/*------------------------------------------------------------------------- * drawElements Quality Program Tester Core * ---------------------------------------- * * Copyright 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief ASTC Utilities. *//*--------------------------------------------------------------------*/ #include "tcuAstcUtil.hpp" #include "deFloat16.h" #include "deRandom.hpp" #include "deMeta.hpp" #include namespace tcu { namespace astc { using std::vector; namespace { // Common utilities enum { MAX_BLOCK_WIDTH = 12, MAX_BLOCK_HEIGHT = 12 }; inline uint32_t getBit(uint32_t src, int ndx) { DE_ASSERT(de::inBounds(ndx, 0, 32)); return (src >> ndx) & 1; } inline uint32_t getBits(uint32_t src, int low, int high) { const int numBits = (high - low) + 1; DE_ASSERT(de::inRange(numBits, 1, 32)); if (numBits < 32) return (uint32_t)((src >> low) & ((1u << numBits) - 1)); else return (uint32_t)((src >> low) & 0xFFFFFFFFu); } inline bool isBitSet(uint32_t src, int ndx) { return getBit(src, ndx) != 0; } inline uint32_t reverseBits(uint32_t src, int numBits) { DE_ASSERT(de::inRange(numBits, 0, 32)); uint32_t result = 0; for (int i = 0; i < numBits; i++) result |= ((src >> i) & 1) << (numBits - 1 - i); return result; } inline uint32_t bitReplicationScale(uint32_t src, int numSrcBits, int numDstBits) { DE_ASSERT(numSrcBits <= numDstBits); DE_ASSERT((src & ((1 << numSrcBits) - 1)) == src); uint32_t dst = 0; for (int shift = numDstBits - numSrcBits; shift > -numSrcBits; shift -= numSrcBits) dst |= shift >= 0 ? src << shift : src >> -shift; return dst; } inline int32_t signExtend(int32_t src, int numSrcBits) { DE_ASSERT(de::inRange(numSrcBits, 2, 31)); const bool negative = (src & (1 << (numSrcBits - 1))) != 0; return src | (negative ? ~((1 << numSrcBits) - 1) : 0); } inline bool isFloat16InfOrNan(deFloat16 v) { return getBits(v, 10, 14) == 31; } enum ISEMode { ISEMODE_TRIT = 0, ISEMODE_QUINT, ISEMODE_PLAIN_BIT, ISEMODE_LAST }; struct ISEParams { ISEMode mode; int numBits; ISEParams(ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) { } }; inline int computeNumRequiredBits(const ISEParams &iseParams, int numValues) { switch (iseParams.mode) { case ISEMODE_TRIT: return deDivRoundUp32(numValues * 8, 5) + numValues * iseParams.numBits; case ISEMODE_QUINT: return deDivRoundUp32(numValues * 7, 3) + numValues * iseParams.numBits; case ISEMODE_PLAIN_BIT: return numValues * iseParams.numBits; default: DE_ASSERT(false); return -1; } } ISEParams computeMaximumRangeISEParams(int numAvailableBits, int numValuesInSequence) { int curBitsForTritMode = 6; int curBitsForQuintMode = 5; int curBitsForPlainBitMode = 8; while (true) { DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0); const int tritRange = curBitsForTritMode > 0 ? (3 << curBitsForTritMode) - 1 : -1; const int quintRange = curBitsForQuintMode > 0 ? (5 << curBitsForQuintMode) - 1 : -1; const int plainBitRange = curBitsForPlainBitMode > 0 ? (1 << curBitsForPlainBitMode) - 1 : -1; const int maxRange = de::max(de::max(tritRange, quintRange), plainBitRange); if (maxRange == tritRange) { const ISEParams params(ISEMODE_TRIT, curBitsForTritMode); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_TRIT, curBitsForTritMode); curBitsForTritMode--; } else if (maxRange == quintRange) { const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_QUINT, curBitsForQuintMode); curBitsForQuintMode--; } else { const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); DE_ASSERT(maxRange == plainBitRange); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); curBitsForPlainBitMode--; } } } inline int computeNumColorEndpointValues(uint32_t endpointMode) { DE_ASSERT(endpointMode < 16); return (endpointMode / 4 + 1) * 2; } // Decompression utilities enum DecompressResult { DECOMPRESS_RESULT_VALID_BLOCK = 0, //!< Decompressed valid block DECOMPRESS_RESULT_ERROR, //!< Encountered error while decompressing, error color written DECOMPRESS_RESULT_LAST }; // A helper for getting bits from a 128-bit block. class Block128 { private: typedef uint64_t Word; enum { WORD_BYTES = sizeof(Word), WORD_BITS = 8 * WORD_BYTES, NUM_WORDS = 128 / WORD_BITS }; DE_STATIC_ASSERT(128 % WORD_BITS == 0); public: Block128(const uint8_t *src) { for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) { m_words[wordNdx] = 0; for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) m_words[wordNdx] |= (Word)src[wordNdx * WORD_BYTES + byteNdx] << (8 * byteNdx); } } uint32_t getBit(int ndx) const { DE_ASSERT(de::inBounds(ndx, 0, 128)); return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1; } uint32_t getBits(int low, int high) const { DE_ASSERT(de::inBounds(low, 0, 128)); DE_ASSERT(de::inBounds(high, 0, 128)); DE_ASSERT(de::inRange(high - low + 1, 0, 32)); if (high - low + 1 == 0) return 0; const int word0Ndx = low / WORD_BITS; const int word1Ndx = high / WORD_BITS; // \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big. if (word0Ndx == word1Ndx) return (uint32_t)((m_words[word0Ndx] & ((((Word)1 << high % WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS)); else { DE_ASSERT(word1Ndx == word0Ndx + 1); return (uint32_t)(m_words[word0Ndx] >> (low % WORD_BITS)) | (uint32_t)((m_words[word1Ndx] & (((Word)1 << high % WORD_BITS << 1) - 1)) << (high - low - high % WORD_BITS)); } } bool isBitSet(int ndx) const { DE_ASSERT(de::inBounds(ndx, 0, 128)); return getBit(ndx) != 0; } private: Word m_words[NUM_WORDS]; }; // A helper for sequential access into a Block128. class BitAccessStream { public: BitAccessStream(const Block128 &src, int startNdxInSrc, int length, bool forward) : m_src(src) , m_startNdxInSrc(startNdxInSrc) , m_length(length) , m_forward(forward) , m_ndx(0) { } // Get the next num bits. Bits at positions greater than or equal to m_length are zeros. uint32_t getNext(int num) { if (num == 0 || m_ndx >= m_length) return 0; const int end = m_ndx + num; const int numBitsFromSrc = de::max(0, de::min(m_length, end) - m_ndx); const int low = m_ndx; const int high = m_ndx + numBitsFromSrc - 1; m_ndx += num; return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high) : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc); } private: const Block128 &m_src; const int m_startNdxInSrc; const int m_length; const bool m_forward; int m_ndx; }; struct ISEDecodedResult { uint32_t m; uint32_t tq; //!< Trit or quint value, depending on ISE mode. uint32_t v; }; // Data from an ASTC block's "block mode" part (i.e. bits [0,10]). struct ASTCBlockMode { bool isError; // \note Following fields only relevant if !isError. bool isVoidExtent; // \note Following fields only relevant if !isVoidExtent. bool isDualPlane; int weightGridWidth; int weightGridHeight; ISEParams weightISEParams; ASTCBlockMode(void) : isError(true) , isVoidExtent(true) , isDualPlane(true) , weightGridWidth(-1) , weightGridHeight(-1) , weightISEParams(ISEMODE_LAST, -1) { } }; inline int computeNumWeights(const ASTCBlockMode &mode) { return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1); } struct ColorEndpointPair { UVec4 e0; UVec4 e1; }; struct TexelWeightPair { uint32_t w[2]; }; ASTCBlockMode getASTCBlockMode(uint32_t blockModeData) { ASTCBlockMode blockMode; blockMode.isError = true; // \note Set to false later, if not error. blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc; if (!blockMode.isVoidExtent) { if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0) return blockMode; // Invalid ("reserved"). uint32_t r = (uint32_t)-1; // \note Set in the following branches. if (getBits(blockModeData, 0, 1) == 0) { const uint32_t r0 = getBit(blockModeData, 4); const uint32_t r1 = getBit(blockModeData, 2); const uint32_t r2 = getBit(blockModeData, 3); const uint32_t i78 = getBits(blockModeData, 7, 8); r = (r2 << 2) | (r1 << 1) | (r0 << 0); if (i78 == 3) { const bool i5 = isBitSet(blockModeData, 5); blockMode.weightGridWidth = i5 ? 10 : 6; blockMode.weightGridHeight = i5 ? 6 : 10; } else { const uint32_t a = getBits(blockModeData, 5, 6); switch (i78) { case 0: blockMode.weightGridWidth = 12; blockMode.weightGridHeight = a + 2; break; case 1: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = 12; break; case 2: blockMode.weightGridWidth = a + 6; blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; break; default: DE_ASSERT(false); } } } else { const uint32_t r0 = getBit(blockModeData, 4); const uint32_t r1 = getBit(blockModeData, 0); const uint32_t r2 = getBit(blockModeData, 1); const uint32_t i23 = getBits(blockModeData, 2, 3); const uint32_t a = getBits(blockModeData, 5, 6); r = (r2 << 2) | (r1 << 1) | (r0 << 0); if (i23 == 3) { const uint32_t b = getBit(blockModeData, 7); const bool i8 = isBitSet(blockModeData, 8); blockMode.weightGridWidth = i8 ? b + 2 : a + 2; blockMode.weightGridHeight = i8 ? a + 2 : b + 6; } else { const uint32_t b = getBits(blockModeData, 7, 8); switch (i23) { case 0: blockMode.weightGridWidth = b + 4; blockMode.weightGridHeight = a + 2; break; case 1: blockMode.weightGridWidth = b + 8; blockMode.weightGridHeight = a + 2; break; case 2: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = b + 8; break; default: DE_ASSERT(false); } } } const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2; const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9); blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10); { ISEMode &m = blockMode.weightISEParams.mode; int &b = blockMode.weightISEParams.numBits; m = ISEMODE_PLAIN_BIT; b = 0; if (h) { switch (r) { case 2: m = ISEMODE_QUINT; b = 1; break; case 3: m = ISEMODE_TRIT; b = 2; break; case 4: b = 4; break; case 5: m = ISEMODE_QUINT; b = 2; break; case 6: m = ISEMODE_TRIT; b = 3; break; case 7: b = 5; break; default: DE_ASSERT(false); } } else { switch (r) { case 2: b = 1; break; case 3: m = ISEMODE_TRIT; break; case 4: b = 2; break; case 5: m = ISEMODE_QUINT; break; case 6: m = ISEMODE_TRIT; b = 1; break; case 7: b = 3; break; default: DE_ASSERT(false); } } } } blockMode.isError = false; return blockMode; } inline void setASTCErrorColorBlock(void *dst, int blockWidth, int blockHeight, bool isSRGB) { if (isSRGB) { uint8_t *const dstU = (uint8_t *)dst; for (int i = 0; i < blockWidth * blockHeight; i++) { dstU[4 * i + 0] = 0xff; dstU[4 * i + 1] = 0; dstU[4 * i + 2] = 0xff; dstU[4 * i + 3] = 0xff; } } else { float *const dstF = (float *)dst; for (int i = 0; i < blockWidth * blockHeight; i++) { dstF[4 * i + 0] = 1.0f; dstF[4 * i + 1] = 0.0f; dstF[4 * i + 2] = 1.0f; dstF[4 * i + 3] = 1.0f; } } } DecompressResult decodeVoidExtentBlock(void *dst, const Block128 &blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode) { const uint32_t minSExtent = blockData.getBits(12, 24); const uint32_t maxSExtent = blockData.getBits(25, 37); const uint32_t minTExtent = blockData.getBits(38, 50); const uint32_t maxTExtent = blockData.getBits(51, 63); const bool allExtentsAllOnes = minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff; const bool isHDRBlock = blockData.isBitSet(9); if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent))) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return DECOMPRESS_RESULT_ERROR; } const uint32_t rgba[4] = {blockData.getBits(64, 79), blockData.getBits(80, 95), blockData.getBits(96, 111), blockData.getBits(112, 127)}; if (isSRGB) { uint8_t *const dstU = (uint8_t *)dst; for (int i = 0; i < blockWidth * blockHeight; i++) for (int c = 0; c < 4; c++) dstU[i * 4 + c] = (uint8_t)((rgba[c] & 0xff00) >> 8); } else { float *const dstF = (float *)dst; if (isHDRBlock) { for (int c = 0; c < 4; c++) { if (isFloat16InfOrNan((deFloat16)rgba[c])) throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture " "(behavior undefined by ASTC specification)"); } for (int i = 0; i < blockWidth * blockHeight; i++) for (int c = 0; c < 4; c++) dstF[i * 4 + c] = deFloat16To32((deFloat16)rgba[c]); } else { for (int i = 0; i < blockWidth * blockHeight; i++) for (int c = 0; c < 4; c++) dstF[i * 4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f; } } return DECOMPRESS_RESULT_VALID_BLOCK; } void decodeColorEndpointModes(uint32_t *endpointModesDst, const Block128 &blockData, int numPartitions, int extraCemBitsStart) { if (numPartitions == 1) endpointModesDst[0] = blockData.getBits(13, 16); else { const uint32_t highLevelSelector = blockData.getBits(23, 24); if (highLevelSelector == 0) { const uint32_t mode = blockData.getBits(25, 28); for (int i = 0; i < numPartitions; i++) endpointModesDst[i] = mode; } else { for (int partNdx = 0; partNdx < numPartitions; partNdx++) { const uint32_t cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1); const uint32_t lowBit0Ndx = numPartitions + 2 * partNdx; const uint32_t lowBit1Ndx = numPartitions + 2 * partNdx + 1; const uint32_t lowBit0 = blockData.getBit(lowBit0Ndx < 4 ? 