//===-- Half-precision tanh(x) function -----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/tanhf16.h" #include "expxf16.h" #include "hdr/fenv_macros.h" #include "src/__support/CPP/array.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/cast.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" namespace LIBC_NAMESPACE_DECL { static constexpr fputil::ExceptValues TANHF16_EXCEPTS = {{ // x = 0x1.f54p+0, tanhf16(x) = 0x1.ecp-1 (RZ) {0x3fd5U, 0x3bb0U, 1U, 0U, 0U}, // x = -0x1.f54p+0, tanhf16(x) = -0x1.ecp-1 (RZ) {0xbfd5U, 0xbbb0U, 0U, 1U, 0U}, }}; LLVM_LIBC_FUNCTION(float16, tanhf16, (float16 x)) { using FPBits = fputil::FPBits; FPBits x_bits(x); uint16_t x_u = x_bits.uintval(); uint16_t x_abs = x_u & 0x7fffU; // When -2^(-14) <= x <= -2^(-9), or |x| <= 0x1.d2p-4, // or |x| >= atanh(1 - 2^(-11)), or x is NaN. if (LIBC_UNLIKELY(x_abs <= 0x2f48U || x_abs >= 0x4429U)) { // tanh(NaN) = NaN if (x_bits.is_nan()) { if (x_bits.is_signaling_nan()) { fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } return x; } // When -2^(-14) <= x <= -2^(-9). if (x_u >= 0x8400U && x_u <= 0x9800U) { switch (fputil::quick_get_round()) { case FE_TONEAREST: case FE_DOWNWARD: return x; default: return FPBits(static_cast(x_u - 1U)).get_val(); } } // When |x| <= 0x1.d2p-4. if (x_abs <= 0x2f48U) { if (LIBC_UNLIKELY(x_abs == 0)) return x; float xf = x; float xf_sq = xf * xf; // Degree-7 Taylor expansion generated by Sollya with the following // commands: // > taylor(tanh(x), 7, 0); // > display = hexadecimal; // > // For each coefficient: // > round(/* put coefficient here */, SG, RN); return fputil::cast( xf * fputil::polyeval(xf_sq, 0x1p+0f, -0x1.555556p-2f, 0x1.111112p-3f, -0x1.ba1ba2p-5f)); } // tanh(+/-inf) = +/-1 if (x_bits.is_inf()) return FPBits::one(x_bits.sign()).get_val(); // When |x| >= atanh(1 - 2^(-11)). fputil::raise_except_if_required(FE_INEXACT); int rounding_mode = fputil::quick_get_round(); if ((rounding_mode == FE_TONEAREST && x_abs >= 0x4482U) || (rounding_mode == FE_UPWARD && x_bits.is_pos()) || (rounding_mode == FE_DOWNWARD && x_bits.is_neg())) { return FPBits::one(x_bits.sign()).get_val(); } if (x_bits.is_pos()) return fputil::cast(0x1.ffcp-1); return fputil::cast(-0x1.ffcp-1); } if (auto r = TANHF16_EXCEPTS.lookup(x_u); LIBC_UNLIKELY(r.has_value())) return r.value(); // For atanh(-1 + 2^(-11)) < x < atanh(1 - 2^(-11)), to compute tanh(x), we // perform the following range reduction: find hi, mid, lo, such that: // x = (hi + mid) * log(2) * 0.5 + lo, in which // hi is an integer, // mid * 2^5 is an integer, // -2^(-5) <= lo < 2^(-5). // In particular, // hi + mid = round(x * log2(e) * 2 * 2^5) * 2^(-5). // Then, // tanh(x) = sinh(x)/cosh(x) // = (e^x - e^(-x)) / (e^x + e^(-x)) // = (e^(2x) - 1) / (e^(2x) + 1) // = (2^(hi + mid) * e^(2*lo) - 1) / (2^(hi + mid) * e^(2*lo) + 1) // = (e^(2*lo) - 2^(-hi - mid)) / (e^(2*lo) + 2^(-hi - mid)) // We store 2^(-mid) in the lookup table EXP2_MID_5_BITS, and compute // 2^(-hi - mid) by adding -hi to the exponent field of 2^(-mid). // e^lo is computed using a degree-3 minimax polynomial generated by Sollya. float xf = x; float kf = fputil::nearest_integer(xf * (LOG2F_E * 2.0f * 0x1.0p+5f)); int x_hi_mid = -static_cast(kf); unsigned x_hi = static_cast(x_hi_mid) >> 5; unsigned x_mid = static_cast(x_hi_mid) & 0x1f; // lo = x - (hi + mid) // = round(x * log2(e) * 2 * 2^5) * log(2) * 0.5 * (-2^(-5)) + x float lo = fputil::multiply_add(kf, LOGF_2 * 0.5f * -0x1.0p-5f, xf); uint32_t exp2_hi_mid_bits = EXP2_MID_5_BITS[x_mid] + static_cast(x_hi << fputil::FPBits::FRACTION_LEN); // exp2_hi_mid = 2^(-hi - mid) float exp2_hi_mid = fputil::FPBits(exp2_hi_mid_bits).get_val(); // Degree-3 minimax polynomial generated by Sollya with the following // commands: // > display = hexadecimal; // > P = fpminimax(expm1(2*x)/x, 2, [|SG...|], [-2^-5, 2^-5]); // > 1 + x * P; float exp_2lo = fputil::polyeval(lo, 0x1p+0f, 0x1p+1f, 0x1.001p+1f, 0x1.555ddep+0f); return fputil::cast((exp_2lo - exp2_hi_mid) / (exp_2lo + exp2_hi_mid)); } } // namespace LIBC_NAMESPACE_DECL