.cache.mmu.{TlbRequestIO, TlbHintIO} class ExceptionAddrIO(implicit p: Parameters) extends XSBundle { val isStore = Input(Bool()) val vaddr = Output(UInt(XLEN.W)) val vaNeedExt = Output(Bool()) val isHyper = Output(Bool()) val vstart = Output(UInt((log2Up(VLEN) + 1).W)) val vl = Output(UInt((log2Up(VLEN) + 1).W)) val gpaddr = Output(UInt(XLEN.W)) val isForVSnonLeafPTE = Output(Bool()) } class FwdEntry extends Bundle { val validFast = Bool() // validFast is generated the same cycle with query val valid = Bool() // valid is generated 1 cycle after query request val data = UInt(8.W) // data is generated 1 cycle after query request } // inflight miss block reqs class InflightBlockInfo(implicit p: Parameters) extends XSBundle { val block_addr = UInt(PAddrBits.W) val valid = Bool() } class LsqEnqIO(implicit p: Parameters) extends MemBlockBundle { val canAccept = Output(Bool()) val needAlloc = Vec(LSQEnqWidth, Input(UInt(2.W))) val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) val iqAccept = Input(Vec(LSQEnqWidth, Bool())) val resp = Vec(LSQEnqWidth, Output(new LSIdx)) } // Load / Store Queue Wrapper for XiangShan Out of Order LSU class LsqWrapper(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasPerfEvents { val io = IO(new Bundle() { val hartId = Input(UInt(hartIdLen.W)) val brqRedirect = Flipped(ValidIO(new Redirect)) val stvecFeedback = Vec(VecStorePipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) val ldvecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) val enq = new LsqEnqIO val ldu = new Bundle() { val stld_nuke_query = Vec(LoadPipelineWidth, Flipped(new LoadNukeQueryIO)) // from load_s2 val ldld_nuke_query = Vec(LoadPipelineWidth, Flipped(new LoadNukeQueryIO)) // from load_s2 val ldin = Vec(LoadPipelineWidth, Flipped(Decoupled(new LqWriteBundle))) // from load_s3 } val sta = new Bundle() { val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // from store_s0, store mask, send to sq from rs val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // from store_s1 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // from store_s2 } val std = new Bundle() { val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // from store_s0, store data, send to sq from rs } val ldout = Vec(LoadPipelineWidth, DecoupledIO(new MemExuOutput)) val ld_raw_data = Vec(LoadPipelineWidth, Output(new LoadDataFromLQBundle)) val ncOut = Vec(LoadPipelineWidth, DecoupledIO(new LsPipelineBundle)) val replay = Vec(LoadPipelineWidth, Decoupled(new LsPipelineBundle)) val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) val rob = Flipped(new RobLsqIO) val nuke_rollback = Vec(StorePipelineWidth, Output(Valid(new Redirect))) val nack_rollback = Vec(1, Output(Valid(new Redirect))) // uncahce val release = Flipped(Valid(new Release)) // val refill = Flipped(Valid(new Refill)) val tl_d_channel = Input(new DcacheToLduForwardIO) val maControl = Flipped(new StoreMaBufToSqControlIO) val uncacheOutstanding = Input(Bool()) val uncache = new UncacheWordIO val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store val cboZeroStout = DecoupledIO(new MemExuOutput) // TODO: implement vector store val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) // vec writeback uncached