25 + lowBit0Ndx : extraCemBitsStart + lowBit0Ndx - 4); const uint32_t lowBit1 = blockData.getBit(lowBit1Ndx < 4 ? 25 + lowBit1Ndx : extraCemBitsStart + lowBit1Ndx - 4); endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0; } } } } int computeNumColorEndpointValues(const uint32_t *endpointModes, int numPartitions) { int result = 0; for (int i = 0; i < numPartitions; i++) result += computeNumColorEndpointValues(endpointModes[i]); return result; } void decodeISETritBlock(ISEDecodedResult *dst, int numValues, BitAccessStream &data, int numBits) { DE_ASSERT(de::inRange(numValues, 1, 5)); uint32_t m[5]; m[0] = data.getNext(numBits); uint32_t T01 = data.getNext(2); m[1] = data.getNext(numBits); uint32_t T23 = data.getNext(2); m[2] = data.getNext(numBits); uint32_t T4 = data.getNext(1); m[3] = data.getNext(numBits); uint32_t T56 = data.getNext(2); m[4] = data.getNext(numBits); uint32_t T7 = data.getNext(1); switch (numValues) { case 1: T23 = 0; // Fallthrough case 2: T4 = 0; // Fallthrough case 3: T56 = 0; // Fallthrough case 4: T7 = 0; // Fallthrough case 5: break; default: DE_ASSERT(false); } const uint32_t T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0); static const uint32_t tritsFromT[256][5] = { {0, 0, 0, 0, 0}, {1, 0, 0, 0, 0}, {2, 0, 0, 0, 0}, {0, 0, 2, 0, 0}, {0, 1, 0, 0, 0}, {1, 1, 0, 0, 0}, {2, 1, 0, 0, 0}, {1, 0, 2, 0, 0}, {0, 2, 0, 0, 0}, {1, 2, 0, 0, 0}, {2, 2, 0, 0, 0}, {2, 0, 2, 0, 0}, {0, 2, 2, 0, 0}, {1, 2, 2, 0, 0}, {2, 2, 2, 0, 0}, {2, 0, 2, 0, 0}, {0, 0, 1, 0, 0}, {1, 0, 1, 0, 0}, {2, 0, 1, 0, 0}, {0, 1, 2, 0, 0}, {0, 1, 1, 0, 0}, {1, 1, 1, 0, 0}, {2, 1, 1, 0, 0}, {1, 1, 2, 0, 0}, {0, 2, 1, 0, 0}, {1, 2, 1, 0, 0}, {2, 2, 1, 0, 0}, {2, 1, 2, 0, 0}, {0, 0, 0, 2, 2}, {1, 0, 0, 2, 2}, {2, 0, 0, 2, 2}, {0, 0, 2, 2, 2}, {0, 0, 0, 1, 0}, {1, 0, 0, 1, 0}, {2, 0, 0, 1, 0}, {0, 0, 2, 1, 0}, {0, 1, 0, 1, 0}, {1, 1, 0, 1, 0}, {2, 1, 0, 1, 0}, {1, 0, 2, 1, 0}, {0, 2, 0, 1, 0}, {1, 2, 0, 1, 0}, {2, 2, 0, 1, 0}, {2, 0, 2, 1, 0}, {0, 2, 2, 1, 0}, {1, 2, 2, 1, 0}, {2, 2, 2, 1, 0}, {2, 0, 2, 1, 0}, {0, 0, 1, 1, 0}, {1, 0, 1, 1, 0}, {2, 0, 1, 1, 0}, {0, 1, 2, 1, 0}, {0, 1, 1, 1, 0}, {1, 1, 1, 1, 0}, {2, 1, 1, 1, 0}, {1, 1, 2, 1, 0}, {0, 2, 1, 1, 0}, {1, 2, 1, 1, 0}, {2, 2, 1, 1, 0}, {2, 1, 2, 1, 0}, {0, 1, 0, 2, 2}, {1, 1, 0, 2, 2}, {2, 1, 0, 2, 2}, {1, 0, 2, 2, 2}, {0, 0, 0, 2, 0}, {1, 0, 0, 2, 0}, {2, 0, 0, 2, 0}, {0, 0, 2, 2, 0}, {0, 1, 0, 2, 0}, {1, 1, 0, 2, 0}, {2, 1, 0, 2, 0}, {1, 0, 2, 2, 0}, {0, 2, 0, 2, 0}, {1, 2, 0, 2, 0}, {2, 2, 0, 2, 0}, {2, 0, 2, 2, 0}, {0, 2, 2, 2, 0}, {1, 2, 2, 2, 0}, {2, 2, 2, 2, 0}, {2, 0, 2, 2, 0}, {0, 0, 1, 2, 0}, {1, 0, 1, 2, 0}, {2, 0, 1, 2, 0}, {0, 1, 2, 2, 0}, {0, 1, 1, 2, 0}, {1, 1, 1, 2, 0}, {2, 1, 1, 2, 0}, {1, 1, 2, 2, 0}, {0, 2, 1, 2, 0}, {1, 2, 1, 2, 0}, {2, 2, 1, 2, 0}, {2, 1, 2, 2, 0}, {0, 2, 0, 2, 2}, {1, 2, 0, 2, 2}, {2, 2, 0, 2, 2}, {2, 0, 2, 2, 2}, {0, 0, 0, 0, 2}, {1, 0, 0, 0, 2}, {2, 0, 0, 0, 2}, {0, 0, 2, 0, 2}, {0, 1, 0, 0, 2}, {1, 1, 0, 0, 2}, {2, 1, 0, 0, 2}, {1, 0, 2, 0, 2}, {0, 2, 0, 0, 2}, {1, 2, 0, 0, 2}, {2, 2, 0, 0, 2}, {2, 0, 2, 0, 2}, {0, 2, 2, 0, 2}, {1, 2, 2, 0, 2}, {2, 2, 2, 0, 2}, {2, 0, 2, 0, 2}, {0, 0, 1, 0, 2}, {1, 0, 1, 0, 2}, {2, 0, 1, 0, 2}, {0, 1, 2, 0, 2}, {0, 1, 1, 0, 2}, {1, 1, 1, 0, 2}, {2, 1, 1, 0, 2}, {1, 1, 2, 0, 2}, {0, 2, 1, 0, 2}, {1, 2, 1, 0, 2}, {2, 2, 1, 0, 2}, {2, 1, 2, 0, 2}, {0, 2, 2, 2, 2}, {1, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 0, 2, 2, 2}, {0, 0, 0, 0, 1}, {1, 0, 0, 0, 1}, {2, 0, 0, 0, 1}, {0, 0, 2, 0, 1}, {0, 1, 0, 0, 1}, {1, 1, 0, 0, 1}, {2, 1, 0, 0, 1}, {1, 0, 2, 0, 1}, {0, 2, 0, 0, 1}, {1, 2, 0, 0, 1}, {2, 2, 0, 0, 1}, {2, 0, 2, 0, 1}, {0, 2, 2, 0, 1}, {1, 2, 2, 0, 1}, {2, 2, 2, 0, 1}, {2, 0, 2, 0, 1}, {0, 0, 1, 0, 1}, {1, 0, 1, 0, 1}, {2, 0, 1, 0, 1}, {0, 1, 2, 0, 1}, {0, 1, 1, 0, 1}, {1, 1, 1, 0, 1}, {2, 1, 1, 0, 1}, {1, 1, 2, 0, 1}, {0, 2, 1, 0, 1}, {1, 2, 1, 0, 1}, {2, 2, 1, 0, 1}, {2, 1, 2, 0, 1}, {0, 0, 1, 2, 2}, {1, 0, 1, 2, 2}, {2, 0, 1, 2, 2}, {0, 1, 2, 2, 2}, {0, 0, 0, 1, 1}, {1, 0, 0, 1, 1}, {2, 0, 0, 1, 1}, {0, 0, 2, 1, 1}, {0, 1, 0, 1, 1}, {1, 1, 0, 1, 1}, {2, 1, 0, 1, 1}, {1, 0, 2, 1, 1}, {0, 2, 0, 1, 1}, {1, 2, 0, 1, 1}, {2, 2, 0, 1, 1}, {2, 0, 2, 1, 1}, {0, 2, 2, 1, 1}, {1, 2, 2, 1, 1}, {2, 2, 2, 1, 1}, {2, 0, 2, 1, 1}, {0, 0, 1, 1, 1}, {1, 0, 1, 1, 1}, {2, 0, 1, 1, 1}, {0, 1, 2, 1, 1}, {0, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {2, 1, 1, 1, 1}, {1, 1, 2, 1, 1}, {0, 2, 1, 1, 1}, {1, 2, 1, 1, 1}, {2, 2, 1, 1, 1}, {2, 1, 2, 1, 1}, {0, 1, 1, 2, 2}, {1, 1, 1, 2, 2}, {2, 1, 1, 2, 2}, {1, 1, 2, 2, 2}, {0, 0, 0, 2, 1}, {1, 0, 0, 2, 1}, {2, 0, 0, 2, 1}, {0, 0, 2, 2, 1}, {0, 1, 0, 2, 1}, {1, 1, 0, 2, 1}, {2, 1, 0, 2, 1}, {1, 0, 2, 2, 1}, {0, 2, 0, 2, 1}, {1, 2, 0, 2, 1}, {2, 2, 0, 2, 1}, {2, 0, 2, 2, 1}, {0, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {2, 2, 2, 2, 1}, {2, 0, 2, 2, 1}, {0, 0, 1, 2, 1}, {1, 0, 1, 2, 1}, {2, 0, 1, 2, 1}, {0, 1, 2, 2, 1}, {0, 1, 1, 2, 1}, {1, 1, 1, 2, 1}, {2, 1, 1, 2, 1}, {1, 1, 2, 2, 1}, {0, 2, 1, 2, 1}, {1, 2, 1, 2, 1}, {2, 2, 1, 2, 1}, {2, 1, 2, 2, 1}, {0, 2, 1, 2, 2}, {1, 2, 1, 2, 2}, {2, 2, 1, 2, 2}, {2, 1, 2, 2, 2}, {0, 0, 0, 1, 2}, {1, 0, 0, 1, 2}, {2, 0, 0, 1, 2}, {0, 0, 2, 1, 2}, {0, 1, 0, 1, 2}, {1, 1, 0, 1, 2}, {2, 1, 0, 1, 2}, {1, 0, 2, 1, 2}, {0, 2, 0, 1, 2}, {1, 2, 0, 1, 2}, {2, 2, 0, 1, 2}, {2, 0, 2, 1, 2}, {0, 2, 2, 1, 2}, {1, 2, 2, 1, 2}, {2, 2, 2, 1, 2}, {2, 0, 2, 1, 2}, {0, 0, 1, 1, 2}, {1, 0, 1, 1, 2}, {2, 0, 1, 1, 2}, {0, 1, 2, 1, 2}, {0, 1, 1, 1, 2}, {1, 1, 1, 1, 2}, {2, 1, 1, 1, 2}, {1, 1, 2, 1, 2}, {0, 2, 1, 1, 2}, {1, 2, 1, 1, 2}, {2, 2, 1, 1, 2}, {2, 1, 2, 1, 2}, {0, 2, 2, 2, 2}, {1, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 1, 2, 2, 2}}; const uint32_t(&trits)[5] = tritsFromT[T]; for (int i = 0; i < numValues; i++) { dst[i].m = m[i]; dst[i].tq = trits[i]; dst[i].v = (trits[i] << numBits) + m[i]; } } void decodeISEQuintBlock(ISEDecodedResult *dst, int numValues, BitAccessStream &data, int numBits) { DE_ASSERT(de::inRange(numValues, 1, 3)); uint32_t m[3]; m[0] = data.getNext(numBits); uint32_t Q012 = data.getNext(3); m[1] = data.getNext(numBits); uint32_t Q34 = data.getNext(2); m[2] = data.getNext(numBits); uint32_t Q56 = data.getNext(2); switch (numValues) { case 1: Q34 = 0; // Fallthrough case 2: Q56 = 0; // Fallthrough case 3: break; default: DE_ASSERT(false); } const uint32_t Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0); static const uint32_t quintsFromQ[256][3] = { {0, 0, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}, {4, 0, 0}, {0, 4, 0}, {4, 4, 0}, {4, 4, 4}, {0, 1, 0}, {1, 1, 0}, {2, 1, 0}, {3, 1, 0}, {4, 1, 0}, {1, 4, 0}, {4, 4, 1}, {4, 4, 4}, {0, 2, 0}, {1, 2, 0}, {2, 2, 0}, {3, 2, 0}, {4, 2, 0}, {2, 4, 0}, {4, 4, 2}, {4, 4, 4}, {0, 3, 0}, {1, 3, 0}, {2, 3, 0}, {3, 3, 0}, {4, 3, 0}, {3, 4, 0}, {4, 4, 3}, {4, 4, 4}, {0, 0, 1}, {1, 0, 1}, {2, 0, 1}, {3, 0, 1}, {4, 0, 1}, {0, 4, 1}, {4, 0, 4}, {0, 4, 4}, {0, 1, 1}, {1, 1, 1}, {2, 1, 1}, {3, 1, 1}, {4, 1, 1}, {1, 4, 1}, {4, 1, 4}, {1, 4, 4}, {0, 2, 1}, {1, 2, 1}, {2, 2, 1}, {3, 2, 1}, {4, 2, 1}, {2, 4, 1}, {4, 2, 4}, {2, 4, 4}, {0, 3, 1}, {1, 3, 1}, {2, 3, 1}, {3, 3, 1}, {4, 3, 1}, {3, 4, 1}, {4, 3, 4}, {3, 4, 4}, {0, 0, 2}, {1, 0, 2}, {2, 0, 2}, {3, 0, 2}, {4, 0, 2}, {0, 4, 2}, {2, 0, 4}, {3, 0, 4}, {0, 1, 2}, {1, 1, 2}, {2, 1, 2}, {3, 1, 2}, {4, 1, 2}, {1, 4, 2}, {2, 1, 4}, {3, 1, 4}, {0, 2, 2}, {1, 2, 2}, {2, 2, 2}, {3, 2, 2}, {4, 2, 2}, {2, 4, 2}, {2, 2, 4}, {3, 2, 4}, {0, 3, 2}, {1, 3, 2}, {2, 3, 2}, {3, 3, 2}, {4, 3, 2}, {3, 4, 2}, {2, 3, 4}, {3, 3, 4}, {0, 0, 3}, {1, 0, 3}, {2, 0, 3}, {3, 0, 3}, {4, 0, 3}, {0, 4, 3}, {0, 0, 4}, {1, 0, 4}, {0, 1, 3}, {1, 1, 3}, {2, 1, 3}, {3, 1, 3}, {4, 1, 3}, {1, 4, 3}, {0, 1, 4}, {1, 1, 4}, {0, 2, 3}, {1, 2, 3}, {2, 2, 3}, {3, 2, 3}, {4, 2, 3}, {2, 4, 3}, {0, 2, 4}, {1, 2, 4}, {0, 3, 3}, {1, 3, 3}, {2, 3, 3}, {3, 3, 3}, {4, 3, 3}, {3, 4, 3}, {0, 3, 4}, {1, 3, 4}}; const uint32_t(&quints)[3] = quintsFromQ[Q]; for (int i = 0; i < numValues; i++) { dst[i].m = m[i]; dst[i].tq = quints[i]; dst[i].v = (quints[i] << numBits) + m[i]; } } inline void decodeISEBitBlock(ISEDecodedResult *dst, BitAccessStream &data, int numBits) { dst[0].m = data.getNext(numBits); dst[0].v = dst[0].m; } void decodeISE(ISEDecodedResult *dst, int numValues, BitAccessStream &data, const ISEParams ¶ms) { if (params.mode == ISEMODE_TRIT) { const int numBlocks = deDivRoundUp32(numValues, 5); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks - 1 ? numValues - 5 * (numBlocks - 1) : 5; decodeISETritBlock(&dst[5 * blockNdx], numValuesInBlock, data, params.numBits); } } else if (params.mode == ISEMODE_QUINT) { const int numBlocks = deDivRoundUp32(numValues, 3); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks - 1 ? numValues - 3 * (numBlocks - 1) : 3; decodeISEQuintBlock(&dst[3 * blockNdx], numValuesInBlock, data, params.numBits); } } else { DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); for (int i = 0; i < numValues; i++) decodeISEBitBlock(&dst[i], data, params.numBits); } } void unquantizeColorEndpoints(uint32_t *dst, const ISEDecodedResult *iseResults, int numEndpoints, const ISEParams &iseParams) { if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) { const int rangeCase = iseParams.numBits * 2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1); DE_ASSERT(de::inRange(rangeCase, 0, 10)); static const uint32_t Ca[11] = {204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5}; const uint32_t C = Ca[rangeCase]; for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) { const uint32_t a = getBit(iseResults[endpointNdx].m, 0); const uint32_t b = getBit(iseResults[endpointNdx].m, 1); const uint32_t c = getBit(iseResults[endpointNdx].m, 2); const uint32_t d = getBit(iseResults[endpointNdx].m, 3); const uint32_t e = getBit(iseResults[endpointNdx].m, 4); const uint32_t f = getBit(iseResults[endpointNdx].m, 5); const uint32_t A = a == 0 ? 0 : (1 << 9) - 1; const uint32_t B = rangeCase == 0 ? 0 : rangeCase == 1 ? 