// Copyright 2017 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/ntlm/ntlm_buffer_reader.h" #include "base/strings/utf_string_conversions.h" #include "testing/gtest/include/gtest/gtest.h" namespace net::ntlm { TEST(NtlmBufferReaderTest, Initialization) { const uint8_t buf[1] = {0}; NtlmBufferReader reader(buf); ASSERT_EQ(std::size(buf), reader.GetLength()); ASSERT_EQ(0u, reader.GetCursor()); ASSERT_FALSE(reader.IsEndOfBuffer()); ASSERT_TRUE(reader.CanRead(1)); ASSERT_FALSE(reader.CanRead(2)); ASSERT_TRUE(reader.CanReadFrom(0, 1)); ASSERT_TRUE(reader.CanReadFrom(SecurityBuffer(0, 1))); ASSERT_FALSE(reader.CanReadFrom(1, 1)); ASSERT_FALSE(reader.CanReadFrom(SecurityBuffer(1, 1))); ASSERT_FALSE(reader.CanReadFrom(0, 2)); ASSERT_FALSE(reader.CanReadFrom(SecurityBuffer(0, 2))); // With length=0 the offset can be out of bounds. ASSERT_TRUE(reader.CanReadFrom(99, 0)); ASSERT_TRUE(reader.CanReadFrom(SecurityBuffer(99, 0))); } TEST(NtlmBufferReaderTest, EmptyBuffer) { std::vector b; NtlmBufferReader reader(b); ASSERT_EQ(0u, reader.GetCursor()); ASSERT_EQ(0u, reader.GetLength()); ASSERT_TRUE(reader.CanRead(0)); ASSERT_FALSE(reader.CanRead(1)); ASSERT_TRUE(reader.IsEndOfBuffer()); // A read from an empty (zero-byte) source into an empty (zero-byte) // destination buffer should succeed as a no-op. std::vector dest; ASSERT_TRUE(reader.ReadBytes(dest)); // A read from a non-empty source into an empty (zero-byte) destination // buffer should succeed as a no-op. std::vector b2{0x01}; NtlmBufferReader reader2(b2); ASSERT_EQ(0u, reader2.GetCursor()); ASSERT_EQ(1u, reader2.GetLength()); ASSERT_TRUE(reader2.CanRead(0)); ASSERT_TRUE(reader2.ReadBytes(dest)); ASSERT_EQ(0u, reader2.GetCursor()); ASSERT_EQ(1u, reader2.GetLength()); } TEST(NtlmBufferReaderTest, NullBuffer) { NtlmBufferReader reader; ASSERT_EQ(0u, reader.GetCursor()); ASSERT_EQ(0u, reader.GetLength()); ASSERT_TRUE(reader.CanRead(0)); ASSERT_FALSE(reader.CanRead(1)); ASSERT_TRUE(reader.IsEndOfBuffer()); // A read from a null source into an empty (zero-byte) destination buffer // should succeed as a no-op. std::vector dest; ASSERT_TRUE(reader.ReadBytes(dest)); } TEST(NtlmBufferReaderTest, Read16) { const uint8_t buf[2] = {0x22, 0x11}; const uint16_t expected = 0x1122; NtlmBufferReader reader(buf); uint16_t actual; ASSERT_TRUE(reader.ReadUInt16(&actual)); ASSERT_EQ(expected, actual); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.ReadUInt16(&actual)); } TEST(NtlmBufferReaderTest, Read32) { const uint8_t buf[4] = {0x44, 0x33, 0x22, 0x11}; const uint32_t expected = 0x11223344; NtlmBufferReader reader(buf); uint32_t actual; ASSERT_TRUE(reader.ReadUInt32(&actual)); ASSERT_EQ(expected, actual); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.ReadUInt32(&actual)); } TEST(NtlmBufferReaderTest, Read64) { const uint8_t buf[8] = {0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11}; const uint64_t expected = 0x1122334455667788; NtlmBufferReader reader(buf); uint64_t actual; ASSERT_TRUE(reader.ReadUInt64(&actual)); ASSERT_EQ(expected, actual); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.ReadUInt64(&actual)); } TEST(NtlmBufferReaderTest, ReadBytes) { const uint8_t expected[8] = {0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11}; uint8_t actual[8]; NtlmBufferReader reader(expected); ASSERT_TRUE(reader.ReadBytes(actual)); ASSERT_EQ(0, memcmp(actual, expected, std::size(actual))); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.ReadBytes(base::make_span(actual, 