/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL (ES) Module * ----------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Shader execution utilities. *//*--------------------------------------------------------------------*/ #include "glsShaderExecUtil.hpp" #include "gluRenderContext.hpp" #include "gluDrawUtil.hpp" #include "gluObjectWrapper.hpp" #include "gluShaderProgram.hpp" #include "gluTextureUtil.hpp" #include "gluProgramInterfaceQuery.hpp" #include "gluPixelTransfer.hpp" #include "gluStrUtil.hpp" #include "tcuTestLog.hpp" #include "glwFunctions.hpp" #include "glwEnums.hpp" #include "deSTLUtil.hpp" #include "deStringUtil.hpp" #include "deUniquePtr.hpp" #include "deMemory.h" #include namespace deqp { namespace gls { namespace ShaderExecUtil { using std::vector; static bool isExtensionSupported(const glu::RenderContext &renderCtx, const std::string &extension) { const glw::Functions &gl = renderCtx.getFunctions(); int numExts = 0; gl.getIntegerv(GL_NUM_EXTENSIONS, &numExts); for (int ndx = 0; ndx < numExts; ndx++) { const char *curExt = (const char *)gl.getStringi(GL_EXTENSIONS, ndx); if (extension == curExt) return true; } return false; } static void checkExtension(const glu::RenderContext &renderCtx, const std::string &extension) { if (!isExtensionSupported(renderCtx, extension)) throw tcu::NotSupportedError(extension + " is not supported"); } static void checkLimit(const glu::RenderContext &renderCtx, uint32_t pname, int required) { const glw::Functions &gl = renderCtx.getFunctions(); int implementationLimit = -1; uint32_t error; gl.getIntegerv(pname, &implementationLimit); error = gl.getError(); if (error != GL_NO_ERROR) throw tcu::TestError("Failed to query " + de::toString(glu::getGettableStateStr(pname)) + " - got " + de::toString(glu::getErrorStr(error))); if (implementationLimit < required) throw tcu::NotSupportedError("Test requires " + de::toString(glu::getGettableStateStr(pname)) + " >= " + de::toString(required) + ", got " + de::toString(implementationLimit)); } // Shader utilities static std::string generateVertexShader(const ShaderSpec &shaderSpec, const std::string &inputPrefix, const std::string &outputPrefix) { const bool usesInout = glu::glslVersionUsesInOutQualifiers(shaderSpec.version); const char *in = usesInout ? "in" : "attribute"; const char *out = usesInout ? "out" : "varying"; std::ostringstream src; DE_ASSERT(!inputPrefix.empty() && !outputPrefix.empty()); src << glu::getGLSLVersionDeclaration(shaderSpec.version) << "\n"; if (!shaderSpec.globalDeclarations.empty()) src << shaderSpec.globalDeclarations << "\n"; src << in << " highp vec4 a_position;\n"; for (vector::const_iterator input = shaderSpec.inputs.begin(); input != shaderSpec.inputs.end(); ++input) src << in << " " << glu::declare(input->varType, inputPrefix + input->name) << ";\n"; for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) { DE_ASSERT(output->varType.isBasicType()); if (glu::isDataTypeBoolOrBVec(output->varType.getBasicType())) { const int vecSize = glu::getDataTypeScalarSize(output->varType.getBasicType()); const glu::DataType intBaseType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT; const glu::VarType intType(intBaseType, glu::PRECISION_HIGHP); src << "flat " << out << " " << glu::declare(intType, outputPrefix + output->name) << ";\n"; } else src << "flat " << out << " " << glu::declare(output->varType, outputPrefix + output->name) << ";\n"; } src << "\n" << "void main (void)\n" << "{\n" << " gl_Position = a_position;\n" << " gl_PointSize = 1.0;\n\n"; // Declare & fetch local input variables for (vector::const_iterator input = shaderSpec.inputs.begin(); input != shaderSpec.inputs.end(); ++input) src << "\t" << glu::declare(input->varType, input->name) << " = " << inputPrefix << input->name << ";\n"; // Declare local output variables for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) src << "\t" << glu::declare(output->varType, output->name) << ";\n"; // Operation - indented to correct level. { std::istringstream opSrc(shaderSpec.source); std::string line; while (std::getline(opSrc, line)) src << "\t" << line << "\n"; } // Assignments to outputs. for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) { if (glu::isDataTypeBoolOrBVec(output->varType.getBasicType())) { const int vecSize = glu::getDataTypeScalarSize(output->varType.getBasicType()); const glu::DataType intBaseType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT; src << "\t" << outputPrefix << output->name << " = " << glu::getDataTypeName(intBaseType) << "(" << output->name << ");\n"; } else src << "\t" << outputPrefix << output->name << " = " << output->name << ";\n"; } src << "}\n"; return src.str(); } static std::string generateGeometryShader(const ShaderSpec &shaderSpec, const std::string &inputPrefix, const std::string &outputPrefix) { DE_ASSERT(glu::glslVersionUsesInOutQualifiers(shaderSpec.version)); DE_ASSERT(!inputPrefix.empty() && !outputPrefix.empty()); std::ostringstream src; src << glu::getGLSLVersionDeclaration(shaderSpec.version) << "\n"; if (glu::glslVersionIsES(shaderSpec.version) && shaderSpec.version <= glu::GLSL_VERSION_310_ES) src << "#extension GL_EXT_geometry_shader : require\n"; if (!shaderSpec.globalDeclarations.empty()) src << shaderSpec.globalDeclarations << "\n"; src << "layout(points) in;\n" << "layout(points, max_vertices = 1) out;\n"; for (vector::const_iterator input = shaderSpec.inputs.begin(); input != shaderSpec.inputs.end(); ++input) src << "flat in " << glu::declare(input->varType, inputPrefix + input->name) << "[];\n"; for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) { DE_ASSERT(output->varType.isBasicType()); if (glu::isDataTypeBoolOrBVec(output->varType.getBasicType())) { const int vecSize = glu::getDataTypeScalarSize(output->varType.getBasicType()); const glu::DataType intBaseType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT; const glu::VarType intType(intBaseType, glu::PRECISION_HIGHP); src << "flat out " << glu::declare(intType, outputPrefix + output->name) << ";\n"; } else src << "flat out " << glu::declare(output->varType, outputPrefix + output->name) << ";\n"; } src << "\n" << "void main (void)\n" << "{\n" << " gl_Position = gl_in[0].gl_Position;\n\n"; // Fetch input variables for (vector::const_iterator input = shaderSpec.inputs.begin(); input != shaderSpec.inputs.end(); ++input) src << "\t" << glu::declare(input->varType, input->name) << " = " << inputPrefix << input->name << "[0];\n"; // Declare local output variables. for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) src << "\t" << glu::declare(output->varType, output->name) << ";\n"; src << "\n"; // Operation - indented to correct level. { std::istringstream opSrc(shaderSpec.source); std::string line; while (std::getline(opSrc, line)) src << "\t" << line << "\n"; } // Assignments to outputs. for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) { if (glu::isDataTypeBoolOrBVec(output->varType.getBasicType())) { const int vecSize = glu::getDataTypeScalarSize(output->varType.getBasicType()); const glu::DataType intBaseType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT; src << "\t" << outputPrefix << output->name << " = " << glu::getDataTypeName(intBaseType) << "(" << output->name << ");\n"; } else src << "\t" << outputPrefix << output->name << " = " << output->name << ";\n"; } src << " EmitVertex();\n" << " EndPrimitive();\n" << "}\n"; return src.str(); } static std::string generateEmptyFragmentSource(glu::GLSLVersion version) { const bool customOut = glu::glslVersionUsesInOutQualifiers(version); std::ostringstream src; src << glu::getGLSLVersionDeclaration(version) << "\n"; // \todo [2013-08-05 pyry] Do we need one unused output? src << "void main (void)\n{\n"; if (!customOut) src << " gl_FragColor = vec4(0.0);\n"; src << "}\n"; return src.str(); } static std::string generatePassthroughVertexShader(const ShaderSpec &shaderSpec, const std::string &inputPrefix, const std::string &outputPrefix) { // flat qualifier is not present in earlier versions? DE_ASSERT(glu::glslVersionUsesInOutQualifiers(shaderSpec.version)); std::ostringstream src; src << glu::getGLSLVersionDeclaration(shaderSpec.version) << "\n" << "in highp vec4 a_position;\n"; for (vector::const_iterator input = shaderSpec.inputs.begin(); input != shaderSpec.inputs.end(); ++input) { src << "in " << glu::declare(input->varType, inputPrefix + input->name) << ";\n" << "flat out " << glu::declare(input->varType, outputPrefix + input->name) << ";\n"; } src << "\nvoid main (void)\n{\n" << " gl_Position = a_position;\n" << " gl_PointSize = 1.0;\n"; for (vector::const_iterator input = shaderSpec.inputs.begin(); input != shaderSpec.inputs.end(); ++input) src << "\t" << outputPrefix << input->name << " = " << inputPrefix << input->name << ";\n"; src << "}\n"; return src.str(); } static void generateFragShaderOutputDecl(std::ostream &src, const ShaderSpec &shaderSpec, bool useIntOutputs, const std::map &outLocationMap, const std::string &outputPrefix) { DE_ASSERT(glu::glslVersionUsesInOutQualifiers(shaderSpec.version)); for (int outNdx = 0; outNdx < (int)shaderSpec.outputs.size(); ++outNdx) { const Symbol &output = shaderSpec.outputs[outNdx]; const int location = de::lookup(outLocationMap, output.name); const std::string outVarName = outputPrefix + output.name; glu::VariableDeclaration decl(output.varType, outVarName, glu::STORAGE_OUT, glu::INTERPOLATION_LAST, glu::Layout(location)); TCU_CHECK_INTERNAL(output.varType.isBasicType()); if (useIntOutputs && glu::isDataTypeFloatOrVec(output.varType.getBasicType())) { const int vecSize = glu::getDataTypeScalarSize(output.varType.getBasicType()); const glu::DataType uintBasicType = vecSize > 1 ? glu::getDataTypeUintVec(vecSize) : glu::TYPE_UINT; const glu::VarType uintType(uintBasicType, glu::PRECISION_HIGHP); decl.varType = uintType; src << decl << ";\n"; } else if (glu::isDataTypeBoolOrBVec(output.varType.getBasicType())) { const int vecSize = glu::getDataTypeScalarSize(output.varType.getBasicType()); const glu::DataType intBasicType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT; const glu::VarType intType(intBasicType, glu::PRECISION_HIGHP); decl.varType = intType; src << decl << ";\n"; } else if (glu::isDataTypeMatrix(output.varType.getBasicType())) { const int vecSize = glu::getDataTypeMatrixNumRows(output.varType.getBasicType()); const int numVecs = glu::getDataTypeMatrixNumColumns(output.varType.getBasicType()); const glu::DataType uintBasicType = glu::getDataTypeUintVec(vecSize); const glu::VarType uintType(uintBasicType, glu::PRECISION_HIGHP); decl.varType = uintType; for (int vecNdx = 0; vecNdx < numVecs; ++vecNdx) { decl.name = outVarName + "_" + de::toString(vecNdx); decl.layout.location = location + vecNdx; src << decl << ";\n"; } } else src << decl << ";\n"; } } static void generateFragShaderOutAssign(std::ostream &src, const ShaderSpec &shaderSpec, bool useIntOutputs, const std::string &valuePrefix, const std::string &outputPrefix) { for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) { if (useIntOutputs && glu::isDataTypeFloatOrVec(output->varType.getBasicType())) src << " o_" << output->name << " = floatBitsToUint(" << valuePrefix << output->name << ");\n"; else if (glu::isDataTypeMatrix(output->varType.getBasicType())) { const int numVecs = glu::getDataTypeMatrixNumColumns(output->varType.getBasicType()); for (int vecNdx = 0; vecNdx < numVecs; ++vecNdx) if (useIntOutputs) src << "\t" << outputPrefix << output->name << "_" << vecNdx << " = floatBitsToUint(" << valuePrefix << output->name << "[" << vecNdx << "]);\n"; else src << "\t" << outputPrefix << output->name << "_" << vecNdx << " = " << valuePrefix << output->name << "[" << vecNdx << "];\n"; } else if (glu::isDataTypeBoolOrBVec(output->varType.getBasicType())) { const int vecSize = glu::getDataTypeScalarSize(output->varType.getBasicType()); const glu::DataType intBaseType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT; src << "\t" << outputPrefix << output->name << " = " << glu::getDataTypeName(intBaseType) << "(" << valuePrefix << output->name << ");\n"; } else src << "\t" << outputPrefix << output->name << " = " << valuePrefix << output->name << ";\n"; } } static std::string generateFragmentShader(const ShaderSpec &shaderSpec, bool useIntOutputs, const std::map &outLocationMap, const