0 : rangeCase == 2 ? (b << 8) | (b << 4) | (b << 2) | (b << 1) : rangeCase == 3 ? (b << 8) | (b << 3) | (b << 2) : rangeCase == 4 ? (c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0) : rangeCase == 5 ? (c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0) : rangeCase == 6 ? (d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0) : rangeCase == 7 ? (d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0) : rangeCase == 8 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0) : rangeCase == 9 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0) : rangeCase == 10 ? (f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0) : (uint32_t)-1; DE_ASSERT(B != (uint32_t)-1); dst[endpointNdx] = (((iseResults[endpointNdx].tq * C + B) ^ A) >> 2) | (A & 0x80); } } else { DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8); } } inline void bitTransferSigned(int32_t &a, int32_t &b) { b >>= 1; b |= a & 0x80; a >>= 1; a &= 0x3f; if (isBitSet(a, 5)) a -= 0x40; } inline UVec4 clampedRGBA(const IVec4 &rgba) { return UVec4(de::clamp(rgba.x(), 0, 0xff), de::clamp(rgba.y(), 0, 0xff), de::clamp(rgba.z(), 0, 0xff), de::clamp(rgba.w(), 0, 0xff)); } inline IVec4 blueContract(int r, int g, int b, int a) { return IVec4((r + b) >> 1, (g + b) >> 1, b, a); } inline bool isColorEndpointModeHDR(uint32_t mode) { return mode == 2 || mode == 3 || mode == 7 || mode == 11 || mode == 14 || mode == 15; } void decodeHDREndpointMode7(UVec4 &e0, UVec4 &e1, uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3) { const uint32_t m10 = getBit(v1, 7) | (getBit(v2, 7) << 1); const uint32_t m23 = getBits(v0, 6, 7); const uint32_t majComp = m10 != 3 ? m10 : m23 != 3 ? m23 : 0; const uint32_t mode = m10 != 3 ? m23 : m23 != 3 ? 4 : 5; int32_t red = (int32_t)getBits(v0, 0, 5); int32_t green = (int32_t)getBits(v1, 0, 4); int32_t blue = (int32_t)getBits(v2, 0, 4); int32_t scale = (int32_t)getBits(v3, 0, 4); { #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) #define ASSIGN_X_BITS(V0, S0, V1, S1, V2, S2, V3, S3, V4, S4, V5, S5, V6, S6) \ do \ { \ SHOR(V0, S0, x0); \ SHOR(V1, S1, x1); \ SHOR(V2, S2, x2); \ SHOR(V3, S3, x3); \ SHOR(V4, S4, x4); \ SHOR(V5, S5, x5); \ SHOR(V6, S6, x6); \ } while (false) const uint32_t x0 = getBit(v1, 6); const uint32_t x1 = getBit(v1, 5); const uint32_t x2 = getBit(v2, 6); const uint32_t x3 = getBit(v2, 5); const uint32_t x4 = getBit(v3, 7); const uint32_t x5 = getBit(v3, 6); const uint32_t x6 = getBit(v3, 5); int32_t &R = red; int32_t &G = green; int32_t &B = blue; int32_t &S = scale; switch (mode) { case 0: ASSIGN_X_BITS(R, 9, R, 8, R, 7, R, 10, R, 6, S, 6, S, 5); break; case 1: ASSIGN_X_BITS(R, 8, G, 5, R, 7, B, 5, R, 6, R, 10, R, 9); break; case 2: ASSIGN_X_BITS(R, 9, R, 8, R, 7, R, 6, S, 7, S, 6, S, 5); break; case 3: ASSIGN_X_BITS(R, 8, G, 5, R, 7, B, 5, R, 6, S, 6, S, 5); break; case 4: ASSIGN_X_BITS(G, 6, G, 5, B, 6, B, 5, R, 6, R, 7, S, 5); break; case 5: ASSIGN_X_BITS(G, 6, G, 5, B, 6, B, 5, R, 6, S, 6, S, 5); break; default: DE_ASSERT(false); } #undef ASSIGN_X_BITS #undef SHOR } static const int shiftAmounts[] = {1, 1, 2, 3, 4, 5}; DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts)); red <<= shiftAmounts[mode]; green <<= shiftAmounts[mode]; blue <<= shiftAmounts[mode]; scale <<= shiftAmounts[mode]; if (mode != 5) { green = red - green; blue = red - blue; } if (majComp == 1) std::swap(red, green); else if (majComp == 2) std::swap(red, blue); e0 = UVec4(de::clamp(red - scale, 0, 0xfff), de::clamp(green - scale, 0, 0xfff), de::clamp(blue - scale, 0, 0xfff), 0x780); e1 = UVec4(de::clamp(red, 0, 0xfff), de::clamp(green, 0, 0xfff), de::clamp(blue, 0, 0xfff), 0x780); } void decodeHDREndpointMode11(UVec4 &e0, UVec4 &e1, uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3, uint32_t v4, uint32_t v5) { const uint32_t major = (getBit(v5, 7) << 1) | getBit(v4, 7); if (major == 3) { e0 = UVec4(v0 << 4, v2 << 4, getBits(v4, 0, 6) << 5, 0x780); e1 = UVec4(v1 << 4, v3 << 4, getBits(v5, 0, 6) << 5, 0x780); } else { const uint32_t mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7); int32_t a = (int32_t)((getBit(v1, 6) << 8) | v0); int32_t c = (int32_t)(getBits(v1, 0, 5)); int32_t b0 = (int32_t)(getBits(v2, 0, 5)); int32_t b1 = (int32_t)(getBits(v3, 0, 5)); int32_t d0 = (int32_t)(getBits(v4, 0, 4)); int32_t d1 = (int32_t)(getBits(v5, 0, 4)); { #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) #define ASSIGN_X_BITS(V0, S0, V1, S1, V2, S2, V3, S3, V4, S4, V5, S5) \ do \ { \ SHOR(V0, S0, x0); \ SHOR(V1, S1, x1); \ SHOR(V2, S2, x2); \ SHOR(V3, S3, x3); \ SHOR(V4, S4, x4); \ SHOR(V5, S5, x5); \ } while (false) const uint32_t x0 = getBit(v2, 6); const uint32_t x1 = getBit(v3, 6); const uint32_t x2 = getBit(v4, 6); const uint32_t x3 = getBit(v5, 6); const uint32_t x4 = getBit(v4, 5); const uint32_t x5 = getBit(v5, 5); switch (mode) { case 0: ASSIGN_X_BITS(b0, 6, b1, 6, d0, 6, d1, 6, d0, 5, d1, 5); break; case 1: ASSIGN_X_BITS(b0, 6, b1, 6, b0, 7, b1, 7, d0, 5, d1, 5); break; case 2: ASSIGN_X_BITS(a, 9, c, 6, d0, 6, d1, 6, d0, 5, d1, 5); break; case 3: ASSIGN_X_BITS(b0, 6, b1, 6, a, 9, c, 6, d0, 5, d1, 5); break; case 4: ASSIGN_X_BITS(b0, 6, b1, 6, b0, 7, b1, 7, a, 9, a, 10); break; case 5: ASSIGN_X_BITS(a, 9, a, 10, c, 7, c, 6, d0, 5, d1, 5); break; case 6: ASSIGN_X_BITS(b0, 6, b1, 6, a, 11, c, 6, a, 9, a, 10); break; case 7: ASSIGN_X_BITS(a, 9, a, 10, a, 11, c, 6, d0, 5, d1, 5); break; default: DE_ASSERT(false); } #undef ASSIGN_X_BITS #undef SHOR } static const int numDBits[] = {7, 6, 7, 6, 5, 6, 5, 6}; DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits)); d0 = signExtend(d0, numDBits[mode]); d1 = signExtend(d1, numDBits[mode]); const int shiftAmount = (mode >> 1) ^ 3; a <<= shiftAmount; c <<= shiftAmount; b0 <<= shiftAmount; b1 <<= shiftAmount; d0 <<= shiftAmount; d1 <<= shiftAmount; e0 = UVec4(de::clamp(a - c, 0, 0xfff), de::clamp(a - b0 - c - d0, 0, 0xfff), de::clamp(a - b1 - c - d1, 0, 0xfff), 0x780); e1 = UVec4(de::clamp(a, 0, 0xfff), de::clamp(a - b0, 0, 0xfff), de::clamp(a - b1, 0, 0xfff), 0x780); if (major == 1) { std::swap(e0.x(), e0.y()); std::swap(e1.x(), e1.y()); } else if (major == 2) { std::swap(e0.x(), e0.z()); std::swap(e1.x(), e1.z()); } } } void decodeHDREndpointMode15(UVec4 &e0, UVec4 &e1, uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3, uint32_t v4, uint32_t v5, uint32_t v6In, uint32_t v7In) { decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5); const uint32_t mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7); int32_t v6 = (int32_t)getBits(v6In, 0, 6); int32_t v7 = (int32_t)getBits(v7In, 0, 6); if (mode == 3) { e0.w() = v6 << 5; e1.w() = v7 << 5; } else { v6 |= (v7 << (mode + 1)) & 0x780; v7 &= (0x3f >> mode); v7 ^= 0x20 >> mode; v7 -= 0x20 >> mode; v6 <<= 4 - mode; v7 <<= 4 - mode; v7 += v6; v7 = de::clamp(v7, 0, 0xfff); e0.w() = v6; e1.w() = v7; } } void decodeColorEndpoints(ColorEndpointPair *dst, const uint32_t *unquantizedEndpoints, const uint32_t *endpointModes, int numPartitions) { int unquantizedNdx = 0; for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++) { const uint32_t endpointMode = endpointModes[partitionNdx]; const uint32_t *v = &unquantizedEndpoints[unquantizedNdx]; UVec4 &e0 = dst[partitionNdx].e0; UVec4 &e1 = dst[partitionNdx].e1; unquantizedNdx += computeNumColorEndpointValues(endpointMode); switch (endpointMode) { case 0: e0 = UVec4(v[0], v[0], v[0], 0xff); e1 = UVec4(v[1], v[1], v[1], 0xff); break; case 1: { const uint32_t L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6); const uint32_t L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5)); e0 = UVec4(L0, L0, L0, 0xff); e1 = UVec4(L1, L1, L1, 0xff); break; } case 2: { const uint32_t v1Gr = v[1] >= v[0]; const uint32_t y0 = v1Gr ? v[0] << 4 : (v[1] << 4) + 8; const uint32_t y1 = v1Gr ? v[1] << 4 : (v[0] << 4) - 8; e0 = UVec4(y0, y0, y0, 0x780); e1 = UVec4(y1, y1, y1, 0x780); break; } case 3: { const bool m = isBitSet(v[0], 7); const uint32_t y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2) : (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1); const uint32_t d = m ? getBits(v[1], 0, 4) << 2 : getBits(v[1], 0, 3) << 1; const uint32_t y1 = de::min(0xfffu, y0 + d); e0 = UVec4(y0, y0, y0, 0x780); e1 = UVec4(y1, y1, y1, 0x780); break; } case 4: e0 = UVec4(v[0], v[0], v[0], v[2]); e1 = UVec4(v[1], v[1], v[1], v[3]); break; case 5: { int32_t v0 = (int32_t)v[0]; int32_t v1 = (int32_t)v[1]; int32_t v2 = (int32_t)v[2]; int32_t v3 = (int32_t)v[3]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); e0 = clampedRGBA(IVec4(v0, v0, v0, v2)); e1 = clampedRGBA(IVec4(v0 + v1, v0 + v1, v0 + v1, v2 + v3)); break; } case 6: e0 = UVec4((v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8, 0xff); e1 = UVec4(v[0], v[1], v[2], 0xff); break; case 7: decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]); break; case 8: if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) { e0 = UVec4(v[0], v[2], v[4], 0xff); e1 = UVec4(v[1], v[3], v[5], 0xff); } else { e0 = blueContract(v[1], v[3], v[5], 0xff).asUint(); e1 = blueContract(v[0], v[2], v[4], 0xff).asUint(); } break; case 9: { int32_t v0 = (int32_t)v[0]; int32_t v1 = (int32_t)v[1]; int32_t v2 = (int32_t)v[2]; int32_t v3 = (int32_t)v[3]; int32_t v4 = (int32_t)v[4]; int32_t v5 = (int32_t)v[5]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); bitTransferSigned(v5, v4); if (v1 + v3 + v5 >= 0) { e0 = clampedRGBA(IVec4(v0, v2, v4, 0xff)); e1 = clampedRGBA(IVec4(v0 + v1, v2 + v3, v4 + v5, 0xff)); } else { e0 = clampedRGBA(blueContract(v0 + v1, v2 + v3, v4 + v5, 0xff)); e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff)); } break; } case 10: e0 = UVec4((v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8, v[4]); e1 = UVec4(v[0], v[1], v[2], v[5]); break; case 11: decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); break; case 12: if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) { e0 = UVec4(v[0], v[2], v[4], v[6]); e1 = UVec4(v[1], v[3], v[5], v[7]); } else { e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7])); e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6])); } break; case 13: { int32_t v0 = (int32_t)v[0]; int32_t v1 = (int32_t)v[1]; int32_t v2 = (int32_t)v[2]; int32_t v3 = (int32_t)v[3]; int32_t v4 = (int32_t)v[4]; int32_t v5 = (int32_t)v[5]; int32_t v6 = (int32_t)v[6]; int32_t v7 = (int32_t)v[7]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); bitTransferSigned(v5, v4); bitTransferSigned(v7, v6); if (v1 + v3 + v5 >= 0) { e0 = clampedRGBA(IVec4(v0, v2, v4, v6)); e1 = clampedRGBA(IVec4(v0 + v1, v2 + v3, v4 + v5, v6 + v7)); } else { e0 = clampedRGBA(blueContract(v0 + v1, v2 + v3, v4 + v5, v6 + v7)); e1 = clampedRGBA(blueContract(v0, v2, v4, v6)); } break; } case 14: decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); e0.w() = v[6]; e1.w() = v[7]; break; case 15: decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); break; default: DE_ASSERT(false); } } } void computeColorEndpoints(ColorEndpointPair *dst, const Block128 &blockData, const uint32_t *endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams &iseParams, int numBitsAvailable) { const int colorEndpointDataStart = numPartitions == 1 ? 17 : 29; ISEDecodedResult colorEndpointData[18]; { BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true); decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams); } { uint32_t unquantizedEndpoints[18]; unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams); decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions); } } void unquantizeWeights(uint32_t dst[64], const ISEDecodedResult *weightGrid, const ASTCBlockMode &blockMode) { const int numWeights = computeNumWeights(blockMode); const ISEParams &iseParams = blockMode.weightISEParams; if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) { const int rangeCase = iseParams.numBits * 2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0); if (rangeCase == 0 || rangeCase == 1) { static const uint32_t map0[3] = {0, 32, 63}; static const uint32_t map1[5] = {0, 16, 32, 47, 63}; const uint32_t *const map = rangeCase == 0 ? &map0[0] : &map1[0]; for (int i = 0; i < numWeights; i++) { DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u)); dst[i] = map[weightGrid[i].v]; } } else { DE_ASSERT(rangeCase <= 6); static const uint32_t Ca[5] = {50, 28, 23, 13, 11}; const uint32_t C = Ca[rangeCase - 2]; for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) { const uint32_t a = getBit(weightGrid[weightNdx].m, 0); const uint32_t b = getBit(weightGrid[weightNdx].m, 1); const uint32_t c = getBit(weightGrid[weightNdx].m, 2); const uint32_t A = a == 0 ? 