# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from executorch.backends.xnnpack.test.tester import Tester class TestSquare(unittest.TestCase): class Square(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): z = torch.square(x) return z def _test_square(self, inputs): """ Note that torch.square maps to aten.pow.Tensor_Scalar. The pow visitor has logic to emit the appropriate XNNPACK square op when the exponent is 2. """ ( Tester(self.Square(), inputs) .export() .check_count({"torch.ops.aten.square.default": 1}) .to_edge_transform_and_lower() .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) .check_not(["executorch_exir_dialects_edge__ops_aten_pow_Tensor_Scalar"]) .to_executorch() .serialize() .run_method_and_compare_outputs() ) def test_fp16_square(self): inputs = (torch.randn(20).to(torch.float16),) self._test_square(inputs) def test_fp32_square(self): inputs = (torch.randn(20),) self._test_square(inputs)