# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json import os from multiprocessing.connection import Client import numpy as np import torch from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype from executorch.examples.qualcomm.utils import ( build_executorch_binary, get_imagenet_dataset, make_output_dir, parse_skip_delegation_node, setup_common_args_and_variables, SimpleADB, topk_accuracy, ) def main(args): skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args) # ensure the working directory exist. os.makedirs(args.artifact, exist_ok=True) if not args.compile_only and args.device is None: raise RuntimeError( "device serial is required if not compile only. " "Please specify a device serial by -s/--device argument." ) data_num = 100 inputs, targets, input_list = get_imagenet_dataset( dataset_path=f"{args.dataset}", data_size=data_num, image_shape=(256, 256), crop_size=224, ) pte_filename = "squeezenet_qnn" instance = torch.hub.load( "pytorch/vision:v0.13.0", "squeezenet1_1", weights="SqueezeNet1_1_Weights.DEFAULT", ) build_executorch_binary( instance.eval(), (torch.randn(1, 3, 224, 224),), args.model, f"{args.artifact}/{pte_filename}", inputs, skip_node_id_set=skip_node_id_set, skip_node_op_set=skip_node_op_set, quant_dtype=QuantDtype.use_8a8w, shared_buffer=args.shared_buffer, ) if args.compile_only: return adb = SimpleADB( qnn_sdk=os.getenv("QNN_SDK_ROOT"), build_path=f"{args.build_folder}", pte_path=f"{args.artifact}/{pte_filename}.pte", workspace=f"/data/local/tmp/executorch/{pte_filename}", device_id=args.device, host_id=args.host, soc_model=args.model, ) adb.push(inputs=inputs, input_list=input_list) adb.execute() # collect output data output_data_folder = f"{args.artifact}/outputs" make_output_dir(output_data_folder) adb.pull(output_path=args.artifact) # top-k analysis predictions = [] for i in range(data_num): predictions.append( np.fromfile( os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.float32 ) ) k_val = [1, 5] topk = [topk_accuracy(predictions, targets, k).item() for k in k_val] if args.ip and args.port != -1: with Client((args.ip, args.port)) as conn: conn.send(json.dumps({f"top_{k}": topk[i] for i, k in enumerate(k_val)})) else: for i, k in enumerate(k_val): print(f"top_{k}->{topk[i]}%") if __name__ == "__main__": parser = setup_common_args_and_variables() parser.add_argument( "-d", "--dataset", help=( "path to the validation folder of ImageNet dataset. " "e.g. --dataset imagenet-mini/val " "for https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000)" ), type=str, required=True, ) parser.add_argument( "-a", "--artifact", help="path for storing generated artifacts by this example. " "Default ./squeezenet", default="./squeezenet", type=str, ) args = parser.parse_args() try: main(args) except Exception as e: if args.ip and args.port != -1: with Client((args.ip, args.port)) as conn: conn.send(json.dumps({"Error": str(e)})) else: raise Exception(e)