0 : (1 << 7) - 1; const uint32_t B = rangeCase == 2 ? 0 : rangeCase == 3 ? 0 : rangeCase == 4 ? (b << 6) | (b << 2) | (b << 0) : rangeCase == 5 ? (b << 6) | (b << 1) : rangeCase == 6 ? (c << 6) | (b << 5) | (c << 1) | (b << 0) : (uint32_t)-1; dst[weightNdx] = (((weightGrid[weightNdx].tq * C + B) ^ A) >> 2) | (A & 0x20); } } } else { DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6); } for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0; // Initialize nonexistent weights to poison values for (int weightNdx = numWeights; weightNdx < 64; weightNdx++) dst[weightNdx] = ~0u; } void interpolateWeights(TexelWeightPair *dst, const uint32_t (&unquantizedWeights)[64], int blockWidth, int blockHeight, const ASTCBlockMode &blockMode) { const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1; const uint32_t scaleX = (1024 + blockWidth / 2) / (blockWidth - 1); const uint32_t scaleY = (1024 + blockHeight / 2) / (blockHeight - 1); DE_ASSERT(blockMode.weightGridWidth * blockMode.weightGridHeight * numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights)); for (int texelY = 0; texelY < blockHeight; texelY++) { for (int texelX = 0; texelX < blockWidth; texelX++) { const uint32_t gX = (scaleX * texelX * (blockMode.weightGridWidth - 1) + 32) >> 6; const uint32_t gY = (scaleY * texelY * (blockMode.weightGridHeight - 1) + 32) >> 6; const uint32_t jX = gX >> 4; const uint32_t jY = gY >> 4; const uint32_t fX = gX & 0xf; const uint32_t fY = gY & 0xf; const uint32_t w11 = (fX * fY + 8) >> 4; const uint32_t w10 = fY - w11; const uint32_t w01 = fX - w11; const uint32_t w00 = 16 - fX - fY + w11; const uint32_t i00 = jY * blockMode.weightGridWidth + jX; const uint32_t i01 = i00 + 1; const uint32_t i10 = i00 + blockMode.weightGridWidth; const uint32_t i11 = i00 + blockMode.weightGridWidth + 1; // These addresses can be out of bounds, but respective weights will be 0 then. DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth * blockMode.weightGridHeight) || w00 == 0); DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth * blockMode.weightGridHeight) || w01 == 0); DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth * blockMode.weightGridHeight) || w10 == 0); DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth * blockMode.weightGridHeight) || w11 == 0); for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++) { // & 0x3f clamps address to bounds of unquantizedWeights const uint32_t p00 = unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; const uint32_t p01 = unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; const uint32_t p10 = unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; const uint32_t p11 = unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; dst[texelY * blockWidth + texelX].w[texelWeightNdx] = (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4; } } } } void computeTexelWeights(TexelWeightPair *dst, const Block128 &blockData, int blockWidth, int blockHeight, const ASTCBlockMode &blockMode) { ISEDecodedResult weightGrid[64]; { BitAccessStream dataStream( blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false); decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams); } { uint32_t unquantizedWeights[64]; unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode); interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode); } } inline uint32_t hash52(uint32_t v) { uint32_t p = v; p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; p ^= p << 6; p ^= p >> 17; return p; } int computeTexelPartition(uint32_t seedIn, uint32_t xIn, uint32_t yIn, uint32_t zIn, int numPartitions, bool smallBlock) { DE_ASSERT(zIn == 0); const uint32_t x = smallBlock ? xIn << 1 : xIn; const uint32_t y = smallBlock ? yIn << 1 : yIn; const uint32_t z = smallBlock ? zIn << 1 : zIn; const uint32_t seed = seedIn + 1024 * (numPartitions - 1); const uint32_t rnum = hash52(seed); uint8_t seed1 = (uint8_t)(rnum & 0xf); uint8_t seed2 = (uint8_t)((rnum >> 4) & 0xf); uint8_t seed3 = (uint8_t)((rnum >> 8) & 0xf); uint8_t seed4 = (uint8_t)((rnum >> 12) & 0xf); uint8_t seed5 = (uint8_t)((rnum >> 16) & 0xf); uint8_t seed6 = (uint8_t)((rnum >> 20) & 0xf); uint8_t seed7 = (uint8_t)((rnum >> 24) & 0xf); uint8_t seed8 = (uint8_t)((rnum >> 28) & 0xf); uint8_t seed9 = (uint8_t)((rnum >> 18) & 0xf); uint8_t seed10 = (uint8_t)((rnum >> 22) & 0xf); uint8_t seed11 = (uint8_t)((rnum >> 26) & 0xf); uint8_t seed12 = (uint8_t)(((rnum >> 30) | (rnum << 2)) & 0xf); seed1 = (uint8_t)(seed1 * seed1); seed2 = (uint8_t)(seed2 * seed2); seed3 = (uint8_t)(seed3 * seed3); seed4 = (uint8_t)(seed4 * seed4); seed5 = (uint8_t)(seed5 * seed5); seed6 = (uint8_t)(seed6 * seed6); seed7 = (uint8_t)(seed7 * seed7); seed8 = (uint8_t)(seed8 * seed8); seed9 = (uint8_t)(seed9 * seed9); seed10 = (uint8_t)(seed10 * seed10); seed11 = (uint8_t)(seed11 * seed11); seed12 = (uint8_t)(seed12 * seed12); const int shA = (seed & 2) != 0 ? 4 : 5; const int shB = numPartitions == 3 ? 6 : 5; const int sh1 = (seed & 1) != 0 ? shA : shB; const int sh2 = (seed & 1) != 0 ? shB : shA; const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2; seed1 = (uint8_t)(seed1 >> sh1); seed2 = (uint8_t)(seed2 >> sh2); seed3 = (uint8_t)(seed3 >> sh1); seed4 = (uint8_t)(seed4 >> sh2); seed5 = (uint8_t)(seed5 >> sh1); seed6 = (uint8_t)(seed6 >> sh2); seed7 = (uint8_t)(seed7 >> sh1); seed8 = (uint8_t)(seed8 >> sh2); seed9 = (uint8_t)(seed9 >> sh3); seed10 = (uint8_t)(seed10 >> sh3); seed11 = (uint8_t)(seed11 >> sh3); seed12 = (uint8_t)(seed12 >> sh3); const int a = 0x3f & (seed1 * x + seed2 * y + seed11 * z + (rnum >> 14)); const int b = 0x3f & (seed3 * x + seed4 * y + seed12 * z + (rnum >> 10)); const int c = numPartitions >= 3 ? 0x3f & (seed5 * x + seed6 * y + seed9 * z + (rnum >> 6)) : 0; const int d = numPartitions >= 4 ? 0x3f & (seed7 * x + seed8 * y + seed10 * z + (rnum >> 2)) : 0; return a >= b && a >= c && a >= d ? 0 : b >= c && b >= d ? 1 : c >= d ? 2 : 3; } DecompressResult setTexelColors(void *dst, ColorEndpointPair *colorEndpoints, TexelWeightPair *texelWeights, int ccs, uint32_t partitionIndexSeed, int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const uint32_t *colorEndpointModes) { const bool smallBlock = blockWidth * blockHeight < 31; DecompressResult result = DECOMPRESS_RESULT_VALID_BLOCK; bool isHDREndpoint[4]; for (int i = 0; i < numPartitions; i++) isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]); for (int texelY = 0; texelY < blockHeight; texelY++) for (int texelX = 0; texelX < blockWidth; texelX++) { const int texelNdx = texelY * blockWidth + texelX; const int colorEndpointNdx = numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock); DE_ASSERT(colorEndpointNdx < numPartitions); const UVec4 &e0 = colorEndpoints[colorEndpointNdx].e0; const UVec4 &e1 = colorEndpoints[colorEndpointNdx].e1; const TexelWeightPair &weight = texelWeights[texelNdx]; if (isLDRMode && isHDREndpoint[colorEndpointNdx]) { if (isSRGB) { ((uint8_t *)dst)[texelNdx * 4 + 0] = 0xff; ((uint8_t *)dst)[texelNdx * 4 + 1] = 0; ((uint8_t *)dst)[texelNdx * 4 + 2] = 0xff; ((uint8_t *)dst)[texelNdx * 4 + 3] = 0xff; } else { ((float *)dst)[texelNdx * 4 + 0] = 1.0f; ((float *)dst)[texelNdx * 4 + 1] = 0; ((float *)dst)[texelNdx * 4 + 2] = 1.0f; ((float *)dst)[texelNdx * 4 + 3] = 1.0f; } result = DECOMPRESS_RESULT_ERROR; } else { for (int channelNdx = 0; channelNdx < 4; channelNdx++) { if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR. { const uint32_t c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]); const uint32_t c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]); const uint32_t w = weight.w[ccs == channelNdx ? 1 : 0]; const uint32_t c = (c0 * (64 - w) + c1 * w + 32) / 64; if (isSRGB) ((uint8_t *)dst)[texelNdx * 4 + channelNdx] = (uint8_t)((c & 0xff00) >> 8); else ((float *)dst)[texelNdx * 4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f; } else { DE_STATIC_ASSERT((de::meta::TypesSame::Value)); const uint32_t c0 = e0[channelNdx] << 4; const uint32_t c1 = e1[channelNdx] << 4; const uint32_t w = weight.w[ccs == channelNdx ? 1 : 0]; const uint32_t c = (c0 * (64 - w) + c1 * w + 32) / 64; const uint32_t e = getBits(c, 11, 15); const uint32_t m = getBits(c, 0, 10); const uint32_t mt = m < 512 ? 3 * m : m >= 1536 ? 5 * m - 2048 : 4 * m - 512; const deFloat16 cf = (deFloat16)((e << 10) + (mt >> 3)); ((float *)dst)[texelNdx * 4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf); } } } } return result; } DecompressResult decompressBlock(void *dst, const Block128 &blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR) { DE_ASSERT(isLDR || !isSRGB); // Decode block mode. const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10)); // Check for block mode errors. if (blockMode.isError) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return DECOMPRESS_RESULT_ERROR; } // Separate path for void-extent. if (blockMode.isVoidExtent) return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR); // Compute weight grid values. const int numWeights = computeNumWeights(blockMode); const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights); const int numPartitions = (int)blockData.getBits(11, 12) + 1; // Check for errors in weight grid, partition and dual-plane parameters. if (numWeights > 64 || numWeightDataBits > 96 || numWeightDataBits < 24 || blockMode.weightGridWidth > blockWidth || blockMode.weightGridHeight > blockHeight || (numPartitions == 4 && blockMode.isDualPlane)) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return DECOMPRESS_RESULT_ERROR; } // Compute number of bits available for color endpoint data. const bool isSingleUniqueCem = numPartitions == 1 || blockData.getBits(23, 24) == 0; const int numConfigDataBits = (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3 * numPartitions) + (blockMode.isDualPlane ? 2 : 0); const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits; const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1 : numPartitions == 4 ? 7 : numPartitions == 3 ? 4 : numPartitions == 2 ? 