std::string &inputPrefix, const std::string &outputPrefix) { DE_ASSERT(glu::glslVersionUsesInOutQualifiers(shaderSpec.version)); std::ostringstream src; src << glu::getGLSLVersionDeclaration(shaderSpec.version) << "\n"; if (!shaderSpec.globalDeclarations.empty()) src << shaderSpec.globalDeclarations << "\n"; for (vector::const_iterator input = shaderSpec.inputs.begin(); input != shaderSpec.inputs.end(); ++input) src << "flat in " << glu::declare(input->varType, inputPrefix + input->name) << ";\n"; generateFragShaderOutputDecl(src, shaderSpec, useIntOutputs, outLocationMap, outputPrefix); src << "\nvoid main (void)\n{\n"; // Declare & fetch local input variables for (vector::const_iterator input = shaderSpec.inputs.begin(); input != shaderSpec.inputs.end(); ++input) src << "\t" << glu::declare(input->varType, input->name) << " = " << inputPrefix << input->name << ";\n"; // Declare output variables for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) src << "\t" << glu::declare(output->varType, output->name) << ";\n"; // Operation - indented to correct level. { std::istringstream opSrc(shaderSpec.source); std::string line; while (std::getline(opSrc, line)) src << "\t" << line << "\n"; } generateFragShaderOutAssign(src, shaderSpec, useIntOutputs, "", outputPrefix); src << "}\n"; return src.str(); } static std::string generatePassthroughFragmentShader(const ShaderSpec &shaderSpec, bool useIntOutputs, const std::map &outLocationMap, const std::string &inputPrefix, const std::string &outputPrefix) { DE_ASSERT(glu::glslVersionUsesInOutQualifiers(shaderSpec.version)); std::ostringstream src; src << glu::getGLSLVersionDeclaration(shaderSpec.version) << "\n"; if (!shaderSpec.globalDeclarations.empty()) src << shaderSpec.globalDeclarations << "\n"; for (vector::const_iterator output = shaderSpec.outputs.begin(); output != shaderSpec.outputs.end(); ++output) { if (glu::isDataTypeBoolOrBVec(output->varType.getBasicType())) { const int vecSize = glu::getDataTypeScalarSize(output->varType.getBasicType()); const glu::DataType intBaseType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT; const glu::VarType intType(intBaseType, glu::PRECISION_HIGHP); src << "flat in " << glu::declare(intType, inputPrefix + output->name) << ";\n"; } else src << "flat in " << glu::declare(output->varType, inputPrefix + output->name) << ";\n"; } generateFragShaderOutputDecl(src, shaderSpec, useIntOutputs, outLocationMap, outputPrefix); src << "\nvoid main (void)\n{\n"; generateFragShaderOutAssign(src, shaderSpec, useIntOutputs, inputPrefix, outputPrefix); src << "}\n"; return src.str(); } // ShaderExecutor ShaderExecutor::ShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) : m_renderCtx(renderCtx) , m_inputs(shaderSpec.inputs) , m_outputs(shaderSpec.outputs) { } ShaderExecutor::~ShaderExecutor(void) { } void ShaderExecutor::useProgram(void) { DE_ASSERT(isOk()); m_renderCtx.getFunctions().useProgram(getProgram()); } // FragmentOutExecutor struct FragmentOutputLayout { std::vector locationSymbols; //! Symbols by location std::map locationMap; //! Map from symbol name to start location }; class FragmentOutExecutor : public ShaderExecutor { public: FragmentOutExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); ~FragmentOutExecutor(void); void execute(int numValues, const void *const *inputs, void *const *outputs); protected: const FragmentOutputLayout m_outputLayout; }; static FragmentOutputLayout computeFragmentOutputLayout(const std::vector &symbols) { FragmentOutputLayout ret; int location = 0; for (std::vector::const_iterator it = symbols.begin(); it != symbols.end(); ++it) { const int numLocations = glu::getDataTypeNumLocations(it->varType.getBasicType()); TCU_CHECK_INTERNAL(!de::contains(ret.locationMap, it->name)); de::insert(ret.locationMap, it->name, location); location += numLocations; for (int ndx = 0; ndx < numLocations; ++ndx) ret.locationSymbols.push_back(&*it); } return ret; } inline bool hasFloatRenderTargets(const glu::RenderContext &renderCtx) { glu::ContextType type = renderCtx.getType(); return glu::isContextTypeGLCore(type); } FragmentOutExecutor::FragmentOutExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) : ShaderExecutor(renderCtx, shaderSpec) , m_outputLayout(computeFragmentOutputLayout(m_outputs)) { } FragmentOutExecutor::~FragmentOutExecutor(void) { } inline int queryInt(const glw::Functions &gl, uint32_t pname) { int value = 0; gl.getIntegerv(pname, &value); return value; } static tcu::TextureFormat getRenderbufferFormatForOutput(const glu::VarType &outputType, bool useIntOutputs) { const tcu::TextureFormat::ChannelOrder channelOrderMap[] = {tcu::TextureFormat::R, tcu::TextureFormat::RG, tcu::TextureFormat::RGBA, // No RGB variants available. tcu::TextureFormat::RGBA}; const glu::DataType basicType = outputType.getBasicType(); const int numComps = glu::getDataTypeNumComponents(basicType); tcu::TextureFormat::ChannelType channelType; switch (glu::getDataTypeScalarType(basicType)) { case glu::TYPE_UINT: channelType = tcu::TextureFormat::UNSIGNED_INT32; break; case glu::TYPE_INT: channelType = tcu::TextureFormat::SIGNED_INT32; break; case glu::TYPE_BOOL: channelType = tcu::TextureFormat::SIGNED_INT32; break; case glu::TYPE_FLOAT: channelType = useIntOutputs ? tcu::TextureFormat::UNSIGNED_INT32 : tcu::TextureFormat::FLOAT; break; default: throw tcu::InternalError("Invalid output type"); } DE_ASSERT(de::inRange(numComps, 1, DE_LENGTH_OF_ARRAY(channelOrderMap))); return tcu::TextureFormat(channelOrderMap[numComps - 1], channelType); } void FragmentOutExecutor::execute(int numValues, const void *const *inputs, void *const *outputs) { const glw::Functions &gl = m_renderCtx.getFunctions(); const bool useIntOutputs = !hasFloatRenderTargets(m_renderCtx); const int maxRenderbufferSize = queryInt(gl, GL_MAX_RENDERBUFFER_SIZE); const int framebufferW = de::min(maxRenderbufferSize, numValues); const int framebufferH = (numValues / framebufferW) + ((numValues % framebufferW != 0) ? 