1u))); } TEST(NtlmBufferReaderTest, ReadSecurityBuffer) { const uint8_t buf[8] = {0x22, 0x11, 0xFF, 0xEE, 0x88, 0x77, 0x66, 0x55}; const uint16_t length = 0x1122; const uint32_t offset = 0x55667788; NtlmBufferReader reader(buf); SecurityBuffer sec_buf; ASSERT_TRUE(reader.ReadSecurityBuffer(&sec_buf)); ASSERT_EQ(length, sec_buf.length); ASSERT_EQ(offset, sec_buf.offset); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.ReadSecurityBuffer(&sec_buf)); } TEST(NtlmBufferReaderTest, ReadSecurityBufferPastEob) { const uint8_t buf[7] = {0}; NtlmBufferReader reader(buf); SecurityBuffer sec_buf; ASSERT_FALSE(reader.ReadSecurityBuffer(&sec_buf)); } TEST(NtlmBufferReaderTest, ReadPayloadAsBufferReader) { const uint8_t buf[8] = {0xff, 0xff, 0x11, 0x22, 0x33, 0x44, 0xff, 0xff}; const uint32_t expected = 0x44332211; NtlmBufferReader reader(buf); ASSERT_EQ(0u, reader.GetCursor()); // Create a security buffer with offset 2 and length 4. SecurityBuffer sec_buf(2, 4); NtlmBufferReader sub_reader; ASSERT_EQ(0u, sub_reader.GetLength()); ASSERT_EQ(0u, sub_reader.GetCursor()); // Read the 4 non-0xff bytes from the middle of |buf|. ASSERT_TRUE(reader.ReadPayloadAsBufferReader(sec_buf, &sub_reader)); // |reader| cursor should not move. ASSERT_EQ(0u, reader.GetCursor()); ASSERT_EQ(sec_buf.length, sub_reader.GetLength()); ASSERT_EQ(0u, sub_reader.GetCursor()); // Read from the payload in |sub_reader|. uint32_t actual; ASSERT_TRUE(sub_reader.ReadUInt32(&actual)); ASSERT_EQ(expected, actual); ASSERT_TRUE(sub_reader.IsEndOfBuffer()); } TEST(NtlmBufferReaderTest, ReadPayloadBadOffset) { const uint8_t buf[4] = {0}; NtlmBufferReader reader(buf); NtlmBufferReader sub_reader; ASSERT_FALSE( reader.ReadPayloadAsBufferReader(SecurityBuffer(4, 1), &sub_reader)); } TEST(NtlmBufferReaderTest, ReadPayloadBadLength) { const uint8_t buf[4] = {0}; NtlmBufferReader reader(buf); NtlmBufferReader sub_reader; ASSERT_FALSE( reader.ReadPayloadAsBufferReader(SecurityBuffer(3, 2), &sub_reader)); } TEST(NtlmBufferReaderTest, SkipSecurityBuffer) { const uint8_t buf[kSecurityBufferLen] = {0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.SkipSecurityBuffer()); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.SkipSecurityBuffer()); } TEST(NtlmBufferReaderTest, SkipSecurityBufferPastEob) { // The buffer is one byte shorter than security buffer. const uint8_t buf[kSecurityBufferLen - 1] = {0}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.SkipSecurityBuffer()); } TEST(NtlmBufferReaderTest, SkipSecurityBufferWithValidationEmpty) { const uint8_t buf[kSecurityBufferLen] = {0, 0, 0, 0, 0, 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.SkipSecurityBufferWithValidation()); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.SkipSecurityBufferWithValidation()); } TEST(NtlmBufferReaderTest, SkipSecurityBufferWithValidationValid) { // A valid security buffer that points to the 1 payload byte. const uint8_t buf[kSecurityBufferLen + 1] = { 0x01, 0, 0x01, 0, kSecurityBufferLen, 0, 0, 0, 0xFF}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.SkipSecurityBufferWithValidation()); ASSERT_EQ(kSecurityBufferLen, reader.GetCursor()); ASSERT_FALSE(reader.SkipSecurityBufferWithValidation()); } TEST(NtlmBufferReaderTest, SkipSecurityBufferWithValidationPayloadLengthPastEob) { // Security buffer with length that points past the