//===-- Utility class to test different flavors of ldexp --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H #include "src/__support/CPP/limits.h" // INT_MAX #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/NormalFloat.h" #include "test/UnitTest/FEnvSafeTest.h" #include "test/UnitTest/FPMatcher.h" #include "test/UnitTest/Test.h" #include "hdr/math_macros.h" #include using LIBC_NAMESPACE::Sign; template class LdExpTestTemplate : public LIBC_NAMESPACE::testing::FEnvSafeTest { using FPBits = LIBC_NAMESPACE::fputil::FPBits; using NormalFloat = LIBC_NAMESPACE::fputil::NormalFloat; using StorageType = typename FPBits::StorageType; const T inf = FPBits::inf(Sign::POS).get_val(); const T neg_inf = FPBits::inf(Sign::NEG).get_val(); const T zero = FPBits::zero(Sign::POS).get_val(); const T neg_zero = FPBits::zero(Sign::NEG).get_val(); const T nan = FPBits::quiet_nan().get_val(); // A normalized mantissa to be used with tests. static constexpr StorageType MANTISSA = NormalFloat::ONE + 0x1234; public: typedef T (*LdExpFunc)(T, int); void testSpecialNumbers(LdExpFunc func) { int exp_array[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX}; for (int exp : exp_array) { ASSERT_FP_EQ(zero, func(zero, exp)); ASSERT_FP_EQ(neg_zero, func(neg_zero, exp)); ASSERT_FP_EQ(inf, func(inf, exp)); ASSERT_FP_EQ(neg_inf, func(neg_inf, exp)); ASSERT_FP_EQ(nan, func(nan, exp)); } } void testPowersOfTwo(LdExpFunc func) { int32_t exp_array[5] = {1, 2, 3, 4, 5}; int32_t val_array[6] = {1, 2, 4, 8, 16, 32}; for (int32_t exp : exp_array) { for (int32_t val : val_array) { ASSERT_FP_EQ(T(val << exp), func(T(val), exp)); ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp)); } } } void testOverflow(LdExpFunc func) { NormalFloat x(Sign::POS, FPBits::MAX_BIASED_EXPONENT - 10, NormalFloat::ONE + 0xF00BA); for (int32_t exp = 10; exp < 100; ++exp) { ASSERT_FP_EQ(inf, func(T(x), exp)); ASSERT_FP_EQ(neg_inf, func(-T(x), exp)); } } void testUnderflowToZeroOnNormal(LdExpFunc func) { // In this test, we pass a normal nubmer to func and expect zero // to be returned due to underflow. int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, base_exponent + 3, base_exponent + 2, base_exponent + 1}; T x = NormalFloat(Sign::POS, 0, MANTISSA); for (int32_t exp : exp_array) { ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); } } void testUnderflowToZeroOnSubnormal(LdExpFunc func) { // In this test, we pass a normal nubmer to func and expect zero // to be returned due to underflow. int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, base_exponent + 3, base_exponent + 2, base_exponent + 1}; T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA); for (int32_t exp : exp_array) { ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); } } void testNormalOperation(LdExpFunc func) { T val_array[] = {// Normal numbers NormalFloat(Sign::POS, 100, MANTISSA), NormalFloat(Sign::POS, -100, MANTISSA), NormalFloat(Sign::NEG, 100, MANTISSA), NormalFloat(Sign::NEG, -100, MANTISSA), // Subnormal numbers NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA), NormalFloat(Sign::NEG, -FPBits::EXP_BIAS, MANTISSA)}; for (int32_t exp = 0; exp <= FPBits::FRACTION_LEN; ++exp) { for (T x : val_array) { // We compare the result of ldexp with the result // of the native multiplication/division instruction. // We need to use a NormalFloat here (instead of 1 << exp), because // there are 32 bit systems that don't support 128bit long ints but // support long doubles. This test can do 1 << 64, which would fail // in these systems. NormalFloat two_to_exp = NormalFloat(static_cast(1.L)); two_to_exp = two_to_exp.mul2(exp); ASSERT_FP_EQ(func(x, exp), x * two_to_exp); ASSERT_FP_EQ(func(x, -exp), x / two_to_exp); } } // Normal which trigger mantissa overflow. T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, StorageType(2) * NormalFloat::ONE - StorageType(1)); ASSERT_FP_EQ(func(x, -1), x / 2); ASSERT_FP_EQ(func(-x, -1), -x / 2); // Start with a normal number high exponent but pass a very low number for // exp. The result should be a subnormal number. x = NormalFloat(Sign::POS, FPBits::EXP_BIAS, NormalFloat::ONE); int exp = -FPBits::MAX_BIASED_EXPONENT - 5; T result = func(x, exp); FPBits result_bits(result); ASSERT_FALSE(result_bits.is_zero()); // Verify that the result is indeed subnormal. ASSERT_EQ(result_bits.get_biased_exponent(), uint16_t(0)); // But if the exp is so less that normalization leads to zero, then // the result should be zero. result = func(x, -FPBits::MAX_BIASED_EXPONENT - FPBits::FRACTION_LEN - 5); ASSERT_TRUE(FPBits(result).is_zero()); // Start with a subnormal number but pass a very high number for exponent. // The result should not be infinity. x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, NormalFloat::ONE >> 10); exp = FPBits::MAX_BIASED_EXPONENT + 5; ASSERT_FALSE(FPBits(func(x, exp)).is_inf()); // But if the exp is large enough to oversome than the normalization shift, // then it should result in infinity. exp = FPBits::MAX_BIASED_EXPONENT + 15; ASSERT_FP_EQ(func(x, exp), inf); } }; #define LIST_LDEXP_TESTS(T, func) \ using LlvmLibcLdExpTest = LdExpTestTemplate; \ TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \ TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \ TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); } \ TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) { \ testUnderflowToZeroOnNormal(&func); \ } \ TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) { \ testUnderflowToZeroOnSubnormal(&func); \ } \ TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); } #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H