/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #include #include #include #include namespace torch { namespace executor { namespace native { using Tensor = exec_aten::Tensor; Tensor& opt_mm_out( RuntimeContext& ctx, const Tensor& in, const Tensor& mat2, Tensor& out) { ET_KERNEL_CHECK(ctx, check_mm_args(in, mat2, out), InvalidArgument, out); size_t output_ndim = 0; std::array output_sizes; get_mm_out_target_size(in, mat2, output_sizes.data(), &output_ndim); ET_KERNEL_CHECK( ctx, resize_tensor(out, {output_sizes.data(), output_ndim}) == Error::Ok, InvalidArgument, out); if (out.numel() == 0) { return out; } ET_SWITCH_REAL_TYPES_AND2( Half, BFloat16, in.scalar_type(), ctx, "mm.out", CTYPE, [&]() { size_t n = in.size(0); size_t k = in.size(1); size_t m = mat2.size(1); // gemm expects column-major inputs and produces column-major // output. So, we take advantage of the identity (A @ B).t() // = B.t() @ A.t() here; row-major B is B.t() from gemm's // column-major perspective, etc. executorch::cpublas::gemm( executorch::cpublas::TransposeType::NoTranspose, executorch::cpublas::TransposeType::NoTranspose, m, n, k, static_cast(1), mat2.const_data_ptr(), m, in.const_data_ptr(), k, static_cast(0), out.mutable_data_ptr(), m); }); return out; } } // namespace native } // namespace executor } // namespace torch