//===-- Double-precision 2^x function -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/exp2.h" #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2. #include "explogxf.h" // ziv_test_denorm. #include "src/__support/CPP/bit.h" #include "src/__support/CPP/optional.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/double_double.h" #include "src/__support/FPUtil/dyadic_float.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/FPUtil/triple_double.h" #include "src/__support/common.h" #include "src/__support/integer_literals.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY namespace LIBC_NAMESPACE_DECL { using fputil::DoubleDouble; using fputil::TripleDouble; using Float128 = typename fputil::DyadicFloat<128>; using LIBC_NAMESPACE::operator""_u128; // Error bounds: // Errors when using double precision. #ifdef LIBC_TARGET_CPU_HAS_FMA constexpr double ERR_D = 0x1.0p-63; #else constexpr double ERR_D = 0x1.8p-63; #endif // LIBC_TARGET_CPU_HAS_FMA // Errors when using double-double precision. constexpr double ERR_DD = 0x1.0p-100; namespace { // Polynomial approximations with double precision. Generated by Sollya with: // > P = fpminimax((2^x - 1)/x, 3, [|D...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]); // > P; // Error bounds: // | output - (2^dx - 1) / dx | < 1.5 * 2^-52. LIBC_INLINE double poly_approx_d(double dx) { // dx^2 double dx2 = dx * dx; double c0 = fputil::multiply_add(dx, 0x1.ebfbdff82c58ep-3, 0x1.62e42fefa39efp-1); double c1 = fputil::multiply_add(dx, 0x1.3b2aba7a95a89p-7, 0x1.c6b08e8fc0c0ep-5); double p = fputil::multiply_add(dx2, c1, c0); return p; } // Polynomial approximation with double-double precision. Generated by Solya // with: // > P = fpminimax((2^x - 1)/x, 5, [|DD...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]); // Error bounds: // | output - 2^(dx) | < 2^-101 DoubleDouble poly_approx_dd(const DoubleDouble &dx) { // Taylor polynomial. constexpr DoubleDouble COEFFS[] = { {0, 0x1p0}, {0x1.abc9e3b39824p-56, 0x1.62e42fefa39efp-1}, {-0x1.5e43a53e4527bp-57, 0x1.ebfbdff82c58fp-3}, {-0x1.d37963a9444eep-59, 0x1.c6b08d704a0cp-5}, {0x1.4eda1a81133dap-62, 0x1.3b2ab6fba4e77p-7}, {-0x1.c53fd1ba85d14p-64, 0x1.5d87fe7a265a5p-10}, {0x1.d89250b013eb8p-70, 0x1.430912f86cb8ep-13}, }; DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); return p; } // Polynomial approximation with 128-bit precision: // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7 // For |dx| < 2^-13 + 2^-30: // | output - exp(dx) | < 2^-126. Float128 poly_approx_f128(const Float128 &dx) { constexpr Float128 COEFFS_128[]{ {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 {Sign::POS, -128, 0xb17217f7'd1cf79ab'c9e3b398'03f2f6af_u128}, {Sign::POS, -128, 0x3d7f7bff'058b1d50'de2d60dd'9c9a1d9f_u128}, {Sign::POS, -132, 0xe35846b8'2505fc59'9d3b15d9'e7fb6897_u128}, {Sign::POS, -134, 0x9d955b7d'd273b94e'184462f6'bcd2b9e7_u128}, {Sign::POS, -137, 0xaec3ff3c'53398883'39ea1bb9'64c51a89_u128}, {Sign::POS, -138, 0x2861225f'345c396a'842c5341'8fa8ae61_u128}, {Sign::POS, -144, 0xffe5fe2d'109a319d'7abeb5ab'd5ad2079_u128}, }; Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], COEFFS_128[6], COEFFS_128[7]); return p; } // Compute 2^(x) using 128-bit precision. // TODO(lntue): investigate triple-double precision implementation for this // step. Float128 exp2_f128(double x, int hi, int idx1, int idx2) { Float128 dx = Float128(x); // TODO: Skip recalculating exp_mid1 and exp_mid2. Float128 exp_mid1 = fputil::quick_add(Float128(EXP2_MID1[idx1].hi), fputil::quick_add(Float128(EXP2_MID1[idx1].mid), Float128(EXP2_MID1[idx1].lo))); Float128 exp_mid2 = fputil::quick_add(Float128(EXP2_MID2[idx2].hi), fputil::quick_add(Float128(EXP2_MID2[idx2].mid), Float128(EXP2_MID2[idx2].lo))); Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); Float128 