1 : 0); glu::Framebuffer framebuffer(m_renderCtx); glu::RenderbufferVector renderbuffers(m_renderCtx, m_outputLayout.locationSymbols.size()); vector vertexArrays; vector positions(numValues); if (framebufferH > maxRenderbufferSize) throw tcu::NotSupportedError("Value count is too high for maximum supported renderbuffer size"); // Compute positions - 1px points are used to drive fragment shading. for (int valNdx = 0; valNdx < numValues; valNdx++) { const int ix = valNdx % framebufferW; const int iy = valNdx / framebufferW; const float fx = -1.0f + 2.0f * ((float(ix) + 0.5f) / float(framebufferW)); const float fy = -1.0f + 2.0f * ((float(iy) + 0.5f) / float(framebufferH)); positions[valNdx] = tcu::Vec2(fx, fy); } // Vertex inputs. vertexArrays.push_back(glu::va::Float("a_position", 2, numValues, 0, (const float *)&positions[0])); for (int inputNdx = 0; inputNdx < (int)m_inputs.size(); inputNdx++) { const Symbol &symbol = m_inputs[inputNdx]; const std::string attribName = "a_" + symbol.name; const void *ptr = inputs[inputNdx]; const glu::DataType basicType = symbol.varType.getBasicType(); const int vecSize = glu::getDataTypeScalarSize(basicType); if (glu::isDataTypeFloatOrVec(basicType)) vertexArrays.push_back(glu::va::Float(attribName, vecSize, numValues, 0, (const float *)ptr)); else if (glu::isDataTypeIntOrIVec(basicType)) vertexArrays.push_back(glu::va::Int32(attribName, vecSize, numValues, 0, (const int32_t *)ptr)); else if (glu::isDataTypeUintOrUVec(basicType)) vertexArrays.push_back(glu::va::Uint32(attribName, vecSize, numValues, 0, (const uint32_t *)ptr)); else if (glu::isDataTypeMatrix(basicType)) { int numRows = glu::getDataTypeMatrixNumRows(basicType); int numCols = glu::getDataTypeMatrixNumColumns(basicType); int stride = numRows * numCols * (int)sizeof(float); for (int colNdx = 0; colNdx < numCols; ++colNdx) vertexArrays.push_back(glu::va::Float(attribName, colNdx, numRows, numValues, stride, ((const float *)ptr) + colNdx * numRows)); } else DE_ASSERT(false); } // Construct framebuffer. gl.bindFramebuffer(GL_FRAMEBUFFER, *framebuffer); for (int outNdx = 0; outNdx < (int)m_outputLayout.locationSymbols.size(); ++outNdx) { const Symbol &output = *m_outputLayout.locationSymbols[outNdx]; const uint32_t renderbuffer = renderbuffers[outNdx]; const uint32_t format = glu::getInternalFormat(getRenderbufferFormatForOutput(output.varType, useIntOutputs)); gl.bindRenderbuffer(GL_RENDERBUFFER, renderbuffer); gl.renderbufferStorage(GL_RENDERBUFFER, format, framebufferW, framebufferH); gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + outNdx, GL_RENDERBUFFER, renderbuffer); } gl.bindRenderbuffer(GL_RENDERBUFFER, 0); GLU_EXPECT_NO_ERROR(gl.getError(), "Failed to set up framebuffer object"); TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); { vector drawBuffers(m_outputLayout.locationSymbols.size()); for (int ndx = 0; ndx < (int)m_outputLayout.locationSymbols.size(); ndx++) drawBuffers[ndx] = GL_COLOR_ATTACHMENT0 + ndx; gl.drawBuffers((int)drawBuffers.size(), &drawBuffers[0]); GLU_EXPECT_NO_ERROR(gl.getError(), "glDrawBuffers()"); } // Render gl.viewport(0, 0, framebufferW, framebufferH); glu::draw(m_renderCtx, this->getProgram(), (int)vertexArrays.size(), &vertexArrays[0], glu::pr::Points(numValues)); GLU_EXPECT_NO_ERROR(gl.getError(), "Error in draw"); // Read back pixels. { tcu::TextureLevel tmpBuf; // \todo [2013-08-07 pyry] Some fast-paths could be added here. for (int outNdx = 0; outNdx < (int)m_outputs.size(); ++outNdx) { const Symbol &output = m_outputs[outNdx]; const int outSize = output.varType.getScalarSize(); const int outVecSize = glu::getDataTypeNumComponents(output.varType.getBasicType()); const int outNumLocs = glu::getDataTypeNumLocations(output.varType.getBasicType()); uint32_t *dstPtrBase = static_cast(outputs[outNdx]); const tcu::TextureFormat format = getRenderbufferFormatForOutput(output.varType, useIntOutputs); const tcu::TextureFormat readFormat(tcu::TextureFormat::RGBA, format.type); const int outLocation = de::lookup(m_outputLayout.locationMap, output.name); tmpBuf.setStorage(readFormat, framebufferW, framebufferH); for (int locNdx = 0; locNdx < outNumLocs; ++locNdx) { gl.readBuffer(GL_COLOR_ATTACHMENT0 + outLocation + locNdx); glu::readPixels(m_renderCtx, 0, 0, tmpBuf.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "Reading pixels"); if (outSize == 4 && outNumLocs == 1) deMemcpy(dstPtrBase, tmpBuf.getAccess().getDataPtr(), numValues * outVecSize * sizeof(uint32_t)); else { for (int valNdx = 0; valNdx < numValues; valNdx++) { const uint32_t *srcPtr = (const uint32_t *)tmpBuf.getAccess().getDataPtr() + valNdx * 4; uint32_t *dstPtr = &dstPtrBase[outSize * valNdx + outVecSize * locNdx]; deMemcpy(dstPtr, srcPtr, outVecSize * sizeof(uint32_t)); } } } } } // \todo [2013-08-07 pyry] Clear draw buffers & viewport? gl.bindFramebuffer(GL_FRAMEBUFFER, 0); } // VertexShaderExecutor class VertexShaderExecutor : public FragmentOutExecutor { public: VertexShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); ~VertexShaderExecutor(void); bool isOk(void) const { return m_program.isOk(); } void log(tcu::TestLog &dst) const { dst << m_program; } uint32_t getProgram(void) const { return m_program.getProgram(); } protected: const glu::ShaderProgram m_program; }; VertexShaderExecutor::VertexShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) : FragmentOutExecutor(renderCtx, shaderSpec) , m_program(renderCtx, glu::ProgramSources() << glu::VertexSource(generateVertexShader(shaderSpec, "a_", "vtx_out_")) << glu::FragmentSource( generatePassthroughFragmentShader(shaderSpec, !hasFloatRenderTargets(renderCtx), m_outputLayout.locationMap, "vtx_out_", "o_"))) { } VertexShaderExecutor::~VertexShaderExecutor(void) { } // GeometryShaderExecutor class GeometryShaderExecutor : public FragmentOutExecutor { public: static GeometryShaderExecutor *create(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); ~GeometryShaderExecutor(void); bool isOk(void) const { return m_program.isOk(); } void log(tcu::TestLog &dst) const { dst << m_program; } uint32_t getProgram(void) const { return m_program.getProgram(); } protected: const glu::ShaderProgram m_program; private: GeometryShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); }; GeometryShaderExecutor *GeometryShaderExecutor::create(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) { if (glu::glslVersionIsES(shaderSpec.version) && shaderSpec.version <= glu::GLSL_VERSION_310_ES && !contextSupports(renderCtx.getType(), glu::ApiType::core(4, 5))) checkExtension(renderCtx, "GL_EXT_geometry_shader"); return new GeometryShaderExecutor(renderCtx, shaderSpec); } GeometryShaderExecutor::GeometryShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) : FragmentOutExecutor(renderCtx, shaderSpec) , m_program(renderCtx, glu::ProgramSources() << glu::VertexSource(generatePassthroughVertexShader(shaderSpec, "a_", "vtx_out_")) << glu::GeometrySource(generateGeometryShader(shaderSpec, "vtx_out_", "geom_out_")) << glu::FragmentSource( generatePassthroughFragmentShader(shaderSpec, !hasFloatRenderTargets(renderCtx), m_outputLayout.locationMap, "geom_out_", "o_"))) { } GeometryShaderExecutor::~GeometryShaderExecutor(void) { } // FragmentShaderExecutor class FragmentShaderExecutor : public FragmentOutExecutor { public: FragmentShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); ~FragmentShaderExecutor(void); bool isOk(void) const { return m_program.isOk(); } void log(tcu::TestLog &dst) const { dst << m_program; } uint32_t getProgram(void) const { return m_program.getProgram(); } protected: const glu::ShaderProgram m_program; }; FragmentShaderExecutor::FragmentShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) : FragmentOutExecutor(renderCtx, shaderSpec) , m_program( renderCtx, glu::ProgramSources() << glu::VertexSource(generatePassthroughVertexShader(shaderSpec, "a_", "vtx_out_")) << glu::FragmentSource(generateFragmentShader(shaderSpec, !hasFloatRenderTargets(renderCtx), m_outputLayout.locationMap, "vtx_out_", "o_"))) { } FragmentShaderExecutor::~FragmentShaderExecutor(void) { } // Shared utilities for compute and tess executors static uint32_t getVecStd430ByteAlignment(glu::DataType type) { switch (glu::getDataTypeScalarSize(type)) { case 1: return 4u; case 2: return 8u; case 3: return 16u; case 4: return 16u; default: DE_ASSERT(false); return 0u; } } class BufferIoExecutor : public ShaderExecutor { public: BufferIoExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec, const glu::ProgramSources &sources); ~BufferIoExecutor(void); bool isOk(void) const { return m_program.isOk(); } void log(tcu::TestLog &dst) const { dst << m_program; } uint32_t getProgram(void) const { return m_program.getProgram(); } protected: enum { INPUT_BUFFER_BINDING = 0, OUTPUT_BUFFER_BINDING = 1, }; void initBuffers(int numValues); uint32_t getInputBuffer(void) const { return *m_inputBuffer; } uint32_t getOutputBuffer(void) const { return *m_outputBuffer; } uint32_t getInputStride(void) const { return getLayoutStride(m_inputLayout); } uint32_t getOutputStride(void) const { return getLayoutStride(m_outputLayout); } void uploadInputBuffer(const void *const *inputPtrs, int numValues); void readOutputBuffer(void *const *outputPtrs, int numValues); static void declareBufferBlocks(std::ostream &src, const ShaderSpec &spec); static void generateExecBufferIo(std::ostream &src, const ShaderSpec &spec, const char *invocationNdxName); glu::ShaderProgram m_program; private: struct VarLayout { uint32_t offset; uint32_t stride; uint32_t matrixStride; VarLayout(void) : offset(0), stride(0), matrixStride(0) { } }; void resizeInputBuffer(int newSize); void resizeOutputBuffer(int newSize); static void computeVarLayout(const std::vector &symbols, std::vector *layout); static uint32_t getLayoutStride(const vector &layout); static void copyToBuffer(const glu::VarType &varType, const VarLayout &layout, int numValues, const void *srcBasePtr, void *dstBasePtr); static void copyFromBuffer(const glu::VarType &varType, const VarLayout &layout, int numValues, const void *srcBasePtr, void *dstBasePtr); glu::Buffer m_inputBuffer; glu::Buffer m_outputBuffer; vector m_inputLayout; vector m_outputLayout; }; BufferIoExecutor::BufferIoExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec, const glu::ProgramSources &sources) : ShaderExecutor(renderCtx, shaderSpec) , m_program(renderCtx, sources) , m_inputBuffer(renderCtx) , m_outputBuffer(renderCtx) { computeVarLayout(m_inputs, &m_inputLayout); computeVarLayout(m_outputs, &m_outputLayout); } BufferIoExecutor::~BufferIoExecutor(void) { } void BufferIoExecutor::resizeInputBuffer(int newSize) { const glw::Functions &gl = m_renderCtx.getFunctions(); gl.bindBuffer(GL_SHADER_STORAGE_BUFFER, *m_inputBuffer); gl.bufferData(GL_SHADER_STORAGE_BUFFER, newSize, DE_NULL, GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "Failed to allocate input buffer"); } void BufferIoExecutor::resizeOutputBuffer(int newSize) { const glw::Functions &gl = m_renderCtx.getFunctions(); gl.bindBuffer(GL_SHADER_STORAGE_BUFFER, *m_outputBuffer); gl.bufferData(GL_SHADER_STORAGE_BUFFER, newSize, DE_NULL, GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "Failed to allocate output buffer"); } void BufferIoExecutor::initBuffers(int numValues) { const uint32_t inputStride = getLayoutStride(m_inputLayout); const uint32_t outputStride = getLayoutStride(m_outputLayout); const int inputBufferSize = numValues * inputStride; const int outputBufferSize = numValues * outputStride; resizeInputBuffer(inputBufferSize); resizeOutputBuffer(outputBufferSize); } void BufferIoExecutor::computeVarLayout(const std::vector &symbols, std::vector *layout) { uint32_t maxAlignment = 0; uint32_t curOffset = 0; DE_ASSERT(layout->empty()); layout->resize(symbols.size()); for (size_t varNdx = 0; varNdx < symbols.size(); varNdx++) { const Symbol &symbol = symbols[varNdx]; const glu::DataType basicType = symbol.varType.getBasicType(); VarLayout &layoutEntry = (*layout)[varNdx]; if (glu::isDataTypeScalarOrVector(basicType)) { const uint32_t alignment = getVecStd430ByteAlignment(basicType); const uint32_t size = (uint32_t)glu::getDataTypeScalarSize(basicType) * (int)sizeof(uint32_t); curOffset = (uint32_t)deAlign32((int)curOffset, (int)alignment); maxAlignment = de::max(maxAlignment, alignment); layoutEntry.offset = curOffset; layoutEntry.matrixStride = 0; curOffset += size; } else if (glu::isDataTypeMatrix(basicType)) { const int numVecs = glu::getDataTypeMatrixNumColumns(basicType); const glu::DataType vecType = glu::getDataTypeFloatVec(glu::getDataTypeMatrixNumRows(basicType)); const uint32_t vecAlignment = getVecStd430ByteAlignment(vecType); curOffset = (uint32_t)deAlign32((int)curOffset, (int)vecAlignment); maxAlignment = de::max(maxAlignment, vecAlignment); layoutEntry.offset = curOffset; layoutEntry.matrixStride = vecAlignment; curOffset += vecAlignment * numVecs; } else DE_ASSERT(false); } { const uint32_t totalSize = (uint32_t)deAlign32(curOffset, maxAlignment); for (vector::iterator varIter = layout->begin(); varIter != layout->end(); ++varIter) varIter->stride = totalSize; } } inline uint32_t BufferIoExecutor::getLayoutStride(const vector &layout) { return layout.empty() ? 