//===-- Single-precision e^x - 1 function ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/expm1f.h" #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. #include "src/__support/FPUtil/BasicOperations.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FMA.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA namespace LIBC_NAMESPACE_DECL { LLVM_LIBC_FUNCTION(float, expm1f, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint32_t x_u = xbits.uintval(); uint32_t x_abs = x_u & 0x7fff'ffffU; // Exceptional value if (LIBC_UNLIKELY(x_u == 0x3e35'bec5U)) { // x = 0x1.6b7d8ap-3f int round_mode = fputil::quick_get_round(); if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD) return 0x1.8dbe64p-3f; return 0x1.8dbe62p-3f; } #if !defined(LIBC_TARGET_CPU_HAS_FMA) if (LIBC_UNLIKELY(x_u == 0xbdc1'c6cbU)) { // x = -0x1.838d96p-4f int round_mode = fputil::quick_get_round(); if (round_mode == FE_TONEAREST || round_mode == FE_DOWNWARD) return -0x1.71c884p-4f; return -0x1.71c882p-4f; } #endif // LIBC_TARGET_CPU_HAS_FMA // When |x| > 25*log(2), or nan if (LIBC_UNLIKELY(x_abs >= 0x418a'a123U)) { // x < log(2^-25) if (xbits.is_neg()) { // exp(-Inf) = 0 if (xbits.is_inf()) return -1.0f; // exp(nan) = nan if (xbits.is_nan()) return x; int round_mode = fputil::quick_get_round(); if (round_mode == FE_UPWARD || round_mode == FE_TOWARDZERO) return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f return -1.0f; } else { // x >= 89 or nan if (xbits.uintval() >= 0x42b2'0000) { if (xbits.uintval() < 0x7f80'0000U) { int rounding = fputil::quick_get_round(); if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) return FPBits::max_normal().get_val(); fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_OVERFLOW); } return x + FPBits::inf().get_val(); } } } // |x| < 2^-4 if (x_abs < 0x3d80'0000U) { // |x| < 2^-25 if (x_abs < 0x3300'0000U) { // x = -0.0f if (LIBC_UNLIKELY(xbits.uintval() == 0x8000'0000U)) return x; // When |x| < 2^-25, the relative error of the approximation e^x - 1 ~ x // is: // |(e^x - 1) - x| / |e^x - 1| < |x^2| / |x| // = |x| // < 2^-25 // < epsilon(1)/2. // So the correctly rounded values of expm1(x) are: // = x + eps(x) if rounding mode = FE_UPWARD, // or (rounding mode = FE_TOWARDZERO and x is // negative), // = x otherwise. // To simplify the rounding decision and make it more efficient, we use // fma(x, x, x) ~ x + x^2 instead. // Note: to use the formula x + x^2 to decide the correct rounding, we // do need fma(x, x, x) to prevent underflow caused by x*x when |x| < // 2^-76. For targets without FMA instructions, we simply use double for // intermediate results as it is more efficient than using an emulated // version of FMA. #if defined(LIBC_TARGET_CPU_HAS_FMA) return fputil::fma(x, x, x); #else double xd = x; return static_cast(fputil::multiply_add(xd, xd, xd)); #endif // LIBC_TARGET_CPU_HAS_FMA } constexpr double COEFFS[] = {0x1p-1, 0x1.55555555557ddp-3, 0x1.55555555552fap-5, 0x1.111110fcd58b7p-7, 0x1.6c16c1717660bp-10, 0x1.a0241f0006d62p-13, 0x1.a01e3f8d3c06p-16}; // 2^-25 <= |x| < 2^-4 double xd = static_cast(x); double xsq = xd * xd; // Degree-8 minimax polynomial generated by Sollya with: // > display = hexadecimal; // > P = fpminimax((expm1(x) - x)/x^2, 6, [|D...|], [-2^-4, 2^-4]); double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); double r = fputil::polyeval(xsq, c0, c1, c2, COEFFS[6]); return static_cast(fputil::multiply_add(r, xsq, xd)); } // For -18 < x < 89, to compute expm1(x), we perform the following range // reduction: find hi, mid, lo such that: // x = hi + mid + lo, in which // hi is an integer, // mid * 2^7 is an integer // -2^(-8) <= lo < 2^-8. // In particular, // hi + mid = round(x * 2^7) * 2^(-7). // Then, // expm1(x) = exp(hi + mid + lo) - 1 = exp(hi) * exp(mid) * exp(lo) - 1. // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2 // respectively. exp(lo) is computed using a degree-4 minimax polynomial // generated by Sollya. // x_hi = hi + mid. float kf = fputil::nearest_integer(x * 0x1.0p7f); int x_hi = static_cast(kf); // Subtract (hi + mid) from x to get lo. double xd = static_cast(fputil::multiply_add(kf, -0x1.0p-7f, x)); x_hi += 104 << 7; // hi = x_hi >> 7 double exp_hi = EXP_M1[x_hi >> 7]; // lo = x_hi & 0x0000'007fU; double exp_mid = EXP_M2[x_hi & 0x7f]; double exp_hi_mid = exp_hi * exp_mid; // Degree-4 minimax polynomial generated by Sollya with the following // commands: // > display = hexadecimal; // > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]); // > Q; double exp_lo = fputil::polyeval(xd, 0x1.0p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1, 0x1.555566668e5e7p-3, 0x1.55555555ef243p-5); return static_cast(fputil::multiply_add(exp_hi_mid, exp_lo, -1.0)); } } // namespace LIBC_NAMESPACE_DECL