p = poly_approx_f128(dx); Float128 r = fputil::quick_mul(exp_mid, p); r.exponent += hi; return r; } // Compute 2^x with double-double precision. DoubleDouble exp2_double_double(double x, const DoubleDouble &exp_mid) { DoubleDouble dx({0, x}); // Degree-6 polynomial approximation in double-double precision. // | p - 2^x | < 2^-103. DoubleDouble p = poly_approx_dd(dx); // Error bounds: 2^-102. DoubleDouble r = fputil::quick_mult(exp_mid, p); return r; } // When output is denormal. double exp2_denorm(double x) { // Range reduction. int k = static_cast(cpp::bit_cast(x + 0x1.8000'0000'4p21) >> 19); double kd = static_cast(k); uint32_t idx1 = (k >> 6) & 0x3f; uint32_t idx2 = k & 0x3f; int hi = k >> 12; DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); // |dx| < 2^-13 + 2^-30. double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact double mid_lo = dx * exp_mid.hi; // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. double p = poly_approx_d(dx); double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D); LIBC_LIKELY(r.has_value())) return r.value(); // Use double-double DoubleDouble r_dd = exp2_double_double(dx, exp_mid); if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD); LIBC_LIKELY(r.has_value())) return r.value(); // Use 128-bit precision Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2); return static_cast(r_f128); } // Check for exceptional cases when: // * log2(1 - 2^-54) < x < log2(1 + 2^-53) // * x >= 1024 // * x <= -1022 // * x is inf or nan double set_exceptional(double x) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint64_t x_u = xbits.uintval(); uint64_t x_abs = xbits.abs().uintval(); // |x| < log2(1 + 2^-53) if (x_abs <= 0x3ca71547652b82fd) { // 2^(x) ~ 1 + x/2 return fputil::multiply_add(x, 0.5, 1.0); } // x <= -1022 || x >= 1024 or inf/nan. if (x_u > 0xc08ff00000000000) { // x <= -1075 or -inf/nan if (x_u >= 0xc090cc0000000000) { // exp(-Inf) = 0 if (xbits.is_inf()) return 0.0; // exp(nan) = nan if (xbits.is_nan()) return x; if (fputil::quick_get_round() == FE_UPWARD) return FPBits::min_subnormal().get_val(); fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_UNDERFLOW); return 0.0; } return exp2_denorm(x); } // x >= 1024 or +inf/nan // x is finite if (x_u < 0x7ff0'0000'0000'0000ULL) { int rounding = fputil::quick_get_round(); if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) return FPBits::max_normal().get_val(); fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_OVERFLOW); } // x is +inf or nan return x + FPBits::inf().get_val(); } } // namespace LLVM_LIBC_FUNCTION(double, exp2, (double x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint64_t x_u = xbits.uintval(); // x < -1022 or x >= 1024 or log2(1 - 2^-54) < x < log2(1 + 2^-53). if (LIBC_UNLIKELY(x_u > 0xc08ff00000000000 || (x_u <= 0xbc971547652b82fe && x_u >= 0x4090000000000000) || x_u <= 0x3ca71547652b82fd)) { return set_exceptional(x); } // Now -1075 < x <= log2(1 - 2^-54) or log2(1 + 2^-53) < x < 1024 // Range reduction: // Let x = (hi + mid1 + mid2) + lo // in which: // hi is an integer // mid1 * 2^6 is an integer // mid2 * 2^12 is an integer // then: // 2^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 2^(lo). // With this formula: // - multiplying by 2^hi is exact and cheap, simply by adding the exponent // field. // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. // - 2^(lo) ~ 1 + a0*lo + a1 * lo^2 + ... // // We compute (hi + mid1 + mid2) together by perform the rounding on x * 2^12. // Since |x| < |-1075)| < 2^11, // |x * 2^12| < 2^11 * 2^12 < 2^23, // So we can fit the rounded result round(x * 2^12) in int32_t. // Thus, the goal is to be able to use an additional addition and fixed width // shift to get an int32_t representing round(x * 2^12). // // Assuming int32_t using 