0 : layout[0].stride; } void BufferIoExecutor::copyToBuffer(const glu::VarType &varType, const VarLayout &layout, int numValues, const void *srcBasePtr, void *dstBasePtr) { if (varType.isBasicType()) { const glu::DataType basicType = varType.getBasicType(); const bool isMatrix = glu::isDataTypeMatrix(basicType); const int scalarSize = glu::getDataTypeScalarSize(basicType); const int numVecs = isMatrix ? glu::getDataTypeMatrixNumColumns(basicType) : 1; const int numComps = scalarSize / numVecs; for (int elemNdx = 0; elemNdx < numValues; elemNdx++) { for (int vecNdx = 0; vecNdx < numVecs; vecNdx++) { const int srcOffset = (int)sizeof(uint32_t) * (elemNdx * scalarSize + vecNdx * numComps); const int dstOffset = layout.offset + layout.stride * elemNdx + (isMatrix ? layout.matrixStride * vecNdx : 0); const uint8_t *srcPtr = (const uint8_t *)srcBasePtr + srcOffset; uint8_t *dstPtr = (uint8_t *)dstBasePtr + dstOffset; deMemcpy(dstPtr, srcPtr, sizeof(uint32_t) * numComps); } } } else throw tcu::InternalError("Unsupported type"); } void BufferIoExecutor::copyFromBuffer(const glu::VarType &varType, const VarLayout &layout, int numValues, const void *srcBasePtr, void *dstBasePtr) { if (varType.isBasicType()) { const glu::DataType basicType = varType.getBasicType(); const bool isMatrix = glu::isDataTypeMatrix(basicType); const int scalarSize = glu::getDataTypeScalarSize(basicType); const int numVecs = isMatrix ? glu::getDataTypeMatrixNumColumns(basicType) : 1; const int numComps = scalarSize / numVecs; for (int elemNdx = 0; elemNdx < numValues; elemNdx++) { for (int vecNdx = 0; vecNdx < numVecs; vecNdx++) { const int srcOffset = layout.offset + layout.stride * elemNdx + (isMatrix ? layout.matrixStride * vecNdx : 0); const int dstOffset = (int)sizeof(uint32_t) * (elemNdx * scalarSize + vecNdx * numComps); const uint8_t *srcPtr = (const uint8_t *)srcBasePtr + srcOffset; uint8_t *dstPtr = (uint8_t *)dstBasePtr + dstOffset; deMemcpy(dstPtr, srcPtr, sizeof(uint32_t) * numComps); } } } else throw tcu::InternalError("Unsupported type"); } void BufferIoExecutor::uploadInputBuffer(const void *const *inputPtrs, int numValues) { const glw::Functions &gl = m_renderCtx.getFunctions(); const uint32_t buffer = *m_inputBuffer; const uint32_t inputStride = getLayoutStride(m_inputLayout); const int inputBufferSize = inputStride * numValues; if (inputBufferSize == 0) return; // No inputs gl.bindBuffer(GL_SHADER_STORAGE_BUFFER, buffer); void *mapPtr = gl.mapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, inputBufferSize, GL_MAP_WRITE_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "glMapBufferRange()"); TCU_CHECK(mapPtr); try { DE_ASSERT(m_inputs.size() == m_inputLayout.size()); for (size_t inputNdx = 0; inputNdx < m_inputs.size(); ++inputNdx) { const glu::VarType &varType = m_inputs[inputNdx].varType; const VarLayout &layout = m_inputLayout[inputNdx]; copyToBuffer(varType, layout, numValues, inputPtrs[inputNdx], mapPtr); } } catch (...) { gl.unmapBuffer(GL_SHADER_STORAGE_BUFFER); throw; } gl.unmapBuffer(GL_SHADER_STORAGE_BUFFER); GLU_EXPECT_NO_ERROR(gl.getError(), "glUnmapBuffer()"); } void BufferIoExecutor::readOutputBuffer(void *const *outputPtrs, int numValues) { const glw::Functions &gl = m_renderCtx.getFunctions(); const uint32_t buffer = *m_outputBuffer; const uint32_t outputStride = getLayoutStride(m_outputLayout); const int outputBufferSize = numValues * outputStride; DE_ASSERT(outputBufferSize > 0); // At least some outputs are required. gl.memoryBarrier(GL_BUFFER_UPDATE_BARRIER_BIT); gl.bindBuffer(GL_SHADER_STORAGE_BUFFER, buffer); void *mapPtr = gl.mapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, outputBufferSize, GL_MAP_READ_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "glMapBufferRange()"); TCU_CHECK(mapPtr); try { DE_ASSERT(m_outputs.size() == m_outputLayout.size()); for (size_t outputNdx = 0; outputNdx < m_outputs.size(); ++outputNdx) { const glu::VarType &varType = m_outputs[outputNdx].varType; const VarLayout &layout = m_outputLayout[outputNdx]; copyFromBuffer(varType, layout, numValues, mapPtr, outputPtrs[outputNdx]); } } catch (...) { gl.unmapBuffer(GL_SHADER_STORAGE_BUFFER); throw; } gl.unmapBuffer(GL_SHADER_STORAGE_BUFFER); GLU_EXPECT_NO_ERROR(gl.getError(), "glUnmapBuffer()"); } void BufferIoExecutor::declareBufferBlocks(std::ostream &src, const ShaderSpec &spec) { // Input struct if (!spec.inputs.empty()) { glu::StructType inputStruct("Inputs"); for (vector::const_iterator symIter = spec.inputs.begin(); symIter != spec.inputs.end(); ++symIter) inputStruct.addMember(symIter->name.c_str(), symIter->varType); src << glu::declare(&inputStruct) << ";\n"; } // Output struct { glu::StructType outputStruct("Outputs"); for (vector::const_iterator symIter = spec.outputs.begin(); symIter != spec.outputs.end(); ++symIter) outputStruct.addMember(symIter->name.c_str(), symIter->varType); src << glu::declare(&outputStruct) << ";\n"; } src << "\n"; if (!spec.inputs.empty()) { src << "layout(binding = " << int(INPUT_BUFFER_BINDING) << ", std430) buffer InBuffer\n" << "{\n" << " Inputs inputs[];\n" << "};\n"; } src << "layout(binding = " << int(OUTPUT_BUFFER_BINDING) << ", std430) buffer OutBuffer\n" << "{\n" << " Outputs outputs[];\n" << "};\n" << "\n"; } void BufferIoExecutor::generateExecBufferIo(std::ostream &src, const ShaderSpec &spec, const char *invocationNdxName) { for (vector::const_iterator symIter = spec.inputs.begin(); symIter != spec.inputs.end(); ++symIter) src << "\t" << glu::declare(symIter->varType, symIter->name) << " = inputs[" << invocationNdxName << "]." << symIter->name << ";\n"; for (vector::const_iterator symIter = spec.outputs.begin(); symIter != spec.outputs.end(); ++symIter) src << "\t" << glu::declare(symIter->varType, symIter->name) << ";\n"; src << "\n"; { std::istringstream opSrc(spec.source); std::string line; while (std::getline(opSrc, line)) src << "\t" << line << "\n"; } src << "\n"; for (vector::const_iterator symIter = spec.outputs.begin(); symIter != spec.outputs.end(); ++symIter) src << "\toutputs[" << invocationNdxName << "]." << symIter->name << " = " << symIter->name << ";\n"; } // ComputeShaderExecutor class ComputeShaderExecutor : public BufferIoExecutor { public: ComputeShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); ~ComputeShaderExecutor(void); void execute(int numValues, const void *const *inputs, void *const *outputs); protected: static std::string generateComputeShader(const ShaderSpec &spec); tcu::IVec3 m_maxWorkSize; }; std::string ComputeShaderExecutor::generateComputeShader(const ShaderSpec &spec) { std::ostringstream src; src << glu::getGLSLVersionDeclaration(spec.version) << "\n"; if (!spec.globalDeclarations.empty()) src << spec.globalDeclarations << "\n"; src << "layout(local_size_x = 1) in;\n" << "\n"; declareBufferBlocks(src, spec); src << "void main (void)\n" << "{\n" << " uint invocationNdx = gl_NumWorkGroups.x*gl_NumWorkGroups.y*gl_WorkGroupID.z\n" << " + gl_NumWorkGroups.x*gl_WorkGroupID.y + gl_WorkGroupID.x;\n"; generateExecBufferIo(src, spec, "invocationNdx"); src << "}\n"; return src.str(); } ComputeShaderExecutor::ComputeShaderExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) : BufferIoExecutor(renderCtx, shaderSpec, glu::ProgramSources() << glu::ComputeSource(generateComputeShader(shaderSpec))) { m_maxWorkSize = tcu::IVec3(128, 128, 64); // Minimum in 3plus } ComputeShaderExecutor::~ComputeShaderExecutor(void) { } void ComputeShaderExecutor::execute(int numValues, const void *const *inputs, void *const *outputs) { const glw::Functions &gl = m_renderCtx.getFunctions(); const int maxValuesPerInvocation = m_maxWorkSize[0]; const uint32_t inputStride = getInputStride(); const uint32_t outputStride = getOutputStride(); initBuffers(numValues); // Setup input buffer & copy data uploadInputBuffer(inputs, numValues); // Perform compute invocations { int curOffset = 0; while (curOffset < numValues) { const int numToExec = de::min(maxValuesPerInvocation, numValues - curOffset); if (inputStride > 0) gl.bindBufferRange(GL_SHADER_STORAGE_BUFFER, INPUT_BUFFER_BINDING, getInputBuffer(), curOffset * inputStride, numToExec * inputStride); gl.bindBufferRange(GL_SHADER_STORAGE_BUFFER, OUTPUT_BUFFER_BINDING, getOutputBuffer(), curOffset * outputStride, numToExec * outputStride); GLU_EXPECT_NO_ERROR(gl.getError(), "glBindBufferRange(GL_SHADER_STORAGE_BUFFER)"); gl.dispatchCompute(numToExec, 1, 1); GLU_EXPECT_NO_ERROR(gl.getError(), "glDispatchCompute()"); curOffset += numToExec; } } // Read back data readOutputBuffer(outputs, numValues); } // Tessellation utils static std::string generateVertexShaderForTess(glu::GLSLVersion version) { std::ostringstream src; src << glu::getGLSLVersionDeclaration(version) << "\n"; src << "void main (void)\n{\n" << " gl_Position = vec4(gl_VertexID/2, gl_VertexID%2, 0.0, 1.0);\n" << "}\n"; return src.str(); } void checkTessSupport(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec, glu::ShaderType stage) { const int numBlockRequired = 2; // highest binding is always 1 (output) i.e. count == 2 if (glu::glslVersionIsES(shaderSpec.version) && shaderSpec.version <= glu::GLSL_VERSION_310_ES && !contextSupports(renderCtx.getType(), glu::ApiType::core(4, 5))) checkExtension(renderCtx, "GL_EXT_tessellation_shader"); if (stage == glu::SHADERTYPE_TESSELLATION_CONTROL) checkLimit(renderCtx, GL_MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS, numBlockRequired); else if (stage == glu::SHADERTYPE_TESSELLATION_EVALUATION) checkLimit(renderCtx, GL_MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS, numBlockRequired); else DE_ASSERT(false); } // TessControlExecutor class TessControlExecutor : public BufferIoExecutor { public: static TessControlExecutor *create(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); ~TessControlExecutor(void); void execute(int numValues, const void *const *inputs, void *const *outputs); protected: static std::string generateTessControlShader(const ShaderSpec &shaderSpec); private: TessControlExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); }; TessControlExecutor *TessControlExecutor::create(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) { checkTessSupport(renderCtx, shaderSpec, glu::SHADERTYPE_TESSELLATION_CONTROL); return new TessControlExecutor(renderCtx, shaderSpec); } std::string TessControlExecutor::generateTessControlShader(const ShaderSpec &shaderSpec) { std::ostringstream src; src << glu::getGLSLVersionDeclaration(shaderSpec.version) << "\n"; if (glu::glslVersionIsES(shaderSpec.version) && shaderSpec.version <= glu::GLSL_VERSION_310_ES) src << "#extension GL_EXT_tessellation_shader : require\n"; if (!shaderSpec.globalDeclarations.empty()) src << shaderSpec.globalDeclarations << "\n"; src << "\nlayout(vertices = 1) out;\n\n"; declareBufferBlocks(src, shaderSpec); src << "void main (void)\n{\n"; for (int ndx = 0; ndx < 2; ndx++) src << "\tgl_TessLevelInner[" << ndx << "] = 1.0;\n"; for (int ndx = 0; ndx < 4; ndx++) src << "\tgl_TessLevelOuter[" << ndx << "] = 1.0;\n"; src << "\n" << "\thighp uint invocationId = uint(gl_PrimitiveID);\n"; generateExecBufferIo(src, shaderSpec, "invocationId"); src << "}\n"; return src.str(); } static std::string generateEmptyTessEvalShader(glu::GLSLVersion version) { std::ostringstream src; src << glu::getGLSLVersionDeclaration(version) << "\n"; if (glu::glslVersionIsES(version) && version <= glu::GLSL_VERSION_310_ES) src << "#extension GL_EXT_tessellation_shader : require\n\n"; src << "layout(triangles, ccw) in;\n"; src << "\nvoid main (void)\n{\n" << "\tgl_Position = vec4(gl_TessCoord.xy, 0.0, 1.0);\n" << "}\n"; return