end of buffer. const uint8_t buf[kSecurityBufferLen + 1] = { 0x02, 0, 0x02, 0, kSecurityBufferLen, 0, 0, 0, 0xFF}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.SkipSecurityBufferWithValidation()); } TEST(NtlmBufferReaderTest, SkipSecurityBufferWithValidationPayloadOffsetPastEob) { // Security buffer with offset that points past the end of buffer. const uint8_t buf[kSecurityBufferLen + 1] = { 0x02, 0, 0x02, 0, kSecurityBufferLen + 1, 0, 0, 0, 0xFF}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.SkipSecurityBufferWithValidation()); } TEST(NtlmBufferReaderTest, SkipSecurityBufferWithValidationZeroLengthPayloadOffsetPastEob) { // Security buffer with offset that points past the end of buffer but // length is 0. const uint8_t buf[kSecurityBufferLen] = {0, 0, 0, 0, kSecurityBufferLen + 1, 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.SkipSecurityBufferWithValidation()); ASSERT_EQ(kSecurityBufferLen, reader.GetCursor()); } TEST(NtlmBufferReaderTest, SkipBytes) { const uint8_t buf[8] = {0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.SkipBytes(std::size(buf))); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.SkipBytes(std::size(buf))); } TEST(NtlmBufferReaderTest, SkipBytesPastEob) { const uint8_t buf[8] = {0}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.SkipBytes(std::size(buf) + 1)); } TEST(NtlmBufferReaderTest, MatchSignatureTooShort) { const uint8_t buf[7] = {0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.CanRead(7)); ASSERT_FALSE(reader.MatchSignature()); } TEST(NtlmBufferReaderTest, MatchSignatureNoMatch) { // The last byte should be a 0. const uint8_t buf[8] = {'N', 'T', 'L', 'M', 'S', 'S', 'P', 0xff}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.CanRead(8)); ASSERT_FALSE(reader.MatchSignature()); } TEST(NtlmBufferReaderTest, MatchSignatureOk) { const uint8_t buf[8] = {'N', 'T', 'L', 'M', 'S', 'S', 'P', 0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.MatchSignature()); ASSERT_TRUE(reader.IsEndOfBuffer()); } TEST(NtlmBufferReaderTest, ReadInvalidMessageType) { // Only 0x01, 0x02, and 0x03 are valid message types. const uint8_t buf[4] = {0x04, 0, 0, 0}; NtlmBufferReader reader(buf); MessageType message_type; ASSERT_FALSE(reader.ReadMessageType(&message_type)); } TEST(NtlmBufferReaderTest, ReadMessageTypeNegotiate) { const uint8_t buf[4] = {static_cast(MessageType::kNegotiate), 0, 0, 0}; NtlmBufferReader reader(buf); MessageType message_type; ASSERT_TRUE(reader.ReadMessageType(&message_type)); ASSERT_EQ(MessageType::kNegotiate, message_type); ASSERT_TRUE(reader.IsEndOfBuffer()); } TEST(NtlmBufferReaderTest, ReadMessageTypeChallenge) { const uint8_t buf[4] = {static_cast(MessageType::kChallenge), 0, 0, 0}; NtlmBufferReader reader(buf); MessageType message_type; ASSERT_TRUE(reader.ReadMessageType(&message_type)); ASSERT_EQ(MessageType::kChallenge, message_type); ASSERT_TRUE(reader.IsEndOfBuffer()); } TEST(NtlmBufferReaderTest, ReadTargetInfoEolOnly) { // Buffer contains only an EOL terminator. const uint8_t buf[4] = {0, 0, 0, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_TRUE(av_pairs.empty()); } TEST(NtlmBufferReaderTest, ReadTargetInfoEmpty) { NtlmBufferReader reader; std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfo(0, &av_pairs)); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_TRUE(av_pairs.empty()); } TEST(NtlmBufferReaderTest, ReadTargetInfoTimestampAndEolOnly) { // Buffer