//===-- Single-precision log(x) function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/logf.h" #include "common_constants.h" // Lookup table for (1/f) and log(f) #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // This is an algorithm for log(x) in single precision which is correctly // rounded for all rounding modes, based on the implementation of log(x) from // the RLIBM project at: // https://people.cs.rutgers.edu/~sn349/rlibm // Step 1 - Range reduction: // For x = 2^m * 1.mant, log(x) = m * log(2) + log(1.m) // If x is denormal, we normalize it by multiplying x by 2^23 and subtracting // m by 23. // Step 2 - Another range reduction: // To compute log(1.mant), let f be the highest 8 bits including the hidden // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the // mantissa. Then we have the following approximation formula: // log(1.mant) = log(f) + log(1.mant / f) // = log(f) + log(1 + d/f) // ~ log(f) + P(d/f) // since d/f is sufficiently small. // log(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables. // Step 3 - Polynomial approximation: // To compute P(d/f), we use a single degree-5 polynomial in double precision // which provides correct rounding for all but few exception values. // For more detail about how this polynomial is obtained, please refer to the // paper: // Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce // Correctly Rounded Results of an Elementary Function for Multiple // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia, // USA, January 16-22, 2022. // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf namespace LIBC_NAMESPACE_DECL { LLVM_LIBC_FUNCTION(float, logf, (float x)) { constexpr double LOG_2 = 0x1.62e42fefa39efp-1; using FPBits = typename fputil::FPBits; FPBits xbits(x); uint32_t x_u = xbits.uintval(); int m = -FPBits::EXP_BIAS; using fputil::round_result_slightly_down; using fputil::round_result_slightly_up; // Small inputs if (x_u < 0x4c5d65a5U) { // Hard-to-round cases. switch (x_u) { case 0x3f7f4d6fU: // x = 0x1.fe9adep-1f return round_result_slightly_up(-0x1.659ec8p-9f); case 0x41178febU: // x = 0x1.2f1fd6p+3f return round_result_slightly_up(0x1.1fcbcep+1f); #ifdef LIBC_TARGET_CPU_HAS_FMA case 0x3f800000U: // x = 1.0f return 0.0f; #else case 0x1e88452dU: // x = 0x1.108a5ap-66f return round_result_slightly_up(-0x1.6d7b18p+5f); #endif // LIBC_TARGET_CPU_HAS_FMA } // Subnormal inputs. if (LIBC_UNLIKELY(x_u < FPBits::min_normal().uintval())) { if (x == 0.0f) { // Return -inf and raise FE_DIVBYZERO fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_DIVBYZERO); return FPBits::inf(Sign::NEG).get_val(); } // Normalize denormal inputs. xbits = FPBits(xbits.get_val() * 0x1.0p23f); m -= 23; x_u = xbits.uintval(); } } else { // Hard-to-round cases. switch (x_u) { case 0x4c5d65a5U: // x = 0x1.bacb4ap+25f return round_result_slightly_down(0x1.1e0696p+4f); case 0x65d890d3U: // x = 0x1.b121a6p+76f return round_result_slightly_down(0x1.a9a3f2p+5f); case 0x6f31a8ecU: // x = 0x1.6351d8p+95f return round_result_slightly_down(0x1.08b512p+6f); case 0x7a17f30aU: // x = 0x1.2fe614p+117f return round_result_slightly_up(0x1.451436p+6f); #ifndef LIBC_TARGET_CPU_HAS_FMA case 0x500ffb03U: // x = 0x1.1ff606p+33f return round_result_slightly_up(0x1.6fdd34p+4f); case 0x5cd69e88U: // x = 0x1.ad3d1p+58f return round_result_slightly_up(0x1.45c146p+5f); case 0x5ee8984eU: // x = 0x1.d1309cp+62f; return round_result_slightly_up(0x1.5c9442p+5f); #endif // LIBC_TARGET_CPU_HAS_FMA } // Exceptional inputs. if (LIBC_UNLIKELY(x_u > FPBits::max_normal().uintval())) { if (x_u == 0x8000'0000U) { // Return -inf and raise FE_DIVBYZERO fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_DIVBYZERO); return FPBits::inf(Sign::NEG).get_val(); } if (xbits.is_neg() && !xbits.is_nan()) { // Return NaN and raise FE_INVALID fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } // x is +inf or nan return x; } } #ifndef LIBC_TARGET_CPU_HAS_FMA // Returning the correct +0 when x = 1.0 for non-FMA targets with FE_DOWNWARD // rounding mode. if (LIBC_UNLIKELY((x_u & 0x007f'ffffU) == 0)) return static_cast( static_cast(m + xbits.get_biased_exponent()) * LOG_2); #endif // LIBC_TARGET_CPU_HAS_FMA uint32_t mant = xbits.get_mantissa(); // Extract 7 leading fractional bits of the mantissa int index = mant >> 16; // Add unbiased exponent. Add an extra 1 if the 7 leading fractional bits are // all 1's. m += static_cast((x_u + (1 << 16)) >> 23); // Set bits to 1.m xbits.set_biased_exponent(0x7F); float u = xbits.get_val(); double v; #ifdef LIBC_TARGET_CPU_HAS_FMA v = static_cast(fputil::multiply_add(u, R[index], -1.0f)); // Exact. #else v = fputil::multiply_add(static_cast(u), RD[index], -1.0); // Exact #endif // LIBC_TARGET_CPU_HAS_FMA // Degree-5 polynomial approximation of log generated by Sollya with: // > P = fpminimax(log(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]); constexpr double COEFFS[4] = {-0x1.000000000fe63p-1, 0x1.555556e963c16p-2, -0x1.000028dedf986p-2, 0x1.966681bfda7f7p-3}; double v2 = v * v; // Exact double p2 = fputil::multiply_add(v, COEFFS[3], COEFFS[2]); double p1 = fputil::multiply_add(v, COEFFS[1], COEFFS[0]); double p0 = LOG_R[index] + v; double r = fputil::multiply_add(static_cast(m), LOG_2, fputil::polyeval(v2, p0, p1, p2)); return static_cast(r); } } // namespace LIBC_NAMESPACE_DECL