store val sqEmpty = Output(Bool()) val lq_rep_full = Output(Bool()) val sqFull = Output(Bool()) val lqFull = Output(Bool()) val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize+1).W)) val lqCancelCnt = Output(UInt(log2Up(VirtualLoadQueueSize+1).W)) val lqDeq = Output(UInt(log2Up(CommitWidth + 1).W)) val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) val lqCanAccept = Output(Bool()) val sqCanAccept = Output(Bool()) val lqDeqPtr = Output(new LqPtr) val sqDeqPtr = Output(new SqPtr) val exceptionAddr = new ExceptionAddrIO val loadMisalignFull = Input(Bool()) val misalignAllowSpec = Input(Bool()) val issuePtrExt = Output(new SqPtr) val l2_hint = Input(Valid(new L2ToL1Hint())) val tlb_hint = Flipped(new TlbHintIO) val cmoOpReq = DecoupledIO(new CMOReq) val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) val flushSbuffer = new SbufferFlushBundle val force_write = Output(Bool()) val lqEmpty = Output(Bool()) val rarValidCount = Output(UInt()) // top-down val debugTopDown = new LoadQueueTopDownIO val noUopsIssued = Input(Bool()) }) val loadQueue = Module(new LoadQueue) val storeQueue = Module(new StoreQueue) storeQueue.io.hartId := io.hartId storeQueue.io.uncacheOutstanding := io.uncacheOutstanding if (backendParams.debugEn){ dontTouch(loadQueue.io.tlbReplayDelayCycleCtrl) } // Todo: imm val tlbReplayDelayCycleCtrl = WireInit(VecInit(Seq(14.U(ReSelectLen.W), 0.U(ReSelectLen.W), 125.U(ReSelectLen.W), 0.U(ReSelectLen.W)))) loadQueue.io.tlbReplayDelayCycleCtrl := tlbReplayDelayCycleCtrl // io.enq logic // LSQ: send out canAccept when both load queue and store queue are ready // Dispatch: send instructions to LSQ only when they are ready io.enq.canAccept := loadQueue.io.enq.canAccept && storeQueue.io.enq.canAccept io.lqCanAccept := loadQueue.io.enq.canAccept io.sqCanAccept := storeQueue.io.enq.canAccept loadQueue.io.enq.sqCanAccept := storeQueue.io.enq.canAccept storeQueue.io.enq.lqCanAccept := loadQueue.io.enq.canAccept io.lqDeqPtr := loadQueue.io.lqDeqPtr io.sqDeqPtr := storeQueue.io.sqDeqPtr io.rarValidCount := loadQueue.io.rarValidCount for (i <- io.enq.req.indices) { loadQueue.io.enq.needAlloc(i) := io.enq.needAlloc(i)(0) loadQueue.io.enq.req(i).valid := io.enq.needAlloc(i)(0) && io.enq.req(i).valid loadQueue.io.enq.req(i).bits := io.enq.req(i).bits loadQueue.io.enq.req(i).bits.sqIdx := storeQueue.io.enq.resp(i) storeQueue.io.enq.needAlloc(i) := io.enq.needAlloc(i)(1) storeQueue.io.enq.req(i).valid := io.enq.needAlloc(i)(1) && io.enq.req(i).valid storeQueue.io.enq.req(i).bits := io.enq.req(i).bits storeQueue.io.enq.req(i).bits.lqIdx := loadQueue.io.enq.resp(i) io.enq.resp(i).lqIdx := loadQueue.io.enq.resp(i) io.enq.resp(i).sqIdx := storeQueue.io.enq.resp(i) } // store queue wiring storeQueue.io.brqRedirect <> io.brqRedirect storeQueue.io.vecFeedback <> io.stvecFeedback storeQueue.io.storeAddrIn <> io.sta.storeAddrIn // from store_s1 storeQueue.io.storeAddrInRe <> io.sta.storeAddrInRe // from store_s2 storeQueue.io.storeDataIn <> io.std.storeDataIn // from store_s0 storeQueue.io.storeMaskIn <> io.sta.storeMaskIn // from store_s0 storeQueue.io.sbuffer <> io.sbuffer storeQueue.io.sbufferVecDifftestInfo <> io.sbufferVecDifftestInfo storeQueue.io.mmioStout <> io.mmioStout storeQueue.io.cboZeroStout <> io.cboZeroStout storeQueue.io.vecmmioStout <> io.vecmmioStout storeQueue.io.rob <> io.rob storeQueue.io.exceptionAddr.isStore := DontCare storeQueue.io.sqCancelCnt <> io.sqCancelCnt storeQueue.io.sqDeq <> io.sqDeq storeQueue.io.sqEmpty <> io.sqEmpty storeQueue.io.sqFull <> io.sqFull storeQueue.io.forward <> io.forward // overlap forwardMask & forwardData, DO NOT CHANGE SEQUENCE storeQueue.io.force_write <> io.force_write storeQueue.io.cmoOpReq <> io.cmoOpReq storeQueue.io.cmoOpResp <> io.cmoOpResp storeQueue.io.flushSbuffer <> io.flushSbuffer storeQueue.io.maControl <> io.maControl /* <------- DANGEROUS: Don't change sequence here ! -------> */ // load queue wiring loadQueue.io.redirect <> io.brqRedirect loadQueue.io.vecFeedback <> io.ldvecFeedback loadQueue.io.ldu <> io.ldu loadQueue.io.ldout <> io.ldout loadQueue.io.ld_raw_data <> io.ld_raw_data loadQueue.io.ncOut <> io.ncOut loadQueue.io.rob <> io.rob loadQueue.io.nuke_rollback <> io.nuke_rollback loadQueue.io.nack_rollback <> io.nack_rollback loadQueue.io.replay <> io.replay // loadQueue.io.refill <> io.refill loadQueue.io.tl_d_channel <> io.tl_d_channel loadQueue.io.release <> io.release loadQueue.io.exceptionAddr.isStore := DontCare loadQueue.io.loadMisalignFull := io.loadMisalignFull loadQueue.io.misalignAllowSpec := io.misalignAllowSpec loadQueue.io.lqCancelCnt <> io.lqCancelCnt loadQueue.io.sq.stAddrReadySqPtr <> storeQueue.io.stAddrReadySqPtr loadQueue.io.sq.stAddrReadyVec <> storeQueue.io.stAddrReadyVec loadQueue.io.sq.stDataReadySqPtr <> storeQueue.io.stDataReadySqPtr loadQueue.io.sq.stDataReadyVec <> storeQueue.io.stDataReadyVec loadQueue.io.sq.stIssuePtr <> storeQueue.io.stIssuePtr loadQueue.io.sq.sqEmpty <> storeQueue.io.sqEmpty loadQueue.io.sta.storeAddrIn <> io.sta.storeAddrIn // store_s1 loadQueue.io.std.storeDataIn <> io.std.storeDataIn // store_s0 loadQueue.io.lqFull <> io.lqFull loadQueue.io.lq_rep_full <> io.lq_rep_full loadQueue.io.lqDeq <> io.lqDeq loadQueue.io.l2_hint <> io.l2_hint loadQueue.io.tlb_hint <> io.tlb_hint loadQueue.io.lqEmpty <> io.lqEmpty // rob commits for lsq is delayed for two cycles, which causes the delayed update for deqPtr in lq/sq // s0: commit // s1: exception find // s2: exception triggered // s3: ptr updated & new address // address will be used at the next cycle after exception is triggered io.exceptionAddr.vaddr := Mux(RegNext(io.exceptionAddr.isStore), storeQueue.io.exceptionAddr.vaddr, loadQueue.io.exceptionAddr.vaddr) io.exceptionAddr.vaNeedExt := Mux(RegNext(io.exceptionAddr.isStore), storeQueue.io.exceptionAddr.vaNeedExt, loadQueue.io.exceptionAddr.vaNeedExt) io.exceptionAddr.isHyper := Mux(RegNext(io.exceptionAddr.isStore), storeQueue.io.exceptionAddr.isHyper, loadQueue.io.exceptionAddr.isHyper) io.exceptionAddr.vstart := Mux(RegNext(io.exceptionAddr.isStore), storeQueue.io.exceptionAddr.vstart, loadQueue.io.exceptionAddr.vstart) io.exceptionAddr.vl := Mux(RegNext(io.exceptionAddr.isStore), storeQueue.io.exceptionAddr.vl, loadQueue.io.exceptionAddr.vl) io.exceptionAddr.gpaddr := Mux(RegNext(io.exceptionAddr.isStore), storeQueue.io.exceptionAddr.gpaddr, loadQueue.io.exceptionAddr.gpaddr) io.exceptionAddr.isForVSnonLeafPTE:= Mux(RegNext(io.exceptionAddr.isStore), storeQueue.io.exceptionAddr.isForVSnonLeafPTE, loadQueue.io.exceptionAddr.isForVSnonLeafPTE) io.issuePtrExt := storeQueue.io.stAddrReadySqPtr // naive uncache arbiter val s_idle :: s_load :: s_store :: Nil = Enum(3) val pendingstate = RegInit(s_idle) switch(pendingstate){ is(s_idle){ when(io.uncache.req.fire){ pendingstate := Mux(io.uncacheOutstanding && io.uncache.req.bits.nc, s_idle, Mux(loadQueue.io.uncache.req.valid, s_load, s_store)) } } is(s_load){ when(io.uncache.resp.fire){ pendingstate := s_idle } } is(s_store){ when(io.uncache.resp.fire){ pendingstate := s_idle } } } loadQueue.io.uncache := DontCare storeQueue.io.uncache := DontCare loadQueue.io.uncache.req.ready := false.B storeQueue.io.uncache.req.ready := false.B loadQueue.io.uncache.resp.valid := false.B loadQueue.io.uncache.idResp.valid := false.B storeQueue.io.uncache.resp.valid := false.B storeQueue.io.uncache.idResp.valid := false.B when(pendingstate === s_idle){ when(loadQueue.io.uncache.req.valid){ io.uncache.req <> loadQueue.io.uncache.req }.otherwise{ io.uncache.req <> storeQueue.io.uncache.req } }.otherwise{ io.uncache.req.valid := false.B io.uncache.req.bits := DontCare } when (io.uncache.resp.bits.is2lq) { io.uncache.resp <> loadQueue.io.uncache.resp } .otherwise { io.uncache.resp <> storeQueue.io.uncache.resp } when(io.uncache.idResp.bits.is2lq) { loadQueue.io.uncache.idResp <> io.uncache.idResp }.otherwise { storeQueue.io.uncache.idResp <> io.uncache.idResp } loadQueue.io.debugTopDown <> io.debugTopDown loadQueue.io.noUopsIssed := io.noUopsIssued assert(!(loadQueue.io.uncache.resp.valid && storeQueue.io.uncache.resp.valid)) assert(!(loadQueue.io.uncache.idResp.valid && storeQueue.io.uncache.idResp.valid)) when (!io.uncacheOutstanding) { assert(!((loadQueue.io.uncache.resp.valid || storeQueue.io.uncache.resp.valid) && pendingstate === s_idle)) } val perfEvents = Seq(loadQueue, storeQueue).flatMap(_.getPerfEvents) generatePerfEvent() } class LsqEnqCtrl(implicit p: Parameters) extends XSModule with HasVLSUParameters { val io = IO(new Bundle { val redirect = Flipped(ValidIO(new Redirect)) // to dispatch val enq = new LsqEnqIO // from `memBlock.io.lqDeq val lcommit = Input(UInt(log2Up(CommitWidth + 1).W)) // from `memBlock.io.sqDeq` val scommit = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) // from/tp lsq val lqCancelCnt = Input(UInt(log2Up(VirtualLoadQueueSize + 1).W)) val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W)) val lqFreeCount = Output(UInt(log2Up(VirtualLoadQueueSize + 1).W)) val sqFreeCount = Output(UInt(log2Up(StoreQueueSize + 1).W)) val enqLsq = Flipped(new LsqEnqIO) }) val lqPtr = RegInit(0.U.asTypeOf(new LqPtr)) val sqPtr = RegInit(0.U.asTypeOf(new SqPtr)) val lqCounter = RegInit(VirtualLoadQueueSize.U(log2Up(VirtualLoadQueueSize + 1).W)) val sqCounter = RegInit(StoreQueueSize.U(log2Up(StoreQueueSize + 1).W)) val canAccept = RegInit(false.B) val blockVec = io.enq.iqAccept.map(!