contains a timestamp av pair and an EOL terminator. const uint8_t buf[16] = {0x07, 0, 0x08, 0, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0, 0, 0, 0}; const uint64_t expected_timestamp = 0x8877665544332211; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_EQ(1u, av_pairs.size()); // Verify the timestamp av pair. ASSERT_EQ(TargetInfoAvId::kTimestamp, av_pairs[0].avid); ASSERT_EQ(sizeof(uint64_t), av_pairs[0].avlen); ASSERT_EQ(sizeof(uint64_t), av_pairs[0].buffer.size()); ASSERT_EQ(expected_timestamp, av_pairs[0].timestamp); } TEST(NtlmBufferReaderTest, ReadTargetInfoFlagsAndEolOnly) { // Buffer contains a flags av pair with the MIC bit and an EOL terminator. const uint8_t buf[12] = {0x06, 0, 0x04, 0, 0x02, 0, 0, 0, 0, 0, 0, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_EQ(1u, av_pairs.size()); // Verify the flags av pair. ASSERT_EQ(TargetInfoAvId::kFlags, av_pairs[0].avid); ASSERT_EQ(sizeof(TargetInfoAvFlags), av_pairs[0].avlen); ASSERT_EQ(TargetInfoAvFlags::kMicPresent, av_pairs[0].flags); } TEST(NtlmBufferReaderTest, ReadTargetInfoTooSmall) { // Target info must least contain enough space for a terminator pair. const uint8_t buf[3] = {0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_FALSE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); } TEST(NtlmBufferReaderTest, ReadTargetInfoInvalidTimestampSize) { // Timestamps must be 64 bits/8 bytes. A timestamp av pair with a // different length is invalid. const uint8_t buf[15] = {0x07, 0, 0x07, 0, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0, 0, 0, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_FALSE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); } TEST(NtlmBufferReaderTest, ReadTargetInfoInvalidTimestampPastEob) { // The timestamp avlen is correct but would read past the end of the buffer. const uint8_t buf[11] = {0x07, 0, 0x08, 0, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_FALSE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); } TEST(NtlmBufferReaderTest, ReadTargetInfoOtherField) { // A domain name AvPair containing the string L'ABCD' followed by // a terminating AvPair. const uint8_t buf[16] = {0x02, 0, 0x08, 0, 'A', 0, 'B', 0, 'C', 0, 'D', 0, 0, 0, 0, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_EQ(1u, av_pairs.size()); // Verify the domain name AvPair. ASSERT_EQ(TargetInfoAvId::kDomainName, av_pairs[0].avid); ASSERT_EQ(8, av_pairs[0].avlen); ASSERT_EQ(0, memcmp(buf + 4, av_pairs[0].buffer.data(), 8)); } TEST(NtlmBufferReaderTest, ReadTargetInfoNoTerminator) { // A domain name AvPair containing the string L'ABCD' but there is no // terminating AvPair. const uint8_t buf[12] = {0x02, 0, 0x08, 0, 'A', 0, 'B', 0, 'C', 0, 'D', 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_FALSE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); } TEST(NtlmBufferReaderTest, ReadTargetInfoTerminatorAtLocationOtherThanEnd) { // Target info contains [flags, terminator, domain, terminator]. This // should fail because the terminator should only appear at the end. const uint8_t buf[] = {0x06, 0, 0x04, 0, 0x02, 0, 0, 0, 0, 0, 0, 0, 0x02, 0, 0x08, 0, 'A', 0, 'B', 0, 'C', 0, 'D', 0, 0, 0, 0, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_FALSE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); } TEST(NtlmBufferReaderTest, ReadTargetInfoTerminatorNonZeroLength) { // A flags Av Pair followed by a terminator pair with a non-zero length. const