src.str(); } TessControlExecutor::TessControlExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) : BufferIoExecutor(renderCtx, shaderSpec, glu::ProgramSources() << glu::VertexSource(generateVertexShaderForTess(shaderSpec.version)) << glu::TessellationControlSource(generateTessControlShader(shaderSpec)) << glu::TessellationEvaluationSource(generateEmptyTessEvalShader(shaderSpec.version)) << glu::FragmentSource(generateEmptyFragmentSource(shaderSpec.version))) { } TessControlExecutor::~TessControlExecutor(void) { } void TessControlExecutor::execute(int numValues, const void *const *inputs, void *const *outputs) { const glw::Functions &gl = m_renderCtx.getFunctions(); initBuffers(numValues); // Setup input buffer & copy data uploadInputBuffer(inputs, numValues); if (!m_inputs.empty()) gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, INPUT_BUFFER_BINDING, getInputBuffer()); gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, OUTPUT_BUFFER_BINDING, getOutputBuffer()); uint32_t vertexArray; gl.genVertexArrays(1, &vertexArray); gl.bindVertexArray(vertexArray); // Render patches gl.patchParameteri(GL_PATCH_VERTICES, 3); gl.drawArrays(GL_PATCHES, 0, 3 * numValues); gl.bindVertexArray(0); gl.deleteVertexArrays(1, &vertexArray); // Read back data readOutputBuffer(outputs, numValues); } // TessEvaluationExecutor class TessEvaluationExecutor : public BufferIoExecutor { public: static TessEvaluationExecutor *create(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); ~TessEvaluationExecutor(void); void execute(int numValues, const void *const *inputs, void *const *outputs); protected: static std::string generateTessEvalShader(const ShaderSpec &shaderSpec); private: TessEvaluationExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec); }; TessEvaluationExecutor *TessEvaluationExecutor::create(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) { checkTessSupport(renderCtx, shaderSpec, glu::SHADERTYPE_TESSELLATION_EVALUATION); return new TessEvaluationExecutor(renderCtx, shaderSpec); } static std::string generatePassthroughTessControlShader(glu::GLSLVersion version) { std::ostringstream src; src << glu::getGLSLVersionDeclaration(version) << "\n"; if (glu::glslVersionIsES(version) && version <= glu::GLSL_VERSION_310_ES) src << "#extension GL_EXT_tessellation_shader : require\n\n"; src << "layout(vertices = 1) out;\n\n"; src << "void main (void)\n{\n"; for (int ndx = 0; ndx < 2; ndx++) src << "\tgl_TessLevelInner[" << ndx << "] = 1.0;\n"; for (int ndx = 0; ndx < 4; ndx++) src << "\tgl_TessLevelOuter[" << ndx << "] = 1.0;\n"; src << "}\n"; return src.str(); } std::string TessEvaluationExecutor::generateTessEvalShader(const ShaderSpec &shaderSpec) { std::ostringstream src; src << glu::getGLSLVersionDeclaration(shaderSpec.version) << "\n"; if (glu::glslVersionIsES(shaderSpec.version) && shaderSpec.version <= glu::GLSL_VERSION_310_ES) src << "#extension GL_EXT_tessellation_shader : require\n"; if (!shaderSpec.globalDeclarations.empty()) src << shaderSpec.globalDeclarations << "\n"; src << "\n"; src << "layout(isolines, equal_spacing) in;\n\n"; declareBufferBlocks(src, shaderSpec); src << "void main (void)\n{\n" << "\tgl_Position = vec4(gl_TessCoord.x, 0.0, 0.0, 1.0);\n" << "\thighp uint invocationId = uint(gl_PrimitiveID)*2u + (gl_TessCoord.x > 0.5 ? 1u : 0u);\n"; generateExecBufferIo(src, shaderSpec, "invocationId"); src << "}\n"; return src.str(); } TessEvaluationExecutor::TessEvaluationExecutor(const glu::RenderContext &renderCtx, const ShaderSpec &shaderSpec) : BufferIoExecutor(renderCtx, shaderSpec, glu::ProgramSources() << glu::VertexSource(generateVertexShaderForTess(shaderSpec.version)) << glu::TessellationControlSource(generatePassthroughTessControlShader(shaderSpec.version)) << glu::TessellationEvaluationSource(generateTessEvalShader(shaderSpec)) << glu::FragmentSource(generateEmptyFragmentSource(shaderSpec.version))) { } TessEvaluationExecutor::~TessEvaluationExecutor(void) { } void TessEvaluationExecutor::execute(int numValues, const void *const *inputs, void *const *outputs) { const glw::Functions &gl = m_renderCtx.getFunctions(); const int alignedValues = deAlign32(numValues, 2); // Initialize buffers with aligned value count to make room for padding initBuffers(alignedValues); // Setup input buffer & copy data uploadInputBuffer(inputs, numValues); // \todo [2014-06-26 pyry] Duplicate last value in the buffer to prevent infinite loops for example? if (!m_inputs.empty()) gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, INPUT_BUFFER_BINDING, getInputBuffer()); gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, OUTPUT_BUFFER_BINDING, getOutputBuffer()); uint32_t vertexArray; gl.genVertexArrays(1, &vertexArray); gl.bindVertexArray(vertexArray); // Render patches gl.patchParameteri(GL_PATCH_VERTICES, 2); gl.drawArrays(GL_PATCHES, 0, alignedValues); gl.bindVertexArray(0); gl.deleteVertexArrays(1, &vertexArray); // Read back data readOutputBuffer(outputs, numValues); } // Utilities ShaderExecutor *createExecutor(const glu::RenderContext &renderCtx, glu::ShaderType shaderType, const ShaderSpec &shaderSpec) { switch (shaderType) { case glu::SHADERTYPE_VERTEX: return new VertexShaderExecutor(renderCtx, shaderSpec); case glu::SHADERTYPE_TESSELLATION_CONTROL: return TessControlExecutor::create(renderCtx, shaderSpec); case glu::SHADERTYPE_TESSELLATION_EVALUATION: return TessEvaluationExecutor::create(renderCtx, shaderSpec); case glu::SHADERTYPE_GEOMETRY: return GeometryShaderExecutor::create(renderCtx, shaderSpec); case glu::SHADERTYPE_FRAGMENT: return new FragmentShaderExecutor(renderCtx, shaderSpec); case glu::SHADERTYPE_COMPUTE: return new ComputeShaderExecutor(renderCtx, shaderSpec); default: throw tcu::InternalError("Unsupported shader type"); } } bool executorSupported(glu::ShaderType shaderType) { switch (shaderType) { case glu::SHADERTYPE_VERTEX: case glu::SHADERTYPE_TESSELLATION_CONTROL: case glu::SHADERTYPE_TESSELLATION_EVALUATION: case glu::SHADERTYPE_GEOMETRY: case glu::SHADERTYPE_FRAGMENT: case glu::SHADERTYPE_COMPUTE: return true; default: return false; } } } // namespace ShaderExecUtil } // namespace gls } // namespace deqp