//===-- Half-precision 10^x - 1 function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/exp10m1f16.h" #include "expxf16.h" #include "hdr/errno_macros.h" #include "hdr/fenv_macros.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/cast.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" #include "src/__support/macros/properties/cpu_features.h" namespace LIBC_NAMESPACE_DECL { static constexpr fputil::ExceptValues EXP10M1F16_EXCEPTS_LO = {{ // (input, RZ output, RU offset, RD offset, RN offset) // x = 0x1.5c4p-4, exp10m1f16(x) = 0x1.bacp-3 (RZ) {0x2d71U, 0x32ebU, 1U, 0U, 0U}, // x = -0x1.5ep-13, exp10m1f16(x) = -0x1.92cp-12 (RZ) {0x8978U, 0x8e4bU, 0U, 1U, 0U}, // x = -0x1.e2p-10, exp10m1f16(x) = -0x1.14cp-8 (RZ) {0x9788U, 0x9c53U, 0U, 1U, 0U}, }}; #ifdef LIBC_TARGET_CPU_HAS_FMA static constexpr size_t N_EXP10M1F16_EXCEPTS_HI = 3; #else static constexpr size_t N_EXP10M1F16_EXCEPTS_HI = 6; #endif static constexpr fputil::ExceptValues EXP10M1F16_EXCEPTS_HI = {{ // (input, RZ output, RU offset, RD offset, RN offset) // x = 0x1.8f4p-2, exp10m1f16(x) = 0x1.744p+0 (RZ) {0x363dU, 0x3dd1U, 1U, 0U, 0U}, // x = 0x1.95cp-2, exp10m1f16(x) = 0x1.7d8p+0 (RZ) {0x3657U, 0x3df6U, 1U, 0U, 0U}, // x = 0x1.d04p-2, exp10m1f16(x) = 0x1.d7p+0 (RZ) {0x3741U, 0x3f5cU, 1U, 0U, 1U}, #ifndef LIBC_TARGET_CPU_HAS_FMA // x = 0x1.0cp+1, exp10m1f16(x) = 0x1.ec4p+6 (RZ) {0x4030U, 0x57b1U, 1U, 0U, 1U}, // x = 0x1.1b8p+1, exp10m1f16(x) = 0x1.45cp+7 (RZ) {0x406eU, 0x5917U, 1U, 0U, 1U}, // x = 0x1.2f4p+2, exp10m1f16(x) = 0x1.ab8p+15 (RZ) {0x44bdU, 0x7aaeU, 1U, 0U, 1U}, #endif }}; LLVM_LIBC_FUNCTION(float16, exp10m1f16, (float16 x)) { using FPBits = fputil::FPBits; FPBits x_bits(x); uint16_t x_u = x_bits.uintval(); uint16_t x_abs = x_u & 0x7fffU; // When |x| <= 2^(-3), or |x| >= 11 * log10(2), or x is NaN. if (LIBC_UNLIKELY(x_abs <= 0x3000U || x_abs >= 0x429fU)) { // exp10m1(NaN) = NaN if (x_bits.is_nan()) { if (x_bits.is_signaling_nan()) { fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } return x; } // When x >= 16 * log10(2). if (x_u >= 0x44d1U && x_bits.is_pos()) { // exp10m1(+inf) = +inf if (x_bits.is_inf()) return FPBits::inf().get_val(); switch (fputil::quick_get_round()) { case FE_TONEAREST: case FE_UPWARD: fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_OVERFLOW | FE_INEXACT); return FPBits::inf().get_val(); default: return FPBits::max_normal().get_val(); } } // When x < -11 * log10(2). if (x_u > 0xc29fU) { // exp10m1(-inf) = -1 if (x_bits.is_inf()) return FPBits::one(Sign::NEG).get_val(); // When x >= -0x1.ce4p+1, round(10^x - 1, HP, RN) = -0x1.ffcp-1. if (x_u <= 0xc339U) { return fputil::round_result_slightly_down( fputil::cast(-0x1.ffcp-1)); } // When x < -0x1.ce4p+1, round(10^x - 1, HP, RN) = -1. switch (fputil::quick_get_round()) { case FE_TONEAREST: case FE_DOWNWARD: return FPBits::one(Sign::NEG).get_val(); default: return fputil::cast(-0x1.ffcp-1); } } // When |x| <= 2^(-3). if (x_abs <= 0x3000U) { if (LIBC_UNLIKELY(x_abs == 0)) return x; if (auto r = EXP10M1F16_EXCEPTS_LO.lookup(x_u); LIBC_UNLIKELY(r.has_value())) return r.value(); float xf = x; // Degree-5 minimax polynomial generated by Sollya with the following // commands: // > display = hexadecimal; // > P = fpminimax((10^x - 1)/x, 4, [|SG...|], [-2^-3, 2^-3]); // > x * P; return fputil::cast( xf * fputil::polyeval(xf, 0x1.26bb1cp+1f, 0x1.5351c8p+1f, 0x1.04704p+1f, 0x1.2ce084p+0f, 0x1.14a6bep-1f)); } } // When x is 1, 2, or 3. These are hard-to-round cases with exact results. // 10^4 - 1 = 9'999 is not exactly representable as a float16, but luckily the // polynomial approximation gives the correct result for x = 4 in all // rounding modes. if (LIBC_UNLIKELY((x_u & ~(0x3c00U | 0x4000U | 0x4200U | 0x4400U)) == 0)) { switch (x_u) { case 0x3c00U: // x = 1.0f16 return fputil::cast(9.0); case 0x4000U: // x = 2.0f16 return fputil::cast(99.0); case 0x4200U: // x = 3.0f16 return fputil::cast(999.0); } } if (auto r = EXP10M1F16_EXCEPTS_HI.lookup(x_u); LIBC_UNLIKELY(r.has_value())) return r.value(); // exp10(x) = exp2((hi + mid) * log2(10)) * exp10(lo) auto [exp2_hi_mid, exp10_lo] = exp10_range_reduction(x); // exp10m1(x) = exp2((hi + mid) * log2(lo)) * exp10(lo) - 1 return fputil::cast( fputil::multiply_add(exp2_hi_mid, exp10_lo, -1.0f)); } } // namespace LIBC_NAMESPACE_DECL