//===-- Single-precision log1p(x) function --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/log1pf.h" #include "common_constants.h" // Lookup table for (1/f) and log(f) #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FMA.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // This is an algorithm for log10(x) in single precision which is // correctly rounded for all rounding modes. // - An exhaustive test show that when x >= 2^45, log1pf(x) == logf(x) // for all rounding modes. // - When 2^(-6) <= |x| < 2^45, the sum (double(x) + 1.0) is exact, // so we can adapt the correctly rounded algorithm of logf to compute // log(double(x) + 1.0) correctly. For more information about the logf // algorithm, see `libc/src/math/generic/logf.cpp`. // - When |x| < 2^(-6), we use a degree-8 polynomial in double precision // generated with Sollya using the following command: // fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]); namespace LIBC_NAMESPACE_DECL { namespace internal { // We don't need to treat denormal and 0 LIBC_INLINE float log(double x) { constexpr double LOG_2 = 0x1.62e42fefa39efp-1; using FPBits = typename fputil::FPBits; FPBits xbits(x); uint64_t x_u = xbits.uintval(); if (LIBC_UNLIKELY(x_u > FPBits::max_normal().uintval())) { if (xbits.is_neg() && !xbits.is_nan()) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); return fputil::FPBits::quiet_nan().get_val(); } return static_cast(x); } double m = static_cast(xbits.get_exponent()); // Get the 8 highest bits, use 7 bits (excluding the implicit hidden bit) for // lookup tables. int f_index = static_cast(xbits.get_mantissa() >> (fputil::FPBits::FRACTION_LEN - 7)); // Set bits to 1.m xbits.set_biased_exponent(0x3FF); FPBits f = xbits; // Clear the lowest 45 bits. f.set_uintval(f.uintval() & ~0x0000'1FFF'FFFF'FFFFULL); double d = xbits.get_val() - f.get_val(); d *= ONE_OVER_F[f_index]; double extra_factor = fputil::multiply_add(m, LOG_2, LOG_F[f_index]); double r = fputil::polyeval(d, extra_factor, 0x1.fffffffffffacp-1, -0x1.fffffffef9cb2p-2, 0x1.5555513bc679ap-2, -0x1.fff4805ea441p-3, 0x1.930180dbde91ap-3); return static_cast(r); } } // namespace internal LLVM_LIBC_FUNCTION(float, log1pf, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint32_t x_u = xbits.uintval(); uint32_t x_a = x_u & 0x7fff'ffffU; double xd = static_cast(x); // Use log1p(x) = log(1 + x) for |x| > 2^-6; if (x_a > 0x3c80'0000U) { // Hard-to-round cases. switch (x_u) { case 0x41078febU: // x = 0x1.0f1fd6p3 return fputil::round_result_slightly_up(0x1.1fcbcep1f); case 0x5cd69e88U: // x = 0x1.ad3d1p+58f return fputil::round_result_slightly_up(0x1.45c146p+5f); case 0x65d890d3U: // x = 0x1.b121a6p+76f return fputil::round_result_slightly_down(0x1.a9a3f2p+5f); case 0x6f31a8ecU: // x = 0x1.6351d8p+95f return fputil::round_result_slightly_down(0x1.08b512p+6f); case 0x7a17f30aU: // x = 0x1.2fe614p+117f return fputil::round_result_slightly_up(0x1.451436p+6f); case 0xbd1d20afU: // x = -0x1.3a415ep-5f return fputil::round_result_slightly_up(-0x1.407112p-5f); case 0xbf800000U: // x = -1.0 fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_DIVBYZERO); return FPBits::inf(Sign::NEG).get_val(); #ifndef LIBC_TARGET_CPU_HAS_FMA case 0x4cc1c80bU: // x = 0x1.839016p+26f return fputil::round_result_slightly_down(0x1.26fc04p+4f); case 0x5ee8984eU: // x = 0x1.d1309cp+62f return fputil::round_result_slightly_up(0x1.5c9442p+5f); case 0x665e7ca6U: // x = 0x1.bcf94cp+77f return fputil::round_result_slightly_up(0x1.af66cp+5f); case 0x79e7ec37U: // x = 0x1.cfd86ep+116f return fputil::round_result_slightly_up(0x1.43ff6ep+6f); #endif // LIBC_TARGET_CPU_HAS_FMA } return internal::log(xd + 1.0); } // |x| <= 2^-6. // Hard-to round cases. switch (x_u) { case 0x35400003U: // x = 0x1.800006p-21f return fputil::round_result_slightly_down(0x1.7ffffep-21f); case 0x3710001bU: // x = 0x1.200036p-17f return fputil::round_result_slightly_down(0x1.1fffe6p-17f); case 0xb53ffffdU: // x = -0x1.7ffffap-21 return fputil::round_result_slightly_down(-0x1.800002p-21f); case 0xb70fffe5U: // x = -0x1.1fffcap-17 return fputil::round_result_slightly_down(-0x1.20001ap-17f); case 0xbb0ec8c4U: // x = -0x1.1d9188p-9 return fputil::round_result_slightly_up(-0x1.1de14ap-9f); } // Polymial generated by Sollya with: // > fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]); const double COEFFS[7] = {-0x1.0000000000000p-1, 0x1.5555555556aadp-2, -0x1.000000000181ap-2, 0x1.999998998124ep-3, -0x1.55555452e2a2bp-3, 0x1.24adb8cde4aa7p-3, -0x1.0019db915ef6fp-3}; double xsq = xd * xd; double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); double r = fputil::polyeval(xsq, xd, c0, c1, c2, COEFFS[6]); return static_cast(r); } } // namespace LIBC_NAMESPACE_DECL