# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json import os import random import re from multiprocessing.connection import Client import numpy as np import torch from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype from executorch.examples.models.deeplab_v3 import DeepLabV3ResNet101Model from executorch.examples.qualcomm.utils import ( build_executorch_binary, make_output_dir, parse_skip_delegation_node, segmentation_metrics, setup_common_args_and_variables, SimpleADB, ) def get_dataset(data_size, dataset_dir, download): import numpy as np from torchvision import datasets, transforms input_size = (224, 224) preprocess = transforms.Compose( [ transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) dataset = list( datasets.VOCSegmentation( root=os.path.join(dataset_dir, "voc_image"), year="2012", image_set="val", transform=preprocess, download=download, ) ) # prepare input data random.shuffle(dataset) inputs, targets, input_list = [], [], "" for index, data in enumerate(dataset): if index >= data_size: break image, target = data inputs.append((image.unsqueeze(0),)) targets.append(np.array(target.resize(input_size))) input_list += f"input_{index}_0.raw\n" return inputs, targets, input_list def main(args): skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args) # ensure the working directory exist. os.makedirs(args.artifact, exist_ok=True) if not args.compile_only and args.device is None: raise RuntimeError( "device serial is required if not compile only. " "Please specify a device serial by -s/--device argument." ) data_num = 100 if args.compile_only: inputs = [(torch.rand(1, 3, 224, 224),)] else: inputs, targets, input_list = get_dataset( data_size=data_num, dataset_dir=args.artifact, download=args.download ) pte_filename = "dl3_qnn_q8" instance = DeepLabV3ResNet101Model() build_executorch_binary( instance.get_eager_model().eval(), instance.get_example_inputs(), args.model, f"{args.artifact}/{pte_filename}", inputs, skip_node_id_set=skip_node_id_set, skip_node_op_set=skip_node_op_set, quant_dtype=QuantDtype.use_8a8w, shared_buffer=args.shared_buffer, ) if args.compile_only: return adb = SimpleADB( qnn_sdk=os.getenv("QNN_SDK_ROOT"), build_path=f"{args.build_folder}", pte_path=f"{args.artifact}/{pte_filename}.pte", workspace=f"/data/local/tmp/executorch/{pte_filename}", device_id=args.device, host_id=args.host, soc_model=args.model, shared_buffer=args.shared_buffer, ) adb.push(inputs=inputs, input_list=input_list) adb.execute() # collect output data output_data_folder = f"{args.artifact}/outputs" make_output_dir(output_data_folder) # remove the auxiliary output and data processing classes = [ "Backround", "Aeroplane", "Bicycle", "Bird", "Boat", "Bottle", "Bus", "Car", "Cat", "Chair", "Cow", "DiningTable", "Dog", "Horse", "MotorBike", "Person", "PottedPlant", "Sheep", "Sofa", "Train", "TvMonitor", ] def post_process(): for f in os.listdir(output_data_folder): filename = os.path.join(output_data_folder, f) if re.match(r"^output_[0-9]+_[1-9].raw$", f): os.remove(filename) else: output = np.fromfile(filename, dtype=np.float32) output_shape = [len(classes), 224, 224] output = output.reshape(output_shape) output.argmax(0).astype(np.uint8).tofile(filename) adb.pull(output_path=args.artifact, callback=post_process) # segmentation metrics predictions = [] for i in range(data_num): predictions.append( np.fromfile( os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.uint8 ) ) pa, mpa, miou, cls_iou = segmentation_metrics(predictions, targets, classes) if args.ip and args.port != -1: with Client((args.ip, args.port)) as conn: conn.send( json.dumps({"PA": float(pa), "MPA": float(mpa), "MIoU": float(miou)}) ) else: print(f"PA : {pa}%") print(f"MPA : {mpa}%") print(f"MIoU : {miou}%") print(f"CIoU : \n{json.dumps(cls_iou, indent=2)}") if __name__ == "__main__": parser = setup_common_args_and_variables() parser.add_argument( "-a", "--artifact", help="path for storing generated artifacts by this example. Default ./deeplab_v3", default="./deeplab_v3", type=str, ) parser.add_argument( "-d", "--download", help="If specified, download VOCSegmentation dataset by torchvision API", action="store_true", default=False, ) args = parser.parse_args() try: main(args) except Exception as e: if args.ip and args.port != -1: with Client((args.ip, args.port)) as conn: conn.send(json.dumps({"Error": str(e)})) else: raise Exception(e)