uint8_t buf[] = {0x06, 0, 0x04, 0, 0x02, 0, 0, 0, 0, 0, 0x01, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_FALSE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); } TEST(NtlmBufferReaderTest, ReadTargetInfoTerminatorNonZeroLength2) { // A flags Av Pair followed by a terminator pair with a non-zero length, // but otherwise in bounds payload. Terminator pairs must have zero // length, so this is not valid. const uint8_t buf[] = {0x06, 0, 0x04, 0, 0x02, 0, 0, 0, 0, 0, 0x01, 0, 0xff, 0, 0, 0, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_FALSE(reader.ReadTargetInfo(std::size(buf), &av_pairs)); } TEST(NtlmBufferReaderTest, ReadTargetInfoEmptyPayload) { // Security buffer with no payload. const uint8_t buf[] = {0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfoPayload(&av_pairs)); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_TRUE(av_pairs.empty()); } TEST(NtlmBufferReaderTest, ReadTargetInfoEolOnlyPayload) { // Security buffer with an EOL payload const uint8_t buf[] = {0x04, 0x00, 0x04, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfoPayload(&av_pairs)); ASSERT_FALSE(reader.IsEndOfBuffer()); // Should only have advanced over the security buffer. ASSERT_EQ(kSecurityBufferLen, reader.GetCursor()); ASSERT_TRUE(av_pairs.empty()); } TEST(NtlmBufferReaderTest, ReadTargetInfoTooShortPayload) { // Security buffer with a payload too small to contain any pairs. const uint8_t buf[] = {0x03, 0x00, 0x03, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_FALSE(reader.ReadTargetInfoPayload(&av_pairs)); } TEST(NtlmBufferReaderTest, ReadTargetInfoFlagsPayload) { // Security buffer followed by a 12 byte payload containing a flags AvPair // with the MIC bit, followed by a terminator pair. const uint8_t buf[] = {0x0c, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x00, 0x00, 0x06, 0, 0x04, 0, 0x02, 0, 0, 0, 0, 0, 0, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfoPayload(&av_pairs)); ASSERT_FALSE(reader.IsEndOfBuffer()); // Should only have advanced over the security buffer. ASSERT_EQ(kSecurityBufferLen, reader.GetCursor()); // Contains a single flags AVPair containing the MIC bit. ASSERT_EQ(1u, av_pairs.size()); ASSERT_EQ(TargetInfoAvFlags::kMicPresent, av_pairs[0].flags); } TEST(NtlmBufferReaderTest, ReadTargetInfoFlagsPayloadWithPaddingBetween) { // Security buffer followed by a 12 byte payload containing a flags AvPair // with the MIC bit, followed by a terminator pair. 5 bytes of 0xff padding // are between the SecurityBuffer and the payload to test when the payload // is not contiguous. const uint8_t buf[] = {0x0c, 0x00, 0x0c, 0x00, 0x0c, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x06, 0, 0x04, 0, 0x02, 0, 0, 0, 0, 0, 0, 0}; NtlmBufferReader reader(buf); std::vector av_pairs; ASSERT_TRUE(reader.ReadTargetInfoPayload(&av_pairs)); ASSERT_FALSE(reader.IsEndOfBuffer()); // Should only have advanced over the security buffer. ASSERT_EQ(kSecurityBufferLen, reader.GetCursor()); // Contains a single flags AVPair containing the MIC bit. ASSERT_EQ(1u, av_pairs.size()); ASSERT_EQ(TargetInfoAvFlags::kMicPresent, av_pairs[0].flags); } TEST(NtlmBufferReaderTest, ReadMessageTypeAuthenticate) { const uint8_t buf[4] = {static_cast(MessageType::kAuthenticate), 0, 0, 0}; NtlmBufferReader reader(buf); MessageType message_type; ASSERT_TRUE(reader.ReadMessageType(&message_type)); ASSERT_EQ(MessageType::kAuthenticate, message_type); ASSERT_TRUE(reader.IsEndOfBuffer()); } TEST(NtlmBufferReaderTest, MatchMessageTypeAuthenticate) { const