1 : 0); // Decode color endpoint modes. uint32_t colorEndpointModes[4]; decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart); const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions); // Check for errors in color endpoint value count. if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13 * numColorEndpointValues, 5)) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return DECOMPRESS_RESULT_ERROR; } // Compute color endpoints. ColorEndpointPair colorEndpoints[4]; computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues, computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints); // Compute texel weights. TexelWeightPair texelWeights[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT]; computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode); // Set texel colors. const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart - 2, extraCemBitsStart - 1) : -1; const uint32_t partitionIndexSeed = numPartitions > 1 ? blockData.getBits(13, 22) : (uint32_t)-1; return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]); } void decompress(const PixelBufferAccess &dst, const uint8_t *data, bool isSRGB, bool isLDR) { DE_ASSERT(isLDR || !isSRGB); const int blockWidth = dst.getWidth(); const int blockHeight = dst.getHeight(); union { uint8_t sRGB[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4]; float linear[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4]; } decompressedBuffer; const Block128 blockData(data); decompressBlock(isSRGB ? (void *)&decompressedBuffer.sRGB[0] : (void *)&decompressedBuffer.linear[0], blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR); if (isSRGB) { for (int i = 0; i < blockHeight; i++) for (int j = 0; j < blockWidth; j++) { dst.setPixel(IVec4(decompressedBuffer.sRGB[(i * blockWidth + j) * 4 + 0], decompressedBuffer.sRGB[(i * blockWidth + j) * 4 + 1], decompressedBuffer.sRGB[(i * blockWidth + j) * 4 + 2], decompressedBuffer.sRGB[(i * blockWidth + j) * 4 + 3]), j, i); } } else { for (int i = 0; i < blockHeight; i++) for (int j = 0; j < blockWidth; j++) { dst.setPixel(Vec4(decompressedBuffer.linear[(i * blockWidth + j) * 4 + 0], decompressedBuffer.linear[(i * blockWidth + j) * 4 + 1], decompressedBuffer.linear[(i * blockWidth + j) * 4 + 2], decompressedBuffer.linear[(i * blockWidth + j) * 4 + 3]), j, i); } } } // Helper class for setting bits in a 128-bit block. class AssignBlock128 { private: typedef uint64_t Word; enum { WORD_BYTES = sizeof(Word), WORD_BITS = 8 * WORD_BYTES, NUM_WORDS = 128 / WORD_BITS }; DE_STATIC_ASSERT(128 % WORD_BITS == 0); public: AssignBlock128(void) { for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) m_words[wordNdx] = 0; } void setBit(int ndx, uint32_t val) { DE_ASSERT(de::inBounds(ndx, 0, 128)); DE_ASSERT((val & 1) == val); const int wordNdx = ndx / WORD_BITS; const int bitNdx = ndx % WORD_BITS; m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx); } void setBits(int low, int high, uint32_t bits) { DE_ASSERT(de::inBounds(low, 0, 128)); DE_ASSERT(de::inBounds(high, 0, 128)); DE_ASSERT(de::inRange(high - low + 1, 0, 32)); DE_ASSERT((bits & (((Word)1 << (high - low + 1)) - 1)) == bits); if (high - low + 1 == 0) return; const int word0Ndx = low / WORD_BITS; const int word1Ndx = high / WORD_BITS; const int lowNdxInW0 = low % WORD_BITS; if (word0Ndx == word1Ndx) m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high - low + 1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0); else { DE_ASSERT(word1Ndx == word0Ndx + 1); const int highNdxInW1 = high % WORD_BITS; const int numBitsToSetInW0 = WORD_BITS - lowNdxInW0; const Word bitsLowMask = ((Word)1 << numBitsToSetInW0) - 1; m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1)) | (((Word)bits & bitsLowMask) << lowNdxInW0); m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1 + 1)) - 1)) | (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0); } } void assignToMemory(uint8_t *dst) const { for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) { for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) dst[wordNdx * WORD_BYTES + byteNdx] = (uint8_t)((m_words[wordNdx] >> (8 * byteNdx)) & 0xff); } } void pushBytesToVector(vector &dst) const { const int assignStartIndex = (int)dst.size(); dst.resize(dst.size() + BLOCK_SIZE_BYTES); assignToMemory(&dst[assignStartIndex]); } private: Word m_words[NUM_WORDS]; }; // A helper for sequential access into a AssignBlock128. class BitAssignAccessStream { public: BitAssignAccessStream(AssignBlock128 &dst, int startNdxInSrc, int length, bool forward) : m_dst(dst) , m_startNdxInSrc(startNdxInSrc) , m_length(length) , m_forward(forward) , m_ndx(0) { } // Set the next num bits. Bits at positions greater than or equal to m_length are not touched. void setNext(int num, uint32_t bits) { DE_ASSERT((bits & (((uint64_t)1 << num) - 1)) == bits); if (num == 0 || m_ndx >= m_length) return; const int end = m_ndx + num; const int numBitsToDst = de::max(0, de::min(m_length, end) - m_ndx); const int low = m_ndx; const int high = m_ndx + numBitsToDst - 1; const uint32_t actualBits = getBits(bits, 0, numBitsToDst - 1); m_ndx += num; return m_forward ? m_dst.setBits(m_startNdxInSrc + low, m_startNdxInSrc + high, actualBits) : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst)); } private: AssignBlock128 &m_dst; const int m_startNdxInSrc; const int m_length; const bool m_forward; int m_ndx; }; struct VoidExtentParams { DE_STATIC_ASSERT((de::meta::TypesSame::Value)); bool isHDR; uint16_t r; uint16_t g; uint16_t b; uint16_t a; // \note Currently extent coordinates are all set to all-ones. VoidExtentParams(bool isHDR_, uint16_t r_, uint16_t g_, uint16_t b_, uint16_t a_) : isHDR(isHDR_) , r(r_) , g(g_) , b(b_) , a(a_) { } }; static AssignBlock128 generateVoidExtentBlock(const VoidExtentParams ¶ms) { AssignBlock128 block; block.setBits(0, 8, 0x1fc); // \note Marks void-extent block. block.setBit(9, params.isHDR); block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose. // Extent coordinates - currently all-ones. block.setBits(12, 24, 0x1fff); block.setBits(25, 37, 0x1fff); block.setBits(38, 50, 0x1fff); block.setBits(51, 63, 0x1fff); DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) && !isFloat16InfOrNan(params.g) && !isFloat16InfOrNan(params.b) && !isFloat16InfOrNan(params.a))); block.setBits(64, 79, params.r); block.setBits(80, 95, params.g); block.setBits(96, 111, params.b); block.setBits(112, 127, params.a); return block; } // An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the // range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed // so we can test all possible values of T and Q in a block, since multiple T or Q values may map // to the same set of decoded values. struct ISEInput { struct Block { uint32_t tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block. uint32_t bitValues[5]; }; bool isGivenInBlockForm; union { //!< \note 64 comes from the maximum number of weight values in an ASTC block. uint32_t plain[64]; Block block[64]; } value; ISEInput(void) : isGivenInBlockForm(false) { } }; static inline uint32_t computeISERangeMax(const ISEParams &iseParams) { switch (iseParams.mode) { case ISEMODE_TRIT: return (1u << iseParams.numBits) * 3 - 1; case ISEMODE_QUINT: return (1u << iseParams.numBits) * 5 - 1; case ISEMODE_PLAIN_BIT: return (1u << iseParams.numBits) - 1; default: DE_ASSERT(false); return -1; } } struct NormalBlockParams { int weightGridWidth; int weightGridHeight; ISEParams weightISEParams; bool isDualPlane; uint32_t ccs; //! \note Irrelevant if !isDualPlane. int numPartitions; uint32_t colorEndpointModes[4]; // \note Below members are irrelevant if numPartitions == 1. bool isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0]. uint32_t partitionSeed; NormalBlockParams(void) : weightGridWidth(-1) , weightGridHeight(-1) , weightISEParams(ISEMODE_LAST, -1) , isDualPlane(true) , ccs((uint32_t)-1) , numPartitions(-1) , isMultiPartSingleCemMode(false) , partitionSeed((uint32_t)-1) { colorEndpointModes[0] = 0; colorEndpointModes[1] = 0; colorEndpointModes[2] = 0; colorEndpointModes[3] = 0; } }; struct NormalBlockISEInputs { ISEInput weight; ISEInput endpoint; NormalBlockISEInputs(void) : weight(), endpoint() { } }; static inline int computeNumWeights(const NormalBlockParams ¶ms) { return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1); } static inline int computeNumBitsForColorEndpoints(const NormalBlockParams ¶ms) { const int numWeightBits = computeNumRequiredBits(params.weightISEParams, computeNumWeights(params)); const int numConfigDataBits = (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3 * params.numPartitions) + (params.isDualPlane ? 2 : 0); return 128 - numWeightBits - numConfigDataBits; } static inline int computeNumColorEndpointValues(const uint32_t *endpointModes, int numPartitions, bool isMultiPartSingleCemMode) { if (isMultiPartSingleCemMode) return numPartitions * computeNumColorEndpointValues(endpointModes[0]); else { int result = 0; for (int i = 0; i < numPartitions; i++) result += computeNumColorEndpointValues(endpointModes[i]); return result; } } static inline bool isValidBlockParams(const NormalBlockParams ¶ms, int blockWidth, int blockHeight) { const int numWeights = computeNumWeights(params); const int numWeightBits = computeNumRequiredBits(params.weightISEParams, numWeights); const int numColorEndpointValues = computeNumColorEndpointValues( ¶ms.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode); const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(params); return numWeights <= 64 && de::inRange(numWeightBits, 24, 96) && params.weightGridWidth <= blockWidth && params.weightGridHeight <= blockHeight && !(params.numPartitions == 4 && params.isDualPlane) && numColorEndpointValues <= 18 && numBitsForColorEndpoints >= deDivRoundUp32(13 * numColorEndpointValues, 5); } // Write bits 0 to 10 of an ASTC block. static void writeBlockMode(AssignBlock128 &dst, const NormalBlockParams &blockParams) { const uint32_t d = blockParams.isDualPlane != 0; // r and h initialized in switch below. uint32_t r; uint32_t h; // a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below. uint32_t a = (uint32_t)-1; uint32_t b = (uint32_t)-1; int blockModeLayoutNdx; // Find the values of r and h (ISE range). switch (computeISERangeMax(blockParams.weightISEParams)) { case 1: r = 2; h = 0; break; case 2: r = 3; h = 0; break; case 3: r = 4; h = 0; break; case 4: r = 5; h = 0; break; case 5: r = 6; h = 0; break; case 7: r = 7; h = 0; break; case 9: r = 2; h = 1; break; case 11: r = 3; h = 1; break; case 15: r = 4; h = 1; break; case 19: r = 5; h = 1; break; case 23: r = 6; h = 1; break; case 31: r = 7; h = 1; break; default: DE_ASSERT(false); r = (uint32_t)-1; h = (uint32_t)-1; } // Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec. { enum BlockModeLayoutABVariable { Z = 0, A = 1, B = 2 }; static const struct BlockModeLayout { int aNumBits; int bNumBits; BlockModeLayoutABVariable gridWidthVariableTerm; int gridWidthConstantTerm; BlockModeLayoutABVariable gridHeightVariableTerm; int gridHeightConstantTerm; } blockModeLayouts[] = {{2, 2, B, 4, A, 2}, {2, 2, B, 8, A, 2}, {2, 2, A, 2, B, 8}, {2, 1, A, 2, B, 6}, {2, 1, B, 2, A, 2}, {2, 0, Z, 12, A, 2}, {2, 0, A, 2, Z, 12}, {0, 0, Z, 6, Z, 10}, {0, 0, Z, 10, Z, 6}, {2, 2, A, 6, B, 6}}; for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++) { const BlockModeLayout &layout = blockModeLayouts[blockModeLayoutNdx]; const int aMax = (1 << layout.aNumBits) - 1; const int bMax = (1 << layout.bNumBits) - 1; const int variableOffsetsMax[3] = {0, aMax, bMax}; const int widthMin = layout.gridWidthConstantTerm; const int heightMin = layout.gridHeightConstantTerm; const int widthMax = widthMin + variableOffsetsMax[layout.gridWidthVariableTerm]; const int heightMax = heightMin + variableOffsetsMax[layout.gridHeightVariableTerm]; DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z); if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) && de::inRange(blockParams.weightGridHeight, heightMin, heightMax)) { uint32_t defaultvalue = 0; uint32_t &widthVariable = layout.gridWidthVariableTerm == A ? a : layout.gridWidthVariableTerm == B ? b : defaultvalue; uint32_t &heightVariable = layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : defaultvalue; widthVariable = blockParams.weightGridWidth - layout.gridWidthConstantTerm; heightVariable = blockParams.weightGridHeight - layout.gridHeightConstantTerm; break; } } } // Set block mode bits. const uint32_t a0 = getBit(a, 0); const uint32_t a1 = getBit(a, 1); const uint32_t b0 = getBit(b, 0); const uint32_t b1 = getBit(b, 1); const uint32_t r0 = getBit(r, 0); const uint32_t r1 = getBit(r, 1); const uint32_t r2 = getBit(r, 