//===-- Double-precision sincos function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/sincos.h" #include "hdr/errno_macros.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/double_double.h" #include "src/__support/FPUtil/dyadic_float.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA #include "src/math/generic/range_reduction_double_common.h" #include "src/math/generic/sincos_eval.h" #ifdef LIBC_TARGET_CPU_HAS_FMA #include "range_reduction_double_fma.h" #else #include "range_reduction_double_nofma.h" #endif // LIBC_TARGET_CPU_HAS_FMA namespace LIBC_NAMESPACE_DECL { using DoubleDouble = fputil::DoubleDouble; using Float128 = typename fputil::DyadicFloat<128>; LLVM_LIBC_FUNCTION(void, sincos, (double x, double *sin_x, double *cos_x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint16_t x_e = xbits.get_biased_exponent(); DoubleDouble y; unsigned k; LargeRangeReduction range_reduction_large{}; // |x| < 2^16 if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) { // |x| < 2^-7 if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) { // |x| < 2^-27 if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) { // Signed zeros. if (LIBC_UNLIKELY(x == 0.0)) { *sin_x = x; *cos_x = 1.0; return; } // For |x| < 2^-27, max(|sin(x) - x|, |cos(x) - 1|) < ulp(x)/2. #ifdef LIBC_TARGET_CPU_HAS_FMA *sin_x = fputil::multiply_add(x, -0x1.0p-54, x); *cos_x = fputil::multiply_add(x, -x, 1.0); #else *cos_x = fputil::round_result_slightly_down(1.0); if (LIBC_UNLIKELY(x_e < 4)) { int rounding_mode = fputil::quick_get_round(); if (rounding_mode == FE_TOWARDZERO || (xbits.sign() == Sign::POS && rounding_mode == FE_DOWNWARD) || (xbits.sign() == Sign::NEG && rounding_mode == FE_UPWARD)) *sin_x = FPBits(xbits.uintval() - 1).get_val(); } *sin_x = fputil::multiply_add(x, -0x1.0p-54, x); #endif // LIBC_TARGET_CPU_HAS_FMA return; } // No range reduction needed. k = 0; y.lo = 0.0; y.hi = x; } else { // Small range reduction. k = range_reduction_small(x, y); } } else { // Inf or NaN if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) { // sin(+-Inf) = NaN if (xbits.get_mantissa() == 0) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } *sin_x = *cos_x = x + FPBits::quiet_nan().get_val(); return; } // Large range reduction. k = range_reduction_large.fast(x, y); } DoubleDouble sin_y, cos_y; [[maybe_unused]] double err = generic::sincos_eval(y, sin_y, cos_y); // Look up sin(k * pi/128) and cos(k * pi/128) #ifdef LIBC_MATH_HAS_SMALL_TABLES // Memory saving versions. Use 65-entry table. auto get_idx_dd = [](unsigned kk) -> DoubleDouble { unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); DoubleDouble ans = SIN_K_PI_OVER_128[idx]; if (kk & 128) { ans.hi = -ans.hi; ans.lo = -ans.lo; } return ans; }; DoubleDouble sin_k = get_idx_dd(k); DoubleDouble cos_k = get_idx_dd(k + 64); #else // Fast look up version, but needs 256-entry table. // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). DoubleDouble sin_k = SIN_K_PI_OVER_128[k & 255]; DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255]; #endif // LIBC_MATH_HAS_SMALL_TABLES DoubleDouble msin_k{-sin_k.lo, -sin_k.hi}; // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128). // So k is an integer and -pi / 256 <= y <= pi / 256. // Then sin(x) = sin((k * pi/128 + y) // = sin(y) * cos(k*pi/128) + cos(y) * sin(k*pi/128) DoubleDouble sin_k_cos_y = fputil::quick_mult(cos_y, sin_k); DoubleDouble cos_k_sin_y = fputil::quick_mult(sin_y, cos_k); // cos(x) = cos((k * pi/128 + y) // = cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128) DoubleDouble cos_k_cos_y = fputil::quick_mult(cos_y, cos_k); DoubleDouble msin_k_sin_y = fputil::quick_mult(sin_y, msin_k); DoubleDouble sin_dd = fputil::exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi); DoubleDouble cos_dd = fputil::exact_add(cos_k_cos_y.hi, msin_k_sin_y.hi); sin_dd.lo += sin_k_cos_y.lo + cos_k_sin_y.lo; cos_dd.lo += msin_k_sin_y.lo + cos_k_cos_y.lo; #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS *sin_x = sin_dd.hi + sin_dd.lo; *cos_x = cos_dd.hi + cos_dd.lo; return; #else // Accurate test and pass for correctly rounded implementation. double sin_lp = sin_dd.lo + err; double sin_lm = sin_dd.lo - err; double cos_lp = cos_dd.lo + err; double cos_lm = cos_dd.lo - err; double sin_upper = sin_dd.hi + sin_lp; double sin_lower = sin_dd.hi + sin_lm; double cos_upper = cos_dd.hi + cos_lp; double cos_lower = cos_dd.hi + cos_lm; // Ziv's rounding test. if (LIBC_LIKELY(sin_upper == sin_lower && cos_upper == cos_lower)) { *sin_x = sin_upper; *cos_x = cos_upper; return; } Float128 u_f128, sin_u, cos_u; if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) u_f128 = range_reduction_small_f128(x); else u_f128 = range_reduction_large.accurate(); generic::sincos_eval(u_f128, sin_u, cos_u); auto get_sin_k = [](unsigned kk) -> Float128 { unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); Float128 ans = SIN_K_PI_OVER_128_F128[idx]; if (kk & 128) ans.sign = Sign::NEG; return ans; }; // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). Float128 sin_k_f128 = get_sin_k(k); Float128 cos_k_f128 = get_sin_k(k + 64); Float128 msin_k_f128 = get_sin_k(k + 128); // TODO: Add assertion if Ziv's accuracy tests fail in debug mode. // https://github.com/llvm/llvm-project/issues/96452. if (sin_upper == sin_lower) *sin_x = sin_upper; else // sin(x) = sin((k * pi/128 + u) // = sin(u) * cos(k*pi/128) + cos(u) * sin(k*pi/128) *sin_x = static_cast( fputil::quick_add(fputil::quick_mul(sin_k_f128, cos_u), fputil::quick_mul(cos_k_f128, sin_u))); if (cos_upper == cos_lower) *cos_x = cos_upper; else // cos(x) = cos((k * pi/128 + u) // = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128) *cos_x = static_cast( fputil::quick_add(fputil::quick_mul(cos_k_f128, cos_u), fputil::quick_mul(msin_k_f128, sin_u))); #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS } } // namespace LIBC_NAMESPACE_DECL