// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_RAND_UTIL_H_ #define BASE_RAND_UTIL_H_ #include #include #include #include #include #include "base/base_export.h" #include "base/compiler_specific.h" #include "base/containers/span.h" #include "base/gtest_prod_util.h" #include "build/build_config.h" #if !BUILDFLAG(IS_NACL) #include "third_party/boringssl/src/include/openssl/rand.h" #endif namespace memory_simulator { class MemoryHolder; } namespace base { class TimeDelta; namespace internal { #if BUILDFLAG(IS_ANDROID) // Sets the implementation of RandBytes according to the corresponding // base::Feature. Thread safe: allows to switch while RandBytes() is in use. void ConfigureRandBytesFieldTrial(); #endif #if !BUILDFLAG(IS_NACL) void ConfigureBoringSSLBackedRandBytesFieldTrial(); #endif // Returns a random double in range [0, 1). For use in allocator shim to avoid // infinite recursion. Thread-safe. BASE_EXPORT double RandDoubleAvoidAllocation(); } // namespace internal // Returns a random number in range [0, UINT64_MAX]. Thread-safe. BASE_EXPORT uint64_t RandUint64(); // Returns a random number between min and max (inclusive). Thread-safe. // // TODO(crbug.com/1488681): Change from fully-closed to half-closed (i.e. // exclude `max`) to parallel other APIs here. BASE_EXPORT int RandInt(int min, int max); // Returns a random number in range [0, range). Thread-safe. BASE_EXPORT uint64_t RandGenerator(uint64_t range); // Returns a random double in range [0, 1). Thread-safe. BASE_EXPORT double RandDouble(); // Returns a random float in range [0, 1). Thread-safe. BASE_EXPORT float RandFloat(); // Returns a random duration in [`start`, `limit`). Thread-safe. // // REQUIRES: `start` < `limit` BASE_EXPORT TimeDelta RandTimeDelta(TimeDelta start, TimeDelta limit); // Returns a random duration in [`TimeDelta()`, `limit`). Thread-safe. // // REQUIRES: `limit.is_positive()` BASE_EXPORT TimeDelta RandTimeDeltaUpTo(TimeDelta limit); // Given input |bits|, convert with maximum precision to a double in // the range [0, 1). Thread-safe. BASE_EXPORT double BitsToOpenEndedUnitInterval(uint64_t bits); // Given input `bits`, convert with maximum precision to a float in the range // [0, 1). Thread-safe. BASE_EXPORT float BitsToOpenEndedUnitIntervalF(uint64_t bits); // Fills `output` with random data. Thread-safe. // // Although implementations are required to use a cryptographically secure // random number source, code outside of base/ that relies on this should use // crypto::RandBytes instead to ensure the requirement is easily discoverable. BASE_EXPORT void RandBytes(span output); // TODO(https://crbug.com/1490484): Migrate callers to the span version. BASE_EXPORT void RandBytes(void* output, size_t output_length); // Creates a vector of `length` bytes, fills it with random data, and returns // it. Thread-safe. // // Although implementations are required to use a cryptographically secure // random number source, code outside of base/ that relies on this should use // crypto::RandBytes instead to ensure the requirement is easily discoverable. BASE_EXPORT std::vector RandBytesAsVector(size_t length); // DEPRECATED. Prefert RandBytesAsVector() above. // Fills a string of length |length| with random data and returns it. // |length| should be nonzero. Thread-safe. // // Note that this is a variation of |RandBytes| with a different return type. // The returned string is likely not ASCII/UTF-8. Use with care. // // Although implementations are required to use a cryptographically secure // random number source, code outside of base/ that relies on this should use // crypto::RandBytes instead to ensure the requirement is easily discoverable. BASE_EXPORT std::string RandBytesAsString(size_t length); // An STL UniformRandomBitGenerator backed by RandUint64. class RandomBitGenerator { public: using result_type = uint64_t; static constexpr result_type min() { return 0; } static constexpr result_type