2); #define SB(NDX, VAL) dst.setBit((NDX), (VAL)) #define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) \ do \ { \ SB(10, (B10)); \ SB(9, (B9)); \ SB(8, (B8)); \ SB(7, (B7)); \ SB(6, (B6)); \ SB(5, (B5)); \ SB(4, (B4)); \ SB(3, (B3)); \ SB(2, (B2)); \ SB(1, (B1)); \ SB(0, (B0)); \ } while (false) switch (blockModeLayoutNdx) { case 0: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 0, r2, r1); break; case 1: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 1, r2, r1); break; case 2: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 1, 0, r2, r1); break; case 3: ASSIGN_BITS(d, h, 0, b, a1, a0, r0, 1, 1, r2, r1); break; case 4: ASSIGN_BITS(d, h, 1, b, a1, a0, r0, 1, 1, r2, r1); break; case 5: ASSIGN_BITS(d, h, 0, 0, a1, a0, r0, r2, r1, 0, 0); break; case 6: ASSIGN_BITS(d, h, 0, 1, a1, a0, r0, r2, r1, 0, 0); break; case 7: ASSIGN_BITS(d, h, 1, 1, 0, 0, r0, r2, r1, 0, 0); break; case 8: ASSIGN_BITS(d, h, 1, 1, 0, 1, r0, r2, r1, 0, 0); break; case 9: ASSIGN_BITS(b1, b0, 1, 0, a1, a0, r0, r2, r1, 0, 0); DE_ASSERT(d == 0 && h == 0); break; default: DE_ASSERT(false); } #undef ASSIGN_BITS #undef SB } // Write color endpoint mode data of an ASTC block. static void writeColorEndpointModes(AssignBlock128 &dst, const uint32_t *colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart) { if (numPartitions == 1) dst.setBits(13, 16, colorEndpointModes[0]); else { if (isMultiPartSingleCemMode) { dst.setBits(23, 24, 0); dst.setBits(25, 28, colorEndpointModes[0]); } else { DE_ASSERT(numPartitions > 0); const uint32_t minCem = *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]); const uint32_t maxCem = *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]); const uint32_t minCemClass = minCem / 4; const uint32_t maxCemClass = maxCem / 4; DE_ASSERT(maxCemClass - minCemClass <= 1); DE_UNREF(minCemClass); // \note For non-debug builds. const uint32_t highLevelSelector = de::max(1u, maxCemClass); dst.setBits(23, 24, highLevelSelector); for (int partNdx = 0; partNdx < numPartitions; partNdx++) { const uint32_t c = colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0; const uint32_t m = colorEndpointModes[partNdx] % 4; const uint32_t lowMBit0Ndx = numPartitions + 2 * partNdx; const uint32_t lowMBit1Ndx = numPartitions + 2 * partNdx + 1; dst.setBit(25 + partNdx, c); dst.setBit(lowMBit0Ndx < 4 ? 25 + lowMBit0Ndx : extraCemBitsStart + lowMBit0Ndx - 4, getBit(m, 0)); dst.setBit(lowMBit1Ndx < 4 ? 25 + lowMBit1Ndx : extraCemBitsStart + lowMBit1Ndx - 4, getBit(m, 1)); } } } } static void encodeISETritBlock(BitAssignAccessStream &dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block &blockInput, const uint32_t *nonBlockInput, int numValues) { // tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded. static const uint32_t tritBlockTValue[3][3][3][3][3] = {{{{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}}, {{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}}, {{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}}, {{{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}}, {{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}}, {{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}}, {{{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}}, {{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}}, {{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}}}; DE_ASSERT(de::inRange(numValues, 1, 5)); uint32_t tritParts[5]; uint32_t bitParts[5]; for (int i = 0; i < 5; i++) { if (i < numValues) { if (fromExplicitInputBlock) { bitParts[i] = blockInput.bitValues[i]; tritParts[i] = -1; // \note Won't be used, but silences warning. } else { // \todo [2016-01-20 pyry] numBits = 0 doesn't make sense bitParts[i] = numBits > 0 ? getBits(nonBlockInput[i], 0, numBits - 1) : 0; tritParts[i] = nonBlockInput[i] >> numBits; } } else { bitParts[i] = 0; tritParts[i] = 0; } } const uint32_t T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]][tritParts[1]][tritParts[2]][tritParts[3]][tritParts[4]]; dst.setNext(numBits, bitParts[0]); dst.setNext(2, getBits(T, 0, 1)); dst.setNext(numBits, bitParts[1]); dst.setNext(2, getBits(T, 2, 3)); dst.setNext(numBits, bitParts[2]); dst.setNext(1, getBit(T, 4)); dst.setNext(numBits, bitParts[3]); dst.setNext(2, getBits(T, 5, 6)); dst.setNext(numBits, bitParts[4]); dst.setNext(1, getBit(T, 7)); } static void encodeISEQuintBlock(BitAssignAccessStream &dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block &blockInput, const uint32_t *nonBlockInput, int numValues) { // quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded. static const uint32_t quintBlockQValue[5][5][5] = {{{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}}, {{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}}, {{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}}, {{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}}, {{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}}; DE_ASSERT(de::inRange(numValues, 1, 3)); uint32_t quintParts[3]; uint32_t bitParts[3]; for (int i = 0; i < 3; i++) { if (i < numValues) { if (fromExplicitInputBlock) { bitParts[i] = blockInput.bitValues[i]; quintParts[i] = -1; // \note Won't be used, but silences warning. } else { // \todo [2016-01-20 pyry] numBits = 0 doesn't make sense bitParts[i] = numBits > 0 ? getBits(nonBlockInput[i], 0, numBits - 1) : 0; quintParts[i] = nonBlockInput[i] >> numBits; } } else { bitParts[i] = 0; quintParts[i] = 0; } } const uint32_t Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]][quintParts[1]][quintParts[2]]; dst.setNext(numBits, bitParts[0]); dst.setNext(3, getBits(Q, 0, 2)); dst.setNext(numBits, bitParts[1]); dst.setNext(2, getBits(Q, 3, 4)); dst.setNext(numBits, bitParts[2]); dst.setNext(2, getBits(Q, 5, 6)); } static void encodeISEBitBlock(BitAssignAccessStream &dst, int numBits, uint32_t value) { DE_ASSERT(de::inRange(value, 0u, (1u << numBits) - 1)); dst.setNext(numBits, value); } static void encodeISE(BitAssignAccessStream &dst, const ISEParams ¶ms, const ISEInput &input, int numValues) { if (params.mode == ISEMODE_TRIT) { const int numBlocks = deDivRoundUp32(numValues, 5); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks - 1 ? numValues - 5 * (numBlocks - 1) : 5; encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm, input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(), input.isGivenInBlockForm ? DE_NULL : &input.value.plain[5 * blockNdx], numValuesInBlock); } } else if (params.mode == ISEMODE_QUINT) { const int numBlocks = deDivRoundUp32(numValues, 3); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks - 1 ? numValues - 3 * (numBlocks - 1) : 3; encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm, input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(), input.isGivenInBlockForm ? DE_NULL : &input.value.plain[3 * blockNdx], numValuesInBlock); } } else { DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); for (int i = 0; i < numValues; i++) encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]); } } static void writeWeightData(AssignBlock128 &dst, const ISEParams &iseParams, const ISEInput &input, int numWeights) { const int numWeightBits = computeNumRequiredBits(iseParams, numWeights); BitAssignAccessStream access(dst, 127, numWeightBits, false); encodeISE(access, iseParams, input, numWeights); } static void writeColorEndpointData(AssignBlock128 &dst, const ISEParams &iseParams, const ISEInput &input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx) { BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true); encodeISE(access, iseParams, input, numEndpoints); } static AssignBlock128 generateNormalBlock(const NormalBlockParams &blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs &iseInputs) { DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight)); DE_UNREF(blockWidth); // \note For non-debug builds. DE_UNREF(blockHeight); // \note For non-debug builds. AssignBlock128 block; const int numWeights = computeNumWeights(blockParams); const int numWeightBits = computeNumRequiredBits(blockParams.weightISEParams, numWeights); writeBlockMode(block, blockParams); block.setBits(11, 12, blockParams.numPartitions - 1); if (blockParams.numPartitions > 1) block.setBits(13, 22, blockParams.partitionSeed); { const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode ? -1 : blockParams.numPartitions == 4 ? 7 : blockParams.numPartitions == 3 ? 4 : blockParams.numPartitions == 2 ? 1 : 0); writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart); if (blockParams.isDualPlane) block.setBits(extraCemBitsStart - 2, extraCemBitsStart - 1, blockParams.ccs); } writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights); { const int numColorEndpointValues = computeNumColorEndpointValues( &blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams); const int colorEndpointDataStartNdx = blockParams.numPartitions == 1 ? 17 : 29; const ISEParams &colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues); writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx); } return block; } // Generate default ISE inputs for weight and endpoint data - gradient-ish values. static NormalBlockISEInputs generateDefaultISEInputs(const NormalBlockParams &blockParams) { NormalBlockISEInputs result; { result.weight.isGivenInBlockForm = false; const int numWeights = computeNumWeights(blockParams); const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams); if (blockParams.isDualPlane) { for (int i = 0; i < numWeights; i += 2) result.weight.value.plain[i] = (i * weightRangeMax + (numWeights - 1) / 2) / (numWeights - 1); for (int i = 1; i < numWeights; i += 2) result.weight.value.plain[i] = weightRangeMax - (i * weightRangeMax + (numWeights - 1) / 2) / (numWeights - 1); } else { for (int i = 0; i < numWeights; i++) result.weight.value.plain[i] = (i * weightRangeMax + (numWeights - 1) / 2) / (numWeights - 1); } } { result.endpoint.isGivenInBlockForm = false; const int numColorEndpointValues = computeNumColorEndpointValues( &blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams); const ISEParams &colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues); const int colorEndpointRangeMax = computeISERangeMax(colorEndpointISEParams); for (int i = 0; i < numColorEndpointValues; i++) result.endpoint.value.plain[i] = (i * colorEndpointRangeMax + (numColorEndpointValues - 1) / 2) / (numColorEndpointValues - 1); } return result; } static const ISEParams s_weightISEParamsCandidates[] = { ISEParams(ISEMODE_PLAIN_BIT, 1), ISEParams(ISEMODE_TRIT, 0), ISEParams(ISEMODE_PLAIN_BIT, 2), ISEParams(ISEMODE_QUINT, 0), ISEParams(ISEMODE_TRIT, 1), ISEParams(ISEMODE_PLAIN_BIT, 3), ISEParams(ISEMODE_QUINT, 1), ISEParams(ISEMODE_TRIT, 2), ISEParams(ISEMODE_PLAIN_BIT, 4), ISEParams(ISEMODE_QUINT, 2), ISEParams(ISEMODE_TRIT, 3), ISEParams(ISEMODE_PLAIN_BIT, 5)}; void generateRandomBlock(uint8_t *dst, const IVec3 &blockSize, de::Random &rnd) { DE_ASSERT(blockSize.z() == 1); if (rnd.getFloat() < 0.1f) { // Void extent block. const bool isVoidExtentHDR = rnd.getBool(); const uint16_t r = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (uint16_t)rnd.getInt(0, 0xffff); const uint16_t g = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (uint16_t)rnd.getInt(0, 0xffff); const uint16_t b = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (uint16_t)rnd.getInt(0, 0xffff); const uint16_t a = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (uint16_t)rnd.getInt(0, 0xffff); generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst); } else { // Not void extent block. // Generate block params. NormalBlockParams blockParams; do { blockParams.weightGridWidth = rnd.getInt(2, blockSize.x()); blockParams.weightGridHeight = rnd.getInt(2, blockSize.y()); blockParams.weightISEParams = s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates) - 1)]; blockParams.numPartitions = rnd.getInt(1, 4); blockParams.isMultiPartSingleCemMode = rnd.getFloat() < 0.25f; blockParams.isDualPlane = blockParams.numPartitions != 4 && rnd.getBool(); blockParams.ccs = rnd.getInt(0, 3); blockParams.partitionSeed = rnd.getInt(0, 1023); blockParams.colorEndpointModes[0] = rnd.getInt(0, 15); { const int cemDiff = blockParams.isMultiPartSingleCemMode ? 