uint8_t buf[4] = {static_cast(MessageType::kAuthenticate), 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.MatchMessageType(MessageType::kAuthenticate)); ASSERT_TRUE(reader.IsEndOfBuffer()); } TEST(NtlmBufferReaderTest, MatchMessageTypeInvalid) { // Only 0x01, 0x02, and 0x03 are valid message types. const uint8_t buf[4] = {0x04, 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.MatchMessageType(MessageType::kAuthenticate)); } TEST(NtlmBufferReaderTest, MatchMessageTypeMismatch) { const uint8_t buf[4] = {static_cast(MessageType::kChallenge), 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.MatchMessageType(MessageType::kAuthenticate)); } TEST(NtlmBufferReaderTest, MatchAuthenticateHeader) { const uint8_t buf[12] = { 'N', 'T', 'L', 'M', 'S', 'S', 'P', 0, static_cast(MessageType::kAuthenticate), 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.MatchMessageHeader(MessageType::kAuthenticate)); ASSERT_TRUE(reader.IsEndOfBuffer()); } TEST(NtlmBufferReaderTest, MatchAuthenticateHeaderMisMatch) { const uint8_t buf[12] = { 'N', 'T', 'L', 'M', 'S', 'S', 'P', 0, static_cast(MessageType::kChallenge), 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.MatchMessageType(MessageType::kAuthenticate)); } TEST(NtlmBufferReaderTest, MatchZeros) { const uint8_t buf[6] = {0, 0, 0, 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.MatchZeros(std::size(buf))); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.MatchZeros(1)); } TEST(NtlmBufferReaderTest, MatchZerosFail) { const uint8_t buf[6] = {0, 0, 0, 0, 0, 0xFF}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.MatchZeros(std::size(buf))); } TEST(NtlmBufferReaderTest, MatchEmptySecurityBuffer) { const uint8_t buf[kSecurityBufferLen] = {0, 0, 0, 0, 0, 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.MatchEmptySecurityBuffer()); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.MatchEmptySecurityBuffer()); } TEST(NtlmBufferReaderTest, MatchEmptySecurityBufferLengthZeroOffsetEnd) { const uint8_t buf[kSecurityBufferLen] = {0, 0, 0, 0, 0x08, 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_TRUE(reader.MatchEmptySecurityBuffer()); ASSERT_TRUE(reader.IsEndOfBuffer()); } TEST(NtlmBufferReaderTest, MatchEmptySecurityBufferLengthZeroPastEob) { const uint8_t buf[kSecurityBufferLen] = {0, 0, 0, 0, 0x09, 0, 0, 0}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.MatchEmptySecurityBuffer()); } TEST(NtlmBufferReaderTest, MatchEmptySecurityBufferLengthNonZeroLength) { const uint8_t buf[kSecurityBufferLen + 1] = {0x01, 0, 0, 0, 0x08, 0, 0, 0, 0xff}; NtlmBufferReader reader(buf); ASSERT_FALSE(reader.MatchEmptySecurityBuffer()); } TEST(NtlmBufferReaderTest, ReadAvPairHeader) { const uint8_t buf[4] = {0x06, 0x00, 0x11, 0x22}; NtlmBufferReader reader(buf); TargetInfoAvId actual_avid; uint16_t actual_avlen; ASSERT_TRUE(reader.ReadAvPairHeader(&actual_avid, &actual_avlen)); ASSERT_EQ(TargetInfoAvId::kFlags, actual_avid); ASSERT_EQ(0x2211, actual_avlen); ASSERT_TRUE(reader.IsEndOfBuffer()); ASSERT_FALSE(reader.ReadAvPairHeader(&actual_avid, &actual_avlen)); } TEST(NtlmBufferReaderTest, ReadAvPairHeaderPastEob) { const uint8_t buf[3] = {0x06, 0x00, 0x11}; NtlmBufferReader reader(buf); TargetInfoAvId avid; uint16_t avlen; ASSERT_FALSE(reader.ReadAvPairHeader(&avid, &avlen)); } } // namespace net::ntlm