//===-- Collection of utils for sinf/cosf/sincosf ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H #define LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/macros/config.h" #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA #if defined(LIBC_TARGET_CPU_HAS_FMA) #include "range_reduction_fma.h" // using namespace LIBC_NAMESPACE::fma; using LIBC_NAMESPACE::fma::FAST_PASS_BOUND; using LIBC_NAMESPACE::fma::large_range_reduction; using LIBC_NAMESPACE::fma::small_range_reduction; #else #include "range_reduction.h" // using namespace LIBC_NAMESPACE::generic; using LIBC_NAMESPACE::generic::FAST_PASS_BOUND; using LIBC_NAMESPACE::generic::large_range_reduction; using LIBC_NAMESPACE::generic::small_range_reduction; #endif // LIBC_TARGET_CPU_HAS_FMA namespace LIBC_NAMESPACE_DECL { // Lookup table for sin(k * pi / 32) with k = 0, ..., 63. // Table is generated with Sollya as follow: // > display = hexadecimal; // > for k from 0 to 63 do { D(sin(k * pi/32)); }; const double SIN_K_PI_OVER_32[64] = { 0x0.0000000000000p+0, 0x1.917a6bc29b42cp-4, 0x1.8f8b83c69a60bp-3, 0x1.294062ed59f06p-2, 0x1.87de2a6aea963p-2, 0x1.e2b5d3806f63bp-2, 0x1.1c73b39ae68c8p-1, 0x1.44cf325091dd6p-1, 0x1.6a09e667f3bcdp-1, 0x1.8bc806b151741p-1, 0x1.a9b66290ea1a3p-1, 0x1.c38b2f180bdb1p-1, 0x1.d906bcf328d46p-1, 0x1.e9f4156c62ddap-1, 0x1.f6297cff75cbp-1, 0x1.fd88da3d12526p-1, 0x1.0000000000000p+0, 0x1.fd88da3d12526p-1, 0x1.f6297cff75cbp-1, 0x1.e9f4156c62ddap-1, 0x1.d906bcf328d46p-1, 0x1.c38b2f180bdb1p-1, 0x1.a9b66290ea1a3p-1, 0x1.8bc806b151741p-1, 0x1.6a09e667f3bcdp-1, 0x1.44cf325091dd6p-1, 0x1.1c73b39ae68c8p-1, 0x1.e2b5d3806f63bp-2, 0x1.87de2a6aea963p-2, 0x1.294062ed59f06p-2, 0x1.8f8b83c69a60bp-3, 0x1.917a6bc29b42cp-4, 0x0.0000000000000p+0, -0x1.917a6bc29b42cp-4, -0x1.8f8b83c69a60bp-3, -0x1.294062ed59f06p-2, -0x1.87de2a6aea963p-2, -0x1.e2b5d3806f63bp-2, -0x1.1c73b39ae68c8p-1, -0x1.44cf325091dd6p-1, -0x1.6a09e667f3bcdp-1, -0x1.8bc806b151741p-1, -0x1.a9b66290ea1a3p-1, -0x1.c38b2f180bdb1p-1, -0x1.d906bcf328d46p-1, -0x1.e9f4156c62ddap-1, -0x1.f6297cff75cbp-1, -0x1.fd88da3d12526p-1, -0x1.0000000000000p+0, -0x1.fd88da3d12526p-1, -0x1.f6297cff75cbp-1, -0x1.e9f4156c62ddap-1, -0x1.d906bcf328d46p-1, -0x1.c38b2f180bdb1p-1, -0x1.a9b66290ea1a3p-1, -0x1.8bc806b151741p-1, -0x1.6a09e667f3bcdp-1, -0x1.44cf325091dd6p-1, -0x1.1c73b39ae68c8p-1, -0x1.e2b5d3806f63bp-2, -0x1.87de2a6aea963p-2, -0x1.294062ed59f06p-2, -0x1.8f8b83c69a60bp-3, -0x1.917a6bc29b42cp-4, }; static LIBC_INLINE void sincosf_poly_eval(int64_t k, double y, double &sin_k, double &cos_k, double &sin_y, double &cosm1_y) { // After range reduction, k = round(x * 32 / pi) and y = (x * 32 / pi) - k. // So k is an integer and -0.5 <= y <= 0.5. // Then sin(x) = sin((k + y)*pi/32) // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) sin_k = SIN_K_PI_OVER_32[k & 63]; // cos(k * pi/32) = sin(k * pi/32 + pi/2) = sin((k + 16) * pi/32). // cos_k = cos(k * pi/32) cos_k = SIN_K_PI_OVER_32[(k + 16) & 63]; double ysq = y * y; // Degree-6 minimax even polynomial for sin(y*pi/32)/y generated by Sollya // with: // > Q = fpminimax(sin(y*pi/32)/y, [|0, 2, 4, 6|], [|D...|], [0, 0.5]); sin_y = y * fputil::polyeval(ysq, 0x1.921fb54442d18p-4, -0x1.4abbce625abb1p-13, 0x1.466bc624f2776p-24, -0x1.32c3a619d4a7ep-36); // Degree-6 minimax even polynomial for cos(y*pi/32) generated by Sollya with: // > P = fpminimax(cos(x*pi/32), [|0, 2, 4, 6|], [|1, D...|], [0, 0.5]); // Note that cosm1_y = cos(y*pi/32) - 1. cosm1_y = ysq * fputil::polyeval(ysq, -0x1.3bd3cc9be430bp-8, 0x1.03c1f070c2e27p-18, -0x1.55cc84bd942p-30); } LIBC_INLINE void sincosf_eval(double xd, uint32_t x_abs, double &sin_k, double &cos_k, double &sin_y, double &cosm1_y) { int64_t k; double y; if (LIBC_LIKELY(x_abs < FAST_PASS_BOUND)) { k = small_range_reduction(xd, y); } else { fputil::FPBits x_bits(x_abs); k = large_range_reduction(xd, x_bits.get_exponent(), y); } sincosf_poly_eval(k, y, sin_k, cos_k, sin_y, cosm1_y); } // Return k and y, where // k = round(x * 32) and y = (x * 32) - k. // => pi * x = (k + y) * pi / 32 static LIBC_INLINE int64_t range_reduction_sincospi(double x, double &y) { double kd = fputil::nearest_integer(x * 32); y = fputil::multiply_add(x, 32.0, -kd); return static_cast(kd); } LIBC_INLINE void sincospif_eval(double xd, double &sin_k, double &cos_k, double &sin_y, double &cosm1_y) { double y; int64_t k = range_reduction_sincospi(xd, y); sincosf_poly_eval(k, y, sin_k, cos_k, sin_y, cosm1_y); } } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H