# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpGather, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class Index(NodeVisitor): # schema = aten::index.Tensor(Tensor self, Tensor?[] indices) -> Tensor target = ["aten.index.Tensor"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) if len(node.args[1]) > 1: # TODO consider to implement it in a recursive way. raise NotImplementedError("Not support tuple of tensor.") indices_node = node.args[1][0] indices_tensor = self.get_tensor(indices_node, node).to(torch.int32) assert indices_tensor.size(0) != 0, "Not support empty indices list" indices_tensor_wrapper = self.define_tensor( indices_node, indices_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) gather_input_tensors = [input_tensor_wrapper, indices_tensor_wrapper] output_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) gather_output_tensors = [output_tensor_wrapper] gather_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpGather.op_name, ) gather_op.AddInputTensors(gather_input_tensors) gather_op.AddOutputTensors(gather_output_tensors) # If support tuple of tensor, need to refine it based on len gather_op.AddScalarParam( OpGather.param_axis, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_INT_32, {"data": np.int32(0)}, ) return gather_op