2-complement representation, since the mantissa part // of a double precision is unsigned with the leading bit hidden, if we add an // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be // considered as a proper 2-complement representations of x*2^12. // // One small problem with this approach is that the sum (x*2^12 + C) in // double precision is rounded to the least significant bit of the dorminant // factor C. In order to minimize the rounding errors from this addition, we // want to minimize e1. Another constraint that we want is that after // shifting the mantissa so that the least significant bit of int32_t // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without // any adjustment. So combining these 2 requirements, we can choose // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence // after right shifting the mantissa, the resulting int32_t has correct sign. // With this choice of C, the number of mantissa bits we need to shift to the // right is: 52 - 33 = 19. // // Moreover, since the integer right shifts are equivalent to rounding down, // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- // +infinity. So in particular, we can compute: // hmm = x * 2^12 + C, // where C = 2^33 + 2^32 + 2^-1, then if // k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19), // the reduced argument: // lo = x - 2^-12 * k is bounded by: // |lo| <= 2^-13 + 2^-12*2^-19 // = 2^-13 + 2^-31. // // Finally, notice that k only uses the mantissa of x * 2^12, so the // exponent 2^12 is not needed. So we can simply define // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and // k = int32_t(lower 51 bits of double(x + C) >> 19). // Rounding errors <= 2^-31. int k = static_cast(cpp::bit_cast(x + 0x1.8000'0000'4p21) >> 19); double kd = static_cast(k); uint32_t idx1 = (k >> 6) & 0x3f; uint32_t idx2 = k & 0x3f; int hi = k >> 12; DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); // |dx| < 2^-13 + 2^-30. double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact // We use the degree-4 polynomial to approximate 2^(lo): // 2^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 = 1 + lo * P(lo) // So that the errors are bounded by: // |P(lo) - (2^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 // Let P_ be an evaluation of P where all intermediate computations are in // double precision. Using either Horner's or Estrin's schemes, the evaluated // errors can be bounded by: // |P_(lo) - P(lo)| < 2^-51 // => |lo * P_(lo) - (2^lo - 1) | < 2^-64 // => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-63. // Since we approximate // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, // We use the expression: // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) // with errors bounded by 2^-63. double mid_lo = dx * exp_mid.hi; // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. double p = poly_approx_d(dx); double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); double upper = exp_mid.hi + (lo + ERR_D); double lower = exp_mid.hi + (lo - ERR_D); if (LIBC_LIKELY(upper == lower)) { // To multiply by 2^hi, a fast way is to simply add hi to the exponent // field. int64_t exp_hi = static_cast(hi) << FPBits::FRACTION_LEN; double r = cpp::bit_cast(exp_hi + cpp::bit_cast(upper)); return r; } // Use double-double DoubleDouble r_dd = exp2_double_double(dx, exp_mid); double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); if (LIBC_LIKELY(upper_dd == lower_dd)) { // To multiply by 2^hi, a fast way is to simply add hi to the exponent // field. int64_t exp_hi = static_cast(hi) << FPBits::FRACTION_LEN; double r = cpp::bit_cast(exp_hi + cpp::bit_cast(upper_dd)); return r; } // Use 128-bit precision Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2); return static_cast(r_f128); } } // namespace LIBC_NAMESPACE_DECL