0 : blockParams.colorEndpointModes[0] == 0 ? 1 : blockParams.colorEndpointModes[0] == 15 ? -1 : rnd.getBool() ? 1 : -1; for (int i = 1; i < blockParams.numPartitions; i++) blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0); } } while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y())); // Generate ISE inputs for both weight and endpoint data. NormalBlockISEInputs iseInputs; for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++) { const bool setWeights = weightOrEndpoints == 0; const int numValues = setWeights ? computeNumWeights(blockParams) : computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); const ISEParams iseParams = setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues); ISEInput &iseInput = setWeights ? iseInputs.weight : iseInputs.endpoint; iseInput.isGivenInBlockForm = rnd.getBool(); if (iseInput.isGivenInBlockForm) { const int numValuesPerISEBlock = iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1; const int iseBitMax = (1 << iseParams.numBits) - 1; const int numISEBlocks = deDivRoundUp32(numValues, numValuesPerISEBlock); for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++) { iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255); for (int i = 0; i < numValuesPerISEBlock; i++) iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax); } } else { const int rangeMax = computeISERangeMax(iseParams); for (int valueNdx = 0; valueNdx < numValues; valueNdx++) iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax); } } generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst); } } } // namespace // Generate block data for a given BlockTestType and format. void generateBlockCaseTestData(vector &dst, CompressedTexFormat format, BlockTestType testType) { DE_ASSERT(isAstcFormat(format)); DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType))); const IVec3 blockSize = getBlockPixelSize(format); DE_ASSERT(blockSize.z() == 1); switch (testType) { case BLOCK_TEST_TYPE_VOID_EXTENT_LDR: // Generate a gradient-like set of LDR void-extent blocks. { const int numBlocks = 1 << 13; const uint32_t numValues = 1 << 16; dst.reserve(numBlocks * BLOCK_SIZE_BYTES); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const uint32_t baseValue = blockNdx * (numValues - 1) / (numBlocks - 1); const uint16_t r = (uint16_t)((baseValue + numValues * 0 / 4) % numValues); const uint16_t g = (uint16_t)((baseValue + numValues * 1 / 4) % numValues); const uint16_t b = (uint16_t)((baseValue + numValues * 2 / 4) % numValues); const uint16_t a = (uint16_t)((baseValue + numValues * 3 / 4) % numValues); AssignBlock128 block; generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst); } break; } case BLOCK_TEST_TYPE_VOID_EXTENT_HDR: // Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16. { const float minValue = -65504.0f; const float maxValue = +65504.0f; const int numBlocks = 1 << 13; dst.reserve(numBlocks * BLOCK_SIZE_BYTES); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int rNdx = (blockNdx + numBlocks * 0 / 4) % numBlocks; const int gNdx = (blockNdx + numBlocks * 1 / 4) % numBlocks; const int bNdx = (blockNdx + numBlocks * 2 / 4) % numBlocks; const int aNdx = (blockNdx + numBlocks * 3 / 4) % numBlocks; const deFloat16 r = deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks - 1)); const deFloat16 g = deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks - 1)); const deFloat16 b = deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks - 1)); const deFloat16 a = deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks - 1)); generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst); } break; } case BLOCK_TEST_TYPE_WEIGHT_GRID: // Generate different combinations of plane count, weight ISE params, and grid size. { for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++) for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++) for (int weightGridWidth = 2; weightGridWidth <= 12; weightGridWidth++) for (int weightGridHeight = 2; weightGridHeight <= 12; weightGridHeight++) { NormalBlockParams blockParams; NormalBlockISEInputs iseInputs; blockParams.weightGridWidth = weightGridWidth; blockParams.weightGridHeight = weightGridHeight; blockParams.isDualPlane = isDualPlane != 0; blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx]; blockParams.ccs = 0; blockParams.numPartitions = 1; blockParams.colorEndpointModes[0] = 0; if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)) .pushBytesToVector(dst); } break; } case BLOCK_TEST_TYPE_WEIGHT_ISE: // For each weight ISE param set, generate blocks that cover: // - each single value of the ISE's range, at each position inside an ISE block // - for trit and quint ISEs, each single T or Q value of an ISE block { for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++) { const ISEParams &iseParams = s_weightISEParamsCandidates[iseParamsNdx]; NormalBlockParams blockParams; blockParams.weightGridWidth = 4; blockParams.weightGridHeight = 4; blockParams.weightISEParams = iseParams; blockParams.numPartitions = 1; blockParams.isDualPlane = blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false; blockParams.ccs = 0; blockParams.colorEndpointModes[0] = 0; while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) { blockParams.weightGridWidth--; blockParams.weightGridHeight--; } const int numValuesInISEBlock = iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1; const int numWeights = computeNumWeights(blockParams); { const int numWeightValues = (int)computeISERangeMax(iseParams) + 1; const int numBlocks = deDivRoundUp32(numWeightValues, numWeights); NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.weight.isGivenInBlockForm = false; for (int offset = 0; offset < numValuesInISEBlock; offset++) for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) iseInputs.weight.value.plain[weightNdx] = (blockNdx * numWeights + weightNdx + offset) % numWeightValues; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs) .pushBytesToVector(dst); } } if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) { NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.weight.isGivenInBlockForm = true; const int numTQValues = 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7); const int numISEBlocksPerBlock = deDivRoundUp32(numWeights, numValuesInISEBlock); const int numBlocks = deDivRoundUp32(numTQValues, numISEBlocksPerBlock); for (int offset = 0; offset < numValuesInISEBlock; offset++) for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++) { for (int i = 0; i < numValuesInISEBlock; i++) iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0; iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx * numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues; } generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs) .pushBytesToVector(dst); } } } break; } case BLOCK_TEST_TYPE_CEMS: // For each plane count & partition count combination, generate all color endpoint mode combinations. { for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++) for (int numPartitions = 1; numPartitions <= (isDualPlane != 0 ? 3 : 4); numPartitions++) { // Multi-partition, single-CEM mode. if (numPartitions > 1) { for (uint32_t singleCem = 0; singleCem < 16; singleCem++) { NormalBlockParams blockParams; blockParams.weightGridWidth = 4; blockParams.weightGridHeight = 4; blockParams.isDualPlane = isDualPlane != 0; blockParams.ccs = 0; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = true; blockParams.colorEndpointModes[0] = singleCem; blockParams.partitionSeed = 634; for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++) { blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx]; if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) { generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)) .pushBytesToVector(dst); break; } } } } // Separate-CEM mode. for (uint32_t cem0 = 0; cem0 < 16; cem0++) for (uint32_t cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++) for (uint32_t cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++) for (uint32_t cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++) { NormalBlockParams blockParams; blockParams.weightGridWidth = 4; blockParams.weightGridHeight = 4; blockParams.isDualPlane = isDualPlane != 0; blockParams.ccs = 0; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = false; blockParams.colorEndpointModes[0] = cem0; blockParams.colorEndpointModes[1] = cem1; blockParams.colorEndpointModes[2] = cem2; blockParams.colorEndpointModes[3] = cem3; blockParams.partitionSeed = 634; { const uint32_t minCem = *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]); const uint32_t maxCem = *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]); const uint32_t minCemClass = minCem / 4; const uint32_t maxCemClass = maxCem / 4; if (maxCemClass - minCemClass > 1) continue; } for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++) { blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx]; if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) { generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)) .pushBytesToVector(dst); break; } } } } break; } case BLOCK_TEST_TYPE_PARTITION_SEED: // Test all partition seeds ("partition pattern indices"). { for (int numPartitions = 2; numPartitions <= 4; numPartitions++) for (uint32_t partitionSeed = 0; partitionSeed < 1 << 10; partitionSeed++) { NormalBlockParams blockParams; blockParams.weightGridWidth = 4; blockParams.weightGridHeight = 4; blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); blockParams.isDualPlane = false; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = true; blockParams.colorEndpointModes[0] = 0; blockParams.partitionSeed = partitionSeed; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)) .pushBytesToVector(dst); } break; } // \note Fall-through. case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR: case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: // For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair. // \note Separate modes for HDR and mode 15 due to different color scales and biases. { for (uint32_t cem = 0; cem < 16; cem++) { const bool isHDRCem = cem == 2 || cem == 3 || cem == 7 || cem == 11 || cem == 14 || cem == 15; if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR && isHDRCem) || (testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15 && (!isHDRCem || cem == 15)) || (testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15 && cem != 15)) continue; NormalBlockParams blockParams; blockParams.weightGridWidth = 3; blockParams.weightGridHeight = 4; blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); blockParams.isDualPlane = false; blockParams.numPartitions = 1; blockParams.colorEndpointModes[0] = cem; { const int numBitsForEndpoints = computeNumBitsForColorEndpoints(blockParams); const int numEndpointParts = computeNumColorEndpointValues(cem); const ISEParams endpointISE = computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts); const int endpointISERangeMax = computeISERangeMax(endpointISE); for (int