// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include // For xnn_caches_t, xnn_operator_t. #include // For XNN_ALLOCATION_ALIGNMENT. #include // For xnn_caches. #include // For xnn_operator definition. void* xnn_get_pointer_to_write_weights( xnn_operator_t op, size_t aligned_weights_size, int padding_byte) { assert(aligned_weights_size % XNN_ALLOCATION_ALIGNMENT == 0); void* weights_ptr = NULL; if (use_weights_cache(op)) { weights_ptr = xnn_reserve_space_in_weights_cache(op->weights_cache, aligned_weights_size); if (weights_ptr == NULL) { return NULL; } } else { op->packed_weights.pointer = xnn_allocate_simd_memory(aligned_weights_size); if (op->packed_weights.pointer == NULL) { return NULL; } weights_ptr = op->packed_weights.pointer; } memset(weights_ptr, padding_byte, aligned_weights_size); return weights_ptr; } size_t xnn_compute_convolution_output_dimension( size_t padded_input_dimension, size_t kernel_dimension, size_t dilation_dimension, size_t subsampling_dimension) { const size_t effective_kernel_dimension = (kernel_dimension - 1) * dilation_dimension + 1; return doz(padded_input_dimension, effective_kernel_dimension) / subsampling_dimension + 1; } size_t xnn_compute_deconvolution_output_dimension( size_t input_dimension, size_t output_padding_dimension, size_t adjustment_dimension, size_t kernel_dimension, size_t dilation_dimension, size_t stride_dimension) { const size_t effective_kernel_dimension = (kernel_dimension - 1) * dilation_dimension + 1; return doz( stride_dimension * (input_dimension - 1) + adjustment_dimension + effective_kernel_dimension, output_padding_dimension); } size_t xnn_compute_unpooling_output_dimension( size_t input_dimension, size_t input_padding_dimension, size_t kernel_dimension) { return xnn_compute_deconvolution_output_dimension( input_dimension, input_padding_dimension, /*adjustment_dimension=*/0, kernel_dimension, /*dilation_dimension=*/1, /*stride_dimension=*/kernel_dimension); } // Calculate how much work a microkernel does. // A MxN microkernel does M+N (scalar) loads and M*N (scalar) FMAs. // So, given batch_size, the microkernel does: // divide_round_up(batch_size, mr) * (mr + nr) loads, and // divide_round_up(batch_size, mr) * (mr * nr) FMAs. // The total cost is then a linear combination of these 2 operations. From experimental data, use a multiplier of 3 for // loads, to prefer higher tile sizes which have better computation intensity. static size_t calculate_microkernel_cost(size_t batch_size, uint32_t mr, uint32_t nr) { return divide_round_up(batch_size, mr) * (3 * (mr + nr) + mr * nr); } uint32_t xnn_get_heuristic_mr_gemm( size_t batch_size, uint32_t max_mr, uint32_t nr, struct xnn_hmp_gemm_ukernel *gemm_cases) { assert(gemm_cases[max_mr-1].function[XNN_UARCH_DEFAULT] != NULL); if (batch_size <= max_mr && gemm_cases[batch_size-1].function[XNN_UARCH_DEFAULT] != NULL) { // We have a microkernel with MR that is the exact match with batch_size. return batch_size; } // Try to find the best fitting mr. // - use a cost heuristic to calculate how much work is done by the microkernel (see calculate_microkernel_cost) // - smaller cost is better uint32_t best_mr = max_mr; size_t best_cost = SIZE_MAX; for (uint32_t mr = 1; mr <= max_mr; mr++) { if (gemm_cases[mr-1].function[XNN_UARCH_DEFAULT] == NULL) { continue; } const size_t current_cost = calculate_microkernel_cost(batch_size, mr, nr); if (current_cost <= best_cost) { best_mr = mr; best_cost = current_cost; } } assert(gemm_cases[best_mr-1].function[XNN_UARCH_DEFAULT] != NULL); return best_mr; } uint32_t xnn_get_heuristic_mr_igemm( size_t batch_size, uint32_t max_mr, uint32_t nr, struct xnn_hmp_igemm_ukernel *igemm_cases) { assert(igemm_cases[max_mr-1].function[XNN_UARCH_DEFAULT] != NULL); if (batch_size <= max_mr && igemm_cases[batch_size-1].function[XNN_UARCH_DEFAULT] != NULL) { // We have a microkernel with MR that is the exact match with batch_size. return batch_size; } // Try to find the best fitting mr. // - use a cost heuristic to calculate how much work is done by the microkernel (see calculate_microkernel_cost) // - smaller cost is better uint32_t best_mr = max_mr; size_t best_cost = SIZE_MAX; for (uint32_t mr = 1; mr <= max_mr; mr++) { if (igemm_cases[mr-1].function[XNN_UARCH_DEFAULT] == NULL) { continue; } const size_t current_cost = calculate_microkernel_cost(batch_size, mr, nr); if (current_cost <= best_cost) { best_mr = mr; best_cost = current_cost; } } assert(igemm_cases[best_mr-1].function[XNN_UARCH_DEFAULT] != NULL); return best_mr; }