//===-- Half-precision tanpif function ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/tanpif16.h" #include "hdr/errno_macros.h" #include "hdr/fenv_macros.h" #include "sincosf16_utils.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/cast.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/macros/optimization.h" namespace LIBC_NAMESPACE_DECL { constexpr size_t N_EXCEPTS = 21; constexpr fputil::ExceptValues TANF16_EXCEPTS{{ // (input, RZ output, RU offset, RD offset, RN offset) {0x07f2, 0x0e3d, 1, 0, 0}, {0x086a, 0x0eee, 1, 0, 1}, {0x08db, 0x0fa0, 1, 0, 0}, {0x094c, 0x1029, 1, 0, 0}, {0x0b10, 0x118c, 1, 0, 0}, {0x1ce0, 0x23a8, 1, 0, 1}, {0x1235, 0x18e0, 1, 0, 0}, {0x2579, 0x2c4e, 1, 0, 0}, {0x28b2, 0x2f68, 1, 0, 1}, {0x2a43, 0x30f4, 1, 0, 1}, {0x31b7, 0x3907, 1, 0, 0}, {0x329d, 0x3a12, 1, 0, 1}, {0x34f1, 0x3dd7, 1, 0, 0}, {0x3658, 0x41ee, 1, 0, 0}, {0x38d4, 0xc1ee, 0, 1, 0}, {0x3d96, 0x41ee, 1, 0, 0}, {0x3e6a, 0xc1ee, 0, 1, 0}, {0x40cb, 0x41ee, 1, 0, 0}, {0x4135, 0xc1ee, 0, 1, 0}, {0x42cb, 0x41ee, 1, 0, 0}, {0x4335, 0xc1ee, 0, 1, 0}, }}; LLVM_LIBC_FUNCTION(float16, tanpif16, (float16 x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint16_t x_u = xbits.uintval(); uint16_t x_abs = x_u & 0x7fff; // Handle exceptional values if (LIBC_UNLIKELY(x_abs <= 0x4335)) { if (LIBC_UNLIKELY(x_abs == 0U)) return x; bool x_sign = x_u >> 15; if (auto r = TANF16_EXCEPTS.lookup_odd(x_abs, x_sign); LIBC_UNLIKELY(r.has_value())) return r.value(); } // Numbers greater or equal to 2^10 are integers, or infinity, or NaN if (LIBC_UNLIKELY(x_abs >= 0x6400)) { // Check for NaN or infinity values if (LIBC_UNLIKELY(x_abs >= 0x7c00)) { if (x_abs == 0x7c00) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } return x + FPBits::quiet_nan().get_val(); } return FPBits::zero(xbits.sign()).get_val(); } // Range reduction: // For |x| > 1/32, we perform range reduction as follows: // Find k and y such that: // x = (k + y) * 1/32 // k is an integer // |y| < 0.5 // // This is done by performing: // k = round(x * 32) // y = x * 32 - k // // Once k and y are computed, we then deduce the answer by tthe formula: // tan(x) = sin(x) / cos(x) // = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k) float xf = x; float sin_k, cos_k, sin_y, cosm1_y; sincospif16_eval(xf, sin_k, cos_k, sin_y, cosm1_y); if (LIBC_UNLIKELY(sin_y == 0 && cos_k == 0)) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_DIVBYZERO); int16_t x_mp5_u = static_cast(x - 0.5); return ((x_mp5_u & 0x1) ? -1 : 1) * FPBits::inf().get_val(); } using fputil::multiply_add; return fputil::cast( multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) / multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k))); } } // namespace LIBC_NAMESPACE_DECL