//===-- Single-precision tan function -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/tanf.h" #include "sincosf_utils.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA namespace LIBC_NAMESPACE_DECL { // Exceptional cases for tanf. constexpr size_t N_EXCEPTS = 6; constexpr fputil::ExceptValues TANF_EXCEPTS{{ // (inputs, RZ output, RU offset, RD offset, RN offset) // x = 0x1.ada6aap27, tan(x) = 0x1.e80304p-3 (RZ) {0x4d56d355, 0x3e740182, 1, 0, 0}, // x = 0x1.862064p33, tan(x) = -0x1.8dee56p-3 (RZ) {0x50431032, 0xbe46f72b, 0, 1, 1}, // x = 0x1.af61dap48, tan(x) = 0x1.60d1c6p-2 (RZ) {0x57d7b0ed, 0x3eb068e3, 1, 0, 1}, // x = 0x1.0088bcp52, tan(x) = 0x1.ca1edp0 (RZ) {0x5980445e, 0x3fe50f68, 1, 0, 0}, // x = 0x1.f90dfcp72, tan(x) = 0x1.597f9cp-1 (RZ) {0x63fc86fe, 0x3f2cbfce, 1, 0, 0}, // x = 0x1.a6ce12p86, tan(x) = -0x1.c5612ep-1 (RZ) {0x6ad36709, 0xbf62b097, 0, 1, 0}, }}; LLVM_LIBC_FUNCTION(float, tanf, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); bool x_sign = xbits.uintval() >> 31; uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; // |x| < pi/32 if (LIBC_UNLIKELY(x_abs <= 0x3dc9'0fdbU)) { double xd = static_cast(x); // |x| < 0x1.0p-12f if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) { if (LIBC_UNLIKELY(x_abs == 0U)) { // For signed zeros. return x; } // When |x| < 2^-12, the relative error of the approximation tan(x) ~ x // is: // |tan(x) - x| / |tan(x)| < |x^3| / (3|x|) // = x^2 / 3 // < 2^-25 // < epsilon(1)/2. // So the correctly rounded values of tan(x) are: // = x + sign(x)*eps(x) if rounding mode = FE_UPWARD and x is positive, // or (rounding mode = FE_DOWNWARD and x is // negative), // = x otherwise. // To simplify the rounding decision and make it more efficient, we use // fma(x, 2^-25, x) instead. // Note: to use the formula x + 2^-25*x to decide the correct rounding, we // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when // |x| < 2^-125. For targets without FMA instructions, we simply use // double for intermediate results as it is more efficient than using an // emulated version of FMA. #if defined(LIBC_TARGET_CPU_HAS_FMA) return fputil::multiply_add(x, 0x1.0p-25f, x); #else return static_cast(fputil::multiply_add(xd, 0x1.0p-25, xd)); #endif // LIBC_TARGET_CPU_HAS_FMA } // |x| < pi/32 double xsq = xd * xd; // Degree-9 minimax odd polynomial of tan(x) generated by Sollya with: // > P = fpminimax(tan(x)/x, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/32]); double result = fputil::polyeval(xsq, 1.0, 0x1.555555553d022p-2, 0x1.111111ce442c1p-3, 0x1.ba180a6bbdecdp-5, 0x1.69c0a88a0b71fp-6); return static_cast(xd * result); } // Check for exceptional values if (LIBC_UNLIKELY(x_abs == 0x3f8a1f62U)) { // |x| = 0x1.143ec4p0 float sign = x_sign ? -1.0f : 1.0f; // volatile is used to prevent compiler (gcc) from optimizing the // computation, making the results incorrect in different rounding modes. volatile float tmp = 0x1.ddf9f4p0f; tmp = fputil::multiply_add(sign, tmp, sign * 0x1.1p-24f); return tmp; } // |x| > 0x1.ada6a8p+27f if (LIBC_UNLIKELY(x_abs > 0x4d56'd354U)) { // Inf or NaN if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { if (x_abs == 0x7f80'0000U) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } return x + FPBits::quiet_nan().get_val(); } // Other large exceptional values if (auto r = TANF_EXCEPTS.lookup_odd(x_abs, x_sign); LIBC_UNLIKELY(r.has_value())) return r.value(); } // For |x| >= pi/32, we use the definition of tan(x) function: // tan(x) = sin(x) / cos(x) // The we follow the same computations of sin(x) and cos(x) as sinf, cosf, // and sincosf. double xd = static_cast(x); double sin_k, cos_k, sin_y, cosm1_y; sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y); // tan(x) = sin(x) / cos(x) // = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k) using fputil::multiply_add; return static_cast( multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) / multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k))); } } // namespace LIBC_NAMESPACE_DECL