/*------------------------------------------------------------------------- * drawElements Quality Program Tester Core * ---------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Fuzzy image comparison. *//*--------------------------------------------------------------------*/ #include "tcuFuzzyImageCompare.hpp" #include "tcuTexture.hpp" #include "tcuTextureUtil.hpp" #include "deMath.h" #include "deRandom.hpp" #include namespace tcu { enum { MIN_ERR_THRESHOLD = 4 // Magic to make small differences go away }; using std::vector; template static inline uint8_t getChannel(uint32_t color) { return (uint8_t)((color >> (Channel * 8)) & 0xff); } static inline uint8_t getChannel(uint32_t color, int channel) { return (uint8_t)((color >> (channel * 8)) & 0xff); } static inline uint32_t setChannel(uint32_t color, int channel, uint8_t val) { return (color & ~(0xffu << (8 * channel))) | (val << (8 * channel)); } static inline Vec4 toFloatVec(uint32_t color) { return Vec4((float)getChannel<0>(color), (float)getChannel<1>(color), (float)getChannel<2>(color), (float)getChannel<3>(color)); } static inline uint8_t roundToUint8Sat(float v) { return (uint8_t)de::clamp((int)(v + 0.5f), 0, 255); } static inline uint32_t toColor(Vec4 v) { return roundToUint8Sat(v[0]) | (roundToUint8Sat(v[1]) << 8) | (roundToUint8Sat(v[2]) << 16) | (roundToUint8Sat(v[3]) << 24); } template static inline uint32_t readUnorm8(const tcu::ConstPixelBufferAccess &src, int x, int y) { const uint8_t *ptr = (const uint8_t *)src.getDataPtr() + src.getRowPitch() * y + x * NumChannels; uint32_t v = 0; for (int c = 0; c < NumChannels; c++) v |= ptr[c] << (c * 8); if (NumChannels < 4) v |= 0xffu << 24; return v; } #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN) template <> inline uint32_t readUnorm8<4>(const tcu::ConstPixelBufferAccess &src, int x, int y) { return *(const uint32_t *)((const uint8_t *)src.getDataPtr() + src.getRowPitch() * y + x * 4); } #endif template static inline void writeUnorm8(const tcu::PixelBufferAccess &dst, int x, int y, uint32_t val) { uint8_t *ptr = (uint8_t *)dst.getDataPtr() + dst.getRowPitch() * y + x * NumChannels; for (int c = 0; c < NumChannels; c++) ptr[c] = getChannel(val, c); } #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN) template <> inline void writeUnorm8<4>(const tcu::PixelBufferAccess &dst, int x, int y, uint32_t val) { *(uint32_t *)((uint8_t *)dst.getDataPtr() + dst.getRowPitch() * y + x * 4) = val; } #endif static inline uint32_t colorDistSquared(uint32_t pa, uint32_t pb) { const int r = de::max(de::abs((int)getChannel<0>(pa) - (int)getChannel<0>(pb)) - MIN_ERR_THRESHOLD, 0); const int g = de::max(de::abs((int)getChannel<1>(pa) - (int)getChannel<1>(pb)) - MIN_ERR_THRESHOLD, 0); const int b = de::max(de::abs((int)getChannel<2>(pa) - (int)getChannel<2>(pb)) - MIN_ERR_THRESHOLD, 0); const int a = de::max(de::abs((int)getChannel<3>(pa) - (int)getChannel<3>(pb)) - MIN_ERR_THRESHOLD, 0); return uint32_t(r * r + g * g + b * b + a * a); } template inline uint32_t bilinearSample(const ConstPixelBufferAccess &src, float u, float v) { int w = src.getWidth(); int h = src.getHeight(); int x0 = deFloorFloatToInt32(u - 0.5f); int x1 = x0 + 1; int y0 = deFloorFloatToInt32(v - 0.5f); int y1 = y0 + 1; int i0 = de::clamp(x0, 0, w - 1); int i1 = de::clamp(x1, 0, w - 1); int j0 = de::clamp(y0, 0, h - 1); int j1 = de::clamp(y1, 0, h - 1); float a = deFloatFrac(u - 0.5f); float b = deFloatFrac(v - 0.5f); uint32_t p00 = readUnorm8(src, i0, j0); uint32_t p10 = readUnorm8(src, i1, j0); uint32_t p01 = readUnorm8(src, i0, j1); uint32_t p11 = readUnorm8(src, i1, j1); uint32_t dst = 0; // Interpolate. for (int c = 0; c < NumChannels; c++) { float f = (getChannel(p00, c) * (1.0f - a) * (1.0f - b)) + (getChannel(p10, c) * (a) * (1.0f - b)) + (getChannel(p01, c) * (1.0f - a) * (b)) + (getChannel(p11, c) * (a) * (b)); dst = setChannel(dst, c, roundToUint8Sat(f)); } return dst; } template static void separableConvolve(const PixelBufferAccess &dst, const ConstPixelBufferAccess &src, int shiftX, int shiftY, const std::vector &kernelX, const std::vector &kernelY) { DE_ASSERT(dst.getWidth() == src.getWidth() && dst.getHeight() == src.getHeight()); TextureLevel tmp(dst.getFormat(), dst.getHeight(), dst.getWidth()); PixelBufferAccess tmpAccess = tmp.getAccess(); int kw = (int)kernelX.size(); int kh = (int)kernelY.size(); // Horizontal pass // \note Temporary surface is written in column-wise order for (int j = 0; j < src.getHeight(); j++) { for (int i = 0; i < src.getWidth(); i++) { Vec4 sum(0); for (int kx = 0; kx < kw; kx++) { float f = kernelX[kw - kx - 1]; uint32_t p = readUnorm8(src, de::clamp(i + kx - shiftX, 0, src.getWidth() - 1), j); sum += toFloatVec(p) * f; } writeUnorm8(tmpAccess, j, i, toColor(sum)); } } // Vertical pass for (int j = 0; j < src.getHeight(); j++) { for (int i = 0; i < src.getWidth(); i++) { Vec4 sum(0.0f); for (int ky = 0; ky < kh; ky++) { float f = kernelY[kh - ky - 1]; uint32_t p = readUnorm8(tmpAccess, de::clamp(j + ky - shiftY, 0, tmp.getWidth() - 1), i); sum += toFloatVec(p) * f; } writeUnorm8(dst, i, j, toColor(sum)); } } } template static uint32_t distSquaredToNeighbor(de::Random &rnd, uint32_t pixel, const ConstPixelBufferAccess &surface, int x, int y) { // (x, y) + (0, 0) uint32_t minDist = colorDistSquared(pixel, readUnorm8(surface, x, y)); if (minDist == 0) return minDist; // Area around (x, y) static const int s_coords[8][2] = {{-1, -1}, {0, -1}, {+1, -1}, {-1, 0}, {+1, 0}, {-1, +1}, {0, +1}, {+1, +1}}; for (int d = 0; d < (int)DE_LENGTH_OF_ARRAY(s_coords); d++) { int dx = x + s_coords[d][0]; int dy = y + s_coords[d][1]; if (!deInBounds32(dx, 0, surface.getWidth()) || !deInBounds32(dy, 0, surface.getHeight())) continue; minDist = de::min(minDist, colorDistSquared(pixel, readUnorm8(surface, dx, dy))); if (minDist == 0) return minDist; } // Random bilinear-interpolated samples around (x, y) for (int s = 0; s < 32; s++) { float dx = (float)x + rnd.getFloat() * 2.0f - 0.5f; float dy = (float)y + rnd.getFloat() * 2.0f - 0.5f; uint32_t sample = bilinearSample(surface, dx, dy); minDist = de::min(minDist, colorDistSquared(pixel, sample)); if (minDist == 0) return minDist; } return minDist; } static inline float toGrayscale(const Vec4 &c) { return 0.2126f * c[0] + 0.7152f * c[1] + 0.0722f * c[2]; } static bool isFormatSupported(const TextureFormat &format) { return format.type == TextureFormat::UNORM_INT8 && (format.order == TextureFormat::RGB || format.order == TextureFormat::RGBA); } float fuzzyCompare(const FuzzyCompareParams ¶ms, const ConstPixelBufferAccess &ref, const ConstPixelBufferAccess &cmp, const PixelBufferAccess &errorMask) { DE_ASSERT(ref.getWidth() == cmp.getWidth() && ref.getHeight() == cmp.getHeight()); DE_ASSERT(errorMask.getWidth() == ref.getWidth() && errorMask.getHeight() == ref.getHeight()); if (!isFormatSupported(ref.getFormat()) || !isFormatSupported(cmp.getFormat())) throw InternalError("Unsupported format in fuzzy comparison", DE_NULL, __FILE__, __LINE__); int width = ref.getWidth(); int height = ref.getHeight(); de::Random rnd(667); // Filtered TextureLevel refFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height); TextureLevel cmpFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height); // Kernel = {0.1, 0.8, 0.1} vector kernel(3); kernel[0] = kernel[2] = 0.1f; kernel[1] = 0.8f; int shift = (int)(kernel.size() - 1) / 2; switch (ref.getFormat().order) { case TextureFormat::RGBA: separableConvolve<4, 4>(refFiltered, ref, shift, shift, kernel, kernel); break; case TextureFormat::RGB: separableConvolve<4, 3>(refFiltered, ref, shift, shift, kernel, kernel); break; default: DE_ASSERT(false); } switch (cmp.getFormat().order) { case TextureFormat::RGBA: separableConvolve<4, 4>(cmpFiltered, cmp, shift, shift, kernel, kernel); break; case TextureFormat::RGB: separableConvolve<4, 3>(cmpFiltered, cmp, shift, shift, kernel, kernel); break; default: DE_ASSERT(false); } int numSamples = 0; uint64_t distSum4 = 0ull; // Clear error mask to green. clear(errorMask, Vec4(0.0f, 1.0f, 0.0f, 1.0f)); ConstPixelBufferAccess refAccess = refFiltered.getAccess(); ConstPixelBufferAccess cmpAccess = cmpFiltered.getAccess(); for (int y = 1; y < height - 1; y++) { for (int x = 1; x 0 ? (int)rnd.getInt(1, params.maxSampleSkip) : 1) { const uint32_t minDist2RefToCmp = distSquaredToNeighbor<4>(rnd, readUnorm8<4>(refAccess, x, y), cmpAccess, x, y); const uint32_t minDist2CmpToRef = distSquaredToNeighbor<4>(rnd, readUnorm8<4>(cmpAccess, x, y), refAccess, x, y); const uint32_t minDist2 = de::min(minDist2RefToCmp, minDist2CmpToRef); const uint64_t newSum4 = distSum4 + minDist2 * minDist2; distSum4 = (newSum4 >= distSum4) ? newSum4 : ~0ull; // In case of overflow numSamples += 1; // Build error image. { const int scale = 255 - MIN_ERR_THRESHOLD; const float err2 = float(minDist2) / float(scale * scale); const float err4 = err2 * err2; const float red = err4 * 500.0f; const float luma = toGrayscale(cmp.getPixel(x, y)); const float rF = 0.7f + 0.3f * luma; errorMask.setPixel(Vec4(red * rF, (1.0f - red) * rF, 0.0f, 1.0f), x, y); } } } { // Scale error sum based on number of samples taken const double pSamples = double((width - 2) * (height - 2)) / double(numSamples); const uint64_t colScale = uint64_t(255 - MIN_ERR_THRESHOLD); const uint64_t colScale4 = colScale * colScale * colScale * colScale; return float(double(distSum4) / double(colScale4) * pSamples); } } } // namespace tcu