_) :+ true.B val numLsElem = io.enq.req.map(_.bits.numLsElem) val needEnqLoadQueue = VecInit(io.enq.req.map(x => x.valid && (FuType.isLoad(x.bits.fuType) || FuType.isVNonsegLoad(x.bits.fuType)))) val needEnqStoreQueue = VecInit(io.enq.req.map(x => x.valid && (FuType.isStore(x.bits.fuType) || FuType.isVNonsegStore(x.bits.fuType)))) val loadQueueElem = needEnqLoadQueue.zip(numLsElem).map(x => Mux(x._1, x._2, 0.U)) val storeQueueElem = needEnqStoreQueue.zip(numLsElem).map(x => Mux(x._1, x._2, 0.U)) val loadFlowPopCount = 0.U +: loadQueueElem.zipWithIndex.map{ case (l, i) => loadQueueElem.take(i + 1).reduce(_ +& _).asTypeOf(UInt(elemIdxBits.W)) } val storeFlowPopCount = 0.U +: storeQueueElem.zipWithIndex.map { case (s, i) => storeQueueElem.take(i + 1).reduce(_ +& _).asTypeOf(UInt(elemIdxBits.W)) } val lqAllocNumber = PriorityMux(blockVec.zip(loadFlowPopCount)) val sqAllocNumber = PriorityMux(blockVec.zip(storeFlowPopCount)) io.lqFreeCount := lqCounter io.sqFreeCount := sqCounter // How to update ptr and counter: // (1) by default, updated according to enq/commit // (2) when redirect and dispatch queue is empty, update according to lsq val t1_redirect = RegNext(io.redirect.valid) val t2_redirect = RegNext(t1_redirect) val t2_update = t2_redirect && !VecInit(io.enq.needAlloc.map(_.orR)).asUInt.orR val t3_update = RegNext(t2_update) val t3_lqCancelCnt = GatedRegNext(io.lqCancelCnt) val t3_sqCancelCnt = GatedRegNext(io.sqCancelCnt) when (t3_update) { lqPtr := lqPtr - t3_lqCancelCnt lqCounter := lqCounter + io.lcommit + t3_lqCancelCnt sqPtr := sqPtr - t3_sqCancelCnt sqCounter := sqCounter + io.scommit + t3_sqCancelCnt }.elsewhen (!io.redirect.valid && io.enq.canAccept) { lqPtr := lqPtr + lqAllocNumber lqCounter := lqCounter + io.lcommit - lqAllocNumber sqPtr := sqPtr + sqAllocNumber sqCounter := sqCounter + io.scommit - sqAllocNumber }.otherwise { lqCounter := lqCounter + io.lcommit sqCounter := sqCounter + io.scommit } //TODO MaxAllocate and width of lqOffset/sqOffset needs to be discussed val lqMaxAllocate = LSQLdEnqWidth val sqMaxAllocate = LSQStEnqWidth val maxAllocate = lqMaxAllocate max sqMaxAllocate val ldCanAccept = lqCounter >= lqAllocNumber +& lqMaxAllocate.U val sqCanAccept = sqCounter >= sqAllocNumber +& sqMaxAllocate.U // It is possible that t3_update and enq are true at the same clock cycle. // For example, if redirect.valid lasts more than one clock cycle, // after the last redirect, new instructions may enter but previously redirect has not been resolved (updated according to the cancel count from LSQ). // To solve the issue easily, we block enqueue when t3_update, which is RegNext(t2_update). io.enq.canAccept := RegNext(ldCanAccept && sqCanAccept && !t2_update) val lqOffset = Wire(Vec(io.enq.resp.length, UInt(lqPtr.value.getWidth.W))) val sqOffset = Wire(Vec(io.enq.resp.length, UInt(sqPtr.value.getWidth.W))) for ((resp, i) <- io.enq.resp.zipWithIndex) { lqOffset(i) := loadFlowPopCount(i) resp.lqIdx := lqPtr + lqOffset(i) sqOffset(i) := storeFlowPopCount(i) resp.sqIdx := sqPtr + sqOffset(i) } io.enqLsq.needAlloc := RegNext(io.enq.needAlloc) io.enqLsq.iqAccept := RegNext(io.enq.iqAccept) io.enqLsq.req.zip(io.enq.req).zip(io.enq.resp).foreach{ case ((toLsq, enq), resp) => val do_enq = enq.valid && !io.redirect.valid && io.enq.canAccept toLsq.valid := RegNext(do_enq) toLsq.bits := RegEnable(enq.bits, do_enq) toLsq.bits.lqIdx := RegEnable(resp.lqIdx, do_enq) toLsq.bits.sqIdx := RegEnable(resp.sqIdx, do_enq) } }