//===-- Single-precision sincos function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/sincosf.h" #include "sincosf_utils.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA namespace LIBC_NAMESPACE_DECL { // Exceptional values static constexpr int N_EXCEPTS = 6; static constexpr uint32_t EXCEPT_INPUTS[N_EXCEPTS] = { 0x46199998, // x = 0x1.33333p13 x 0x55325019, // x = 0x1.64a032p43 x 0x5922aa80, // x = 0x1.4555p51 x 0x5f18b878, // x = 0x1.3170fp63 x 0x6115cb11, // x = 0x1.2b9622p67 x 0x7beef5ef, // x = 0x1.ddebdep120 x }; static constexpr uint32_t EXCEPT_OUTPUTS_SIN[N_EXCEPTS][4] = { {0xbeb1fa5d, 0, 1, 0}, // x = 0x1.33333p13, sin(x) = -0x1.63f4bap-2 (RZ) {0xbf171adf, 0, 1, 1}, // x = 0x1.64a032p43, sin(x) = -0x1.2e35bep-1 (RZ) {0xbf587521, 0, 1, 1}, // x = 0x1.4555p51, sin(x) = -0x1.b0ea42p-1 (RZ) {0x3dad60f6, 1, 0, 1}, // x = 0x1.3170fp63, sin(x) = 0x1.5ac1ecp-4 (RZ) {0xbe7cc1e0, 0, 1, 1}, // x = 0x1.2b9622p67, sin(x) = -0x1.f983cp-3 (RZ) {0xbf587d1b, 0, 1, 1}, // x = 0x1.ddebdep120, sin(x) = -0x1.b0fa36p-1 (RZ) }; static constexpr uint32_t EXCEPT_OUTPUTS_COS[N_EXCEPTS][4] = { {0xbf70090b, 0, 1, 0}, // x = 0x1.33333p13, cos(x) = -0x1.e01216p-1 (RZ) {0x3f4ea5d2, 1, 0, 0}, // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ) {0x3f08aebe, 1, 0, 1}, // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ) {0x3f7f14bb, 1, 0, 0}, // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ) {0x3f78142e, 1, 0, 1}, // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ) {0x3f08a21c, 1, 0, 0}, // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ) }; LLVM_LIBC_FUNCTION(void, sincosf, (float x, float *sinp, float *cosp)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; double xd = static_cast(x); // Range reduction: // For |x| >= 2^-12, we perform range reduction as follows: // Find k and y such that: // x = (k + y) * pi/32 // k is an integer // |y| < 0.5 // For small range (|x| < 2^45 when FMA instructions are available, 2^22 // otherwise), this is done by performing: // k = round(x * 32/pi) // y = x * 32/pi - k // For large range, we will omit all the higher parts of 32/pi such that the // least significant bits of their full products with x are larger than 63, // since: // sin((k + y + 64*i) * pi/32) = sin(x + i * 2pi) = sin(x), and // cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x). // // When FMA instructions are not available, we store the digits of 32/pi in // chunks of 28-bit precision. This will make sure that the products: // x * THIRTYTWO_OVER_PI_28[i] are all exact. // When FMA instructions are available, we simply store the digits of326/pi in // chunks of doubles (53-bit of precision). // So when multiplying by the largest values of single precision, the // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the // worst-case analysis of range reduction, |y| >= 2^-38, so this should give // us more than 40 bits of accuracy. For the worst-case estimation of range // reduction, see for instances: // Elementary Functions by J-M. Muller, Chapter 11, // Handbook of Floating-Point Arithmetic by J-M. Muller et. al., // Chapter 10.2. // // Once k and y are computed, we then deduce the answer by the sine and cosine // of sum formulas: // sin(x) = sin((k + y)*pi/32) // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) // cos(x) = cos((k + y)*pi/32) // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are // computed using degree-7 and degree-6 minimax polynomials generated by // Sollya respectively. // |x| < 0x1.0p-12f if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) { if (LIBC_UNLIKELY(x_abs == 0U)) { // For signed zeros. *sinp = x; *cosp = 1.0f; return; } // When |x| < 2^-12, the relative errors of the approximations // sin(x) ~ x, cos(x) ~ 1 // are: // |sin(x) - x| / |sin(x)| < |x^3| / (6|x|) // = x^2 / 6 // < 2^-25 // < epsilon(1)/2. // |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2. // So the correctly rounded values of sin(x) and cos(x) are: // sin(x) = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, // or (rounding mode = FE_UPWARD and x is // negative), // = x otherwise. // cos(x) = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD, // = 1 otherwise. // To simplify the rounding decision and make it more efficient and to // prevent compiler to perform constant folding, we use // sin(x) = fma(x, -2^-25, x), // cos(x) = fma(x*0.5f, -x, 1) // instead. // Note: to use the formula x - 2^-25*x to decide the correct rounding, we // do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when // |x| < 2^-125. For targets without FMA instructions, we simply use // double for intermediate results as it is more efficient than using an // emulated version of FMA. #if defined(LIBC_TARGET_CPU_HAS_FMA) *sinp = fputil::multiply_add(x, -0x1.0p-25f, x); *cosp = fputil::multiply_add(FPBits(x_abs).get_val(), -0x1.0p-25f, 1.0f); #else *sinp = static_cast(fputil::multiply_add(xd, -0x1.0p-25, xd)); *cosp = static_cast(fputil::multiply_add( static_cast(FPBits(x_abs).get_val()), -0x1.0p-25, 1.0)); #endif // LIBC_TARGET_CPU_HAS_FMA return; } // x is inf or nan. if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { if (x_abs == 0x7f80'0000U) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } *sinp = FPBits::quiet_nan().get_val(); *cosp = *sinp; return; } // Check exceptional values. for (int i = 0; i < N_EXCEPTS; ++i) { if (LIBC_UNLIKELY(x_abs == EXCEPT_INPUTS[i])) { uint32_t s = EXCEPT_OUTPUTS_SIN[i][0]; // FE_TOWARDZERO uint32_t c = EXCEPT_OUTPUTS_COS[i][0]; // FE_TOWARDZERO bool x_sign = x < 0; switch (fputil::quick_get_round()) { case FE_UPWARD: s += x_sign ? EXCEPT_OUTPUTS_SIN[i][2] : EXCEPT_OUTPUTS_SIN[i][1]; c += EXCEPT_OUTPUTS_COS[i][1]; break; case FE_DOWNWARD: s += x_sign ? EXCEPT_OUTPUTS_SIN[i][1] : EXCEPT_OUTPUTS_SIN[i][2]; c += EXCEPT_OUTPUTS_COS[i][2]; break; case FE_TONEAREST: s += EXCEPT_OUTPUTS_SIN[i][3]; c += EXCEPT_OUTPUTS_COS[i][3]; break; } *sinp = x_sign ? -FPBits(s).get_val() : FPBits(s).get_val(); *cosp = FPBits(c).get_val(); return; } } // Combine the results with the sine and cosine of sum formulas: // sin(x) = sin((k + y)*pi/32) // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) // = sin_y * cos_k + (1 + cosm1_y) * sin_k // = sin_y * cos_k + (cosm1_y * sin_k + sin_k) // cos(x) = cos((k + y)*pi/32) // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) // = cosm1_y * cos_k + sin_y * sin_k // = (cosm1_y * cos_k + cos_k) + sin_y * sin_k double sin_k, cos_k, sin_y, cosm1_y; sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y); *sinp = static_cast(fputil::multiply_add( sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); *cosp = static_cast(fputil::multiply_add( sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k))); } } // namespace LIBC_NAMESPACE_DECL