# Copyright 2023 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for image_processing_utils.""" import math import os import random import unittest import cv2 import numpy from PIL import Image import image_processing_utils class ImageProcessingUtilsTest(unittest.TestCase): """Unit tests for this module.""" _BLUR_LEVEL = 10 # level to see the visible blur in img _CH_FULL_SCALE = 255 _SQRT_2 = numpy.sqrt(2) _YUV_FULL_SCALE = 1023 def test_unpack_raw10_image(self): """Unit test for unpack_raw10_image. RAW10 bit packing format bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Byte 0: P0[9] P0[8] P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] Byte 1: P1[9] P1[8] P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] Byte 2: P2[9] P2[8] P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] Byte 3: P3[9] P3[8] P3[7] P3[6] P3[5] P3[4] P3[3] P3[2] Byte 4: P3[1] P3[0] P2[1] P2[0] P1[1] P1[0] P0[1] P0[0] """ # Test using a random 4x4 10-bit image img_w, img_h = 4, 4 check_list = random.sample(range(0, 1024), img_h*img_w) img_check = numpy.array(check_list).reshape(img_h, img_w) # Pack bits for row_start in range(0, len(check_list), img_w): msbs = [] lsbs = '' for pixel in range(img_w): val = numpy.binary_repr(check_list[row_start+pixel], 10) msbs.append(int(val[:8], base=2)) lsbs = val[8:] + lsbs packed = msbs packed.append(int(lsbs, base=2)) chunk_raw10 = numpy.array(packed, dtype='uint8').reshape(1, 5) if row_start == 0: img_raw10 = chunk_raw10 else: img_raw10 = numpy.vstack((img_raw10, chunk_raw10)) # Unpack and check against original self.assertTrue(numpy.array_equal( image_processing_utils.unpack_raw10_image(img_raw10), img_check)) def test_compute_image_sharpness(self): """Unit test for compute_img_sharpness. Tests by using PNG of ISO12233 chart and blurring intentionally. 'sharpness' should drop off by sqrt(2) for 2x blur of image. We do one level of initial blur as PNG image is not perfect. """ blur_levels = [2, 4, 8] chart_file = os.path.join( image_processing_utils.TEST_IMG_DIR, 'ISO12233.png') chart = cv2.imread(chart_file, cv2.IMREAD_ANYDEPTH) white_level = numpy.amax(chart).astype(float) sharpness = {} for blur in blur_levels: chart_blurred = cv2.blur(chart, (blur, blur)) chart_blurred = chart_blurred[:, :, numpy.newaxis] sharpness[blur] = (self._YUV_FULL_SCALE * image_processing_utils.compute_image_sharpness( chart_blurred / white_level)) for i in range(len(blur_levels)-1): self.assertTrue(math.isclose( sharpness[blur_levels[i]]/sharpness[blur_levels[i+1]], self._SQRT_2, abs_tol=0.1)) def test_apply_lut_to_image(self): """Unit test for apply_lut_to_image. Test by using a canned set of values on a 1x1 pixel image. The look-up table should double the value of the index: lut[x] = x*2 """ ref_image = [0.1, 0.2, 0.3] lut_max = 65536 lut = numpy.array([i*2 for i in range(lut_max)]) x = numpy.array(ref_image).reshape((1, 1, 3)) y = image_processing_utils.apply_lut_to_image(x, lut).reshape(3).tolist() y_ref = [i*2 for i in ref_image] self.assertTrue(numpy.allclose(y, y_ref, atol=1/lut_max)) def test_p3_img_has_wide_gamut(self): # (255, 0, 0) and (0, 255, 0) in sRGB converted to Display P3 srgb_red = numpy.array([[[234, 51, 35]]], dtype='uint8') srgb_green = numpy.array([[[117, 252, 76]]], dtype='uint8') # Maximum blue is the same in both sRGB and Display P3 blue = numpy.array([[[0, 0, 255]]], dtype='uint8') # Max red and green in Display P3 p3_red = numpy.array([[[255, 0, 0]]], dtype='uint8') p3_green = numpy.array([[[0, 255, 0]]], dtype='uint8') self.assertFalse(image_processing_utils.p3_img_has_wide_gamut( Image.fromarray(srgb_red))) self.assertFalse(image_processing_utils.p3_img_has_wide_gamut( Image.fromarray(srgb_green))) self.assertFalse(image_processing_utils.p3_img_has_wide_gamut( Image.fromarray(blue))) self.assertTrue(image_processing_utils.p3_img_has_wide_gamut( Image.fromarray(p3_red))) self.assertTrue(image_processing_utils.p3_img_has_wide_gamut( Image.fromarray(p3_green))) def test_compute_slanted_edge_image_sharpness(self): """Unit test for computing slanted edge img sharpness. Tests by using PNG of slanted edge and blurring intentionally. 'sharpness' should drop off for the blurred image. """ chart_file = os.path.join( image_processing_utils.TEST_IMG_DIR, 'slanted_edge.png') chart = cv2.imread(chart_file, cv2.IMREAD_ANYDEPTH) chart_3d = chart[:, :, numpy.newaxis] sharpness = image_processing_utils.compute_image_sharpness( chart_3d) * self._CH_FULL_SCALE # blurring the chart chart_blurred = cv2.blur(chart, (self._BLUR_LEVEL, self._BLUR_LEVEL)) chart_blurred_3d = chart_blurred[:, :, numpy.newaxis] sharpness_blurred = image_processing_utils.compute_image_sharpness( chart_blurred_3d) * self._CH_FULL_SCALE self.assertGreater(sharpness, sharpness_blurred) if __name__ == '__main__': unittest.main()