endpointPartNdx0 = 0; endpointPartNdx0 < numEndpointParts; endpointPartNdx0++) for (int endpointPartNdx1 = endpointPartNdx0 + 1; endpointPartNdx1 < numEndpointParts; endpointPartNdx1++) { NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); const int numEndpointValues = de::min(10, endpointISERangeMax + 1); for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++) for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++) { const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues - 1); const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues - 1); iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0; iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs) .pushBytesToVector(dst); } } } } break; } case BLOCK_TEST_TYPE_ENDPOINT_ISE: // Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above. { static const uint32_t endpointRangeMaximums[] = {5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191}; for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++) { bool validCaseGenerated = false; for (int numPartitions = 1; !validCaseGenerated && numPartitions <= 4; numPartitions++) for (int isDual = 0; !validCaseGenerated && isDual <= 1; isDual++) for (int weightISEParamsNdx = 0; !validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); weightISEParamsNdx++) for (int weightGridWidth = 2; !validCaseGenerated && weightGridWidth <= 12; weightGridWidth++) for (int weightGridHeight = 2; !validCaseGenerated && weightGridHeight <= 12; weightGridHeight++) { NormalBlockParams blockParams; blockParams.weightGridWidth = weightGridWidth; blockParams.weightGridHeight = weightGridHeight; blockParams.weightISEParams = s_weightISEParamsCandidates[weightISEParamsNdx]; blockParams.isDualPlane = isDual != 0; blockParams.ccs = 0; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = true; blockParams.colorEndpointModes[0] = 12; blockParams.partitionSeed = 634; if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) { const ISEParams endpointISEParams = computeMaximumRangeISEParams( computeNumBitsForColorEndpoints(blockParams), computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true)); if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx]) { validCaseGenerated = true; const int numColorEndpoints = computeNumColorEndpointValues( &blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode); const int numValuesInISEBlock = endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1; { const int numColorEndpointValues = (int)computeISERangeMax(endpointISEParams) + 1; const int numBlocks = deDivRoundUp32(numColorEndpointValues, numColorEndpoints); NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.endpoint.isGivenInBlockForm = false; for (int offset = 0; offset < numValuesInISEBlock; offset++) for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++) iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx * numColorEndpoints + endpointNdx + offset) % numColorEndpointValues; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs) .pushBytesToVector(dst); } } if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT) { NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.endpoint.isGivenInBlockForm = true; const int numTQValues = 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7); const int numISEBlocksPerBlock = deDivRoundUp32(numColorEndpoints, numValuesInISEBlock); const int numBlocks = deDivRoundUp32(numTQValues, numISEBlocksPerBlock); for (int offset = 0; offset < numValuesInISEBlock; offset++) for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++) { for (int i = 0; i < numValuesInISEBlock; i++) iseInputs.endpoint.value.block[iseBlockNdx] .bitValues[i] = 0; iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx * numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues; } generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs) .pushBytesToVector(dst); } } } } } DE_ASSERT(validCaseGenerated); } break; } case BLOCK_TEST_TYPE_CCS: // For all partition counts, test all values of the CCS (color component selector). { for (int numPartitions = 1; numPartitions <= 3; numPartitions++) for (uint32_t ccs = 0; ccs < 4; ccs++) { NormalBlockParams blockParams; blockParams.weightGridWidth = 3; blockParams.weightGridHeight = 3; blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); blockParams.isDualPlane = true; blockParams.ccs = ccs; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = true; blockParams.colorEndpointModes[0] = 8; blockParams.partitionSeed = 634; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)) .pushBytesToVector(dst); } break; } case BLOCK_TEST_TYPE_RANDOM: // Generate a number of random (including invalid) blocks. { const int numBlocks = 16384; const uint32_t seed = 1; dst.resize(numBlocks * BLOCK_SIZE_BYTES); generateRandomBlocks(&dst[0], numBlocks, format, seed); break; } default: DE_ASSERT(false); } } void generateRandomBlocks(uint8_t *dst, size_t numBlocks, CompressedTexFormat format, uint32_t seed) { const IVec3 blockSize = getBlockPixelSize(format); de::Random rnd(seed); size_t numBlocksGenerated = 0; DE_ASSERT(isAstcFormat(format)); DE_ASSERT(blockSize.z() == 1); for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++) { uint8_t *const curBlockPtr = dst + numBlocksGenerated * BLOCK_SIZE_BYTES; generateRandomBlock(curBlockPtr, blockSize, rnd); } } void generateRandomValidBlocks(uint8_t *dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, uint32_t seed) { const IVec3 blockSize = getBlockPixelSize(format); de::Random rnd(seed); size_t numBlocksGenerated = 0; DE_ASSERT(isAstcFormat(format)); DE_ASSERT(blockSize.z() == 1); for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++) { uint8_t *const curBlockPtr = dst + numBlocksGenerated * BLOCK_SIZE_BYTES; do { generateRandomBlock(curBlockPtr, blockSize, rnd); } while (!isValidBlock(curBlockPtr, format, mode)); } } // Generate a number of trivial blocks to fill unneeded space in a texture. void generateDefaultVoidExtentBlocks(uint8_t *dst, size_t numBlocks) { AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0)); for (size_t ndx = 0; ndx < numBlocks; ndx++) block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]); } void generateDefaultNormalBlocks(uint8_t *dst, size_t numBlocks, int blockWidth, int blockHeight) { NormalBlockParams blockParams; blockParams.weightGridWidth = 3; blockParams.weightGridHeight = 3; blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 5); blockParams.isDualPlane = false; blockParams.numPartitions = 1; blockParams.colorEndpointModes[0] = 8; NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.weight.isGivenInBlockForm = false; const int numWeights = computeNumWeights(blockParams); const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams); for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) iseInputs.weight.value.plain[weightNdx] = (uint32_t)((blockNdx * numWeights + weightNdx) * weightRangeMax / (numBlocks * numWeights - 1)); generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs) .assignToMemory(dst + blockNdx * BLOCK_SIZE_BYTES); } } bool isValidBlock(const uint8_t *data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode) { const tcu::IVec3 blockPixelSize = getBlockPixelSize(format); const bool isSRGB = isAstcSRGBFormat(format); const bool isLDR = isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR; // sRGB is not supported in HDR mode DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGB)); union { uint8_t sRGB[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4]; float linear[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4]; } tmpBuffer; const Block128 blockData(data); const DecompressResult result = decompressBlock((isSRGB ? (void *)&tmpBuffer.sRGB[0] : (void *)&tmpBuffer.linear[0]), blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR); return result == DECOMPRESS_RESULT_VALID_BLOCK; } void decompress(const PixelBufferAccess &dst, const uint8_t *data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode) { const bool isSRGBFormat = isAstcSRGBFormat(format); #if defined(DE_DEBUG) const tcu::IVec3 blockPixelSize = getBlockPixelSize(format); DE_ASSERT(dst.getWidth() == blockPixelSize.x() && dst.getHeight() == blockPixelSize.y() && dst.getDepth() == blockPixelSize.z()); DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR); #endif // sRGB is not supported in HDR mode DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGBFormat)); decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR); } const char *getBlockTestTypeName(BlockTestType testType) { switch (testType) { case BLOCK_TEST_TYPE_VOID_EXTENT_LDR: return "void_extent_ldr"; case BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return "void_extent_hdr"; case BLOCK_TEST_TYPE_WEIGHT_GRID: return "weight_grid"; case BLOCK_TEST_TYPE_WEIGHT_ISE: return "weight_ise"; case BLOCK_TEST_TYPE_CEMS: return "color_endpoint_modes"; case BLOCK_TEST_TYPE_PARTITION_SEED: return "partition_pattern_index"; case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR: return "endpoint_value_ldr"; case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return "endpoint_value_hdr_cem_not_15"; case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return "endpoint_value_hdr_cem_15"; case BLOCK_TEST_TYPE_ENDPOINT_ISE: return "endpoint_ise"; case BLOCK_TEST_TYPE_CCS: return "color_component_selector"; case BLOCK_TEST_TYPE_RANDOM: return "random"; default: DE_ASSERT(false); return DE_NULL; } } const char *getBlockTestTypeDescription(BlockTestType testType) { switch (testType) { case BLOCK_TEST_TYPE_VOID_EXTENT_LDR: return "Test void extent block, LDR mode"; case BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return "Test void extent block, HDR mode"; case BLOCK_TEST_TYPE_WEIGHT_GRID: return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size"; case BLOCK_TEST_TYPE_WEIGHT_ISE: return "Test different integer sequence encoding block values for weight grid"; case BLOCK_TEST_TYPE_CEMS: return "Test different color endpoint mode combinations, combined with different plane and partition counts"; case BLOCK_TEST_TYPE_PARTITION_SEED: return "Test different partition pattern indices"; case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR: return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode"; case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode " "other than mode 15"; case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15"; case BLOCK_TEST_TYPE_ENDPOINT_ISE: return "Test different integer sequence encoding block values for color endpoints"; case BLOCK_TEST_TYPE_CCS: return "Test color component selector, for different partition counts"; case BLOCK_TEST_TYPE_RANDOM: return "Random block test"; default: DE_ASSERT(false); return DE_NULL; } } bool isBlockTestTypeHDROnly(BlockTestType testType) { return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR || testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15 || testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15; } Vec4 getBlockTestTypeColorScale(BlockTestType testType) { switch (testType) { case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return Vec4(0.5f / 65504.0f); case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return Vec4(1.0f / 65504.0f, 1.0f / 65504.0f, 1.0f / 65504.0f, 1.0f); case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return Vec4(1.0f / 65504.0f); default: return Vec4(1.0f); } } Vec4 getBlockTestTypeColorBias(BlockTestType testType) { switch (testType) { case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return Vec4(0.5f); default: return Vec4(0.0f); } } } // namespace astc } // namespace tcu