max() { return UINT64_MAX; } result_type operator()() const { return RandUint64(); } RandomBitGenerator() = default; ~RandomBitGenerator() = default; }; #if !BUILDFLAG(IS_NACL) class NonAllocatingRandomBitGenerator { public: using result_type = uint64_t; static constexpr result_type min() { return 0; } static constexpr result_type max() { return UINT64_MAX; } result_type operator()() const { uint64_t result; RAND_get_system_entropy_for_custom_prng(reinterpret_cast(&result), sizeof(result)); return result; } NonAllocatingRandomBitGenerator() = default; ~NonAllocatingRandomBitGenerator() = default; }; #endif // Shuffles [first, last) randomly. Thread-safe. template void RandomShuffle(Itr first, Itr last) { std::shuffle(first, last, RandomBitGenerator()); } #if BUILDFLAG(IS_POSIX) BASE_EXPORT int GetUrandomFD(); #endif class MetricsSubSampler; // Fast, insecure pseudo-random number generator. // // WARNING: This is not the generator you are looking for. This has significant // caveats: // - It is non-cryptographic, so easy to miuse // - It is neither fork() nor clone()-safe. // - Synchronization is up to the client. // // Always prefer base::Rand*() above, unless you have a use case where its // overhead is too high, or system calls are disallowed. // // Performance: As of 2021, rough overhead on Linux on a desktop machine of // base::RandUint64() is ~800ns per call (it performs a system call). On Windows // it is lower. On the same machine, this generator's cost is ~2ns per call, // regardless of platform. // // This is different from |Rand*()| above as it is guaranteed to never make a // system call to generate a new number, except to seed it. This should *never* // be used for cryptographic applications, and is not thread-safe. // // It is seeded using base::RandUint64() in the constructor, meaning that it // doesn't need to be seeded. It can be re-seeded though, with // ReseedForTesting(). Its period is long enough that it should not need to be // re-seeded during use. // // Uses the XorShift128+ generator under the hood. class BASE_EXPORT InsecureRandomGenerator { public: // Never use outside testing, not enough entropy. void ReseedForTesting(uint64_t seed); uint32_t RandUint32(); uint64_t RandUint64(); // In [0, 1). double RandDouble(); private: InsecureRandomGenerator(); // State. uint64_t a_ = 0, b_ = 0; // Before adding a new friend class, make sure that the overhead of // base::Rand*() is too high, using something more representative than a // microbenchmark. // Uses the generator to fill memory pages with random content to make them // hard to compress, in a simulation tool not bundled with Chrome. CPU // overhead must be minimized to correctly measure memory effects. friend class memory_simulator::MemoryHolder; // Uses the generator to sub-sample metrics. friend class MetricsSubSampler; FRIEND_TEST_ALL_PREFIXES(RandUtilTest, InsecureRandomGeneratorProducesBothValuesOfAllBits); FRIEND_TEST_ALL_PREFIXES(RandUtilTest, InsecureRandomGeneratorChiSquared); FRIEND_TEST_ALL_PREFIXES(RandUtilTest, InsecureRandomGeneratorRandDouble); FRIEND_TEST_ALL_PREFIXES(RandUtilPerfTest, InsecureRandomRandUint64); }; class BASE_EXPORT MetricsSubSampler { public: MetricsSubSampler(); bool ShouldSample(double probability); // Make any call to ShouldSample for any instance of MetricsSubSampler // return true for testing. Cannot be used in conjunction with // ScopedNeverSampleForTesting. class BASE_EXPORT ScopedAlwaysSampleForTesting { public: ScopedAlwaysSampleForTesting(); ~ScopedAlwaysSampleForTesting(); }; // Make any call to ShouldSample for any instance of MetricsSubSampler // return false for testing. Cannot be used in conjunction with // ScopedAlwaysSampleForTesting. class BASE_EXPORT ScopedNeverSampleForTesting { public: ScopedNeverSampleForTesting(); ~ScopedNeverSampleForTesting(); }; private: InsecureRandomGenerator generator_; }; } // namespace base #endif // BASE_RAND_UTIL_H_