# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import torch from executorch.backends.qualcomm.utils.constants import QCOM_QUANT_ATTRS from executorch.exir.dialects._ops import ops as exir_ops from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpElementWisePower, QNN_OP_PACKAGE_NAME_QTI_AISW # TODO Add more class Like PowTensorTensor if needed @register_node_visitor class PowTensorScalar(NodeVisitor): target = ["aten.pow.Tensor_Scalar"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: out_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, out_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) pow_output_tensors = [output_tensor_wrapper] # tensor input input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) tensor_type = PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE input_tensor_wrapper = self.define_tensor( input_node, input_tensor, tensor_type, nodes_to_wrappers, is_input_tensor=True, ) # scalar input scalar = node.args[1] scalar_tensor = torch.tensor(scalar).to(torch.float32) # 'graph', 'name', 'op', 'target', 'args', and 'kwargs' scalar_node = torch.fx.Node( node.graph, node.name + "_runtime_scalar", "call_function", exir_ops.edge.aten.scalar_tensor.default, (), # args {}, # kwargs ) if pow_quant_attrs := node.meta.get(QCOM_QUANT_ATTRS): quant_attrs = pow_quant_attrs.copy() quant_range = quant_attrs["quant_max"] - quant_attrs["quant_min"] quant_attrs["zero_point"] = 0 if scalar >= 0 else quant_attrs["quant_max"] quant_attrs["scale"] = ( scalar / quant_range if scalar >= 0 else -scalar / quant_range ) scalar_node.meta[QCOM_QUANT_ATTRS] = quant_attrs scalar_tensor_wrapper = self.define_tensor( scalar_node, scalar_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_STATIC, nodes_to_wrappers, is_input_tensor=False, ) pow_input_tensors = [input_tensor_wrapper, scalar_tensor_wrapper] pow_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpElementWisePower.op_name, ) pow_op.AddInputTensors(pow_input_tensors) pow_op.AddOutputTensors(pow_output_tensors) return pow_op