/* * Copyright © 2019 Valve Corporation * * SPDX-License-Identifier: MIT */ #include "aco_builder.h" #include "aco_ir.h" #include "util/enum_operators.h" #include #include #include namespace aco { namespace { enum class pred_defined : uint8_t { undef = 0, const_1 = 1, const_0 = 2, temp = 3, zero = 4, /* all disabled lanes are zero'd out */ }; MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(pred_defined); struct ssa_state { unsigned loop_nest_depth; RegClass rc; std::vector any_pred_defined; std::vector visited; std::vector outputs; /* the output per block */ }; Operand get_output(Program* program, unsigned block_idx, ssa_state* state); void init_outputs(Program* program, ssa_state* state, unsigned start, unsigned end) { for (unsigned i = start; i <= end; ++i) { if (state->visited[i]) continue; state->outputs[i] = get_output(program, i, state); state->visited[i] = true; } } Operand get_output(Program* program, unsigned block_idx, ssa_state* state) { Block& block = program->blocks[block_idx]; if (state->any_pred_defined[block_idx] == pred_defined::undef) return Operand(state->rc); if (block.loop_nest_depth < state->loop_nest_depth) /* loop-carried value for loop exit phis */ return Operand::zero(state->rc.bytes()); size_t num_preds = block.linear_preds.size(); if (block.loop_nest_depth > state->loop_nest_depth || num_preds == 1 || block.kind & block_kind_loop_exit) return state->outputs[block.linear_preds[0]]; Operand output; /* Loop headers can contain back edges, in which case the predecessor * outputs aren't yet determined because the predecessor is after the block. * The predecessor outputs also depend on the output of the loop header, * so allocate a temporary that will store this block's output and use that * to calculate the predecessor block output. In this case, we always emit a phi * to ensure the allocated temporary is defined. */ if (block.kind & block_kind_loop_header) { unsigned start_idx = block_idx + 1; unsigned end_idx = block.linear_preds.back(); state->outputs[block_idx] = Operand(Temp(program->allocateTmp(state->rc))); init_outputs(program, state, start_idx, end_idx); output = state->outputs[block_idx]; } else if (std::all_of(block.linear_preds.begin() + 1, block.linear_preds.end(), [&](unsigned pred) { return state->outputs[pred] == state->outputs[block.linear_preds[0]]; })) { return state->outputs[block.linear_preds[0]]; } else { output = Operand(Temp(program->allocateTmp(state->rc))); } /* create phi */ aco_ptr phi{ create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)}; for (unsigned i = 0; i < num_preds; i++) phi->operands[i] = state->outputs[block.linear_preds[i]]; phi->definitions[0] = Definition(output.getTemp()); block.instructions.emplace(block.instructions.begin(), std::move(phi)); assert(output.size() == state->rc.size()); return output; } void insert_before_logical_end(Block* block, aco_ptr instr) { auto IsLogicalEnd = [](const aco_ptr& inst) -> bool { return inst->opcode == aco_opcode::p_logical_end; }; auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd); if (it == block->instructions.crend()) { assert(block->instructions.back()->isBranch()); block->instructions.insert(std::prev(block->instructions.end()), std::move(instr)); } else { block->instructions.insert(std::prev(it.base()), std::move(instr)); } } void build_merge_code(Program* program, ssa_state* state, Block* block, Operand cur) { unsigned block_idx = block->index; Definition dst = Definition(state->outputs[block_idx].getTemp()); Operand prev = get_output(program, block_idx, state); if (cur.isUndefined()) return; Builder bld(program); auto IsLogicalEnd = [](const aco_ptr& instr) -> bool { return instr->opcode == aco_opcode::p_logical_end; }; auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd); assert(it != block->instructions.rend()); bld.reset(&block->instructions, std::prev(it.base())); pred_defined defined = state->any_pred_defined[block_idx]; if (defined == pred_defined::undef) { return; } else if (defined == pred_defined::const_0) { bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm)); return; } else if (defined == pred_defined::const_1) { bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm)); return; } assert(prev.isTemp()); /* simpler sequence in case prev has only zeros in disabled lanes */ if ((defined & pred_defined::zero) == pred_defined::zero) { if (cur.isConstant()) { if (!cur.constantValue()) { bld.copy(dst, prev); return; } cur = Operand(exec, bld.lm); } else { cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm)); } bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur); return; } if (cur.isConstant()) { if (cur.constantValue()) bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm)); else bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm)); return; } prev = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), prev, Operand(exec, bld.lm)); cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm)); bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur); return; } void build_const_else_merge_code(Program* program, Block& invert_block, aco_ptr& phi) { /* When the else-side operand of a binary merge phi is constant, * we can use a simpler way to lower the phi by emitting some * instructions to the invert block instead. * This allows us to actually delete the else block when it's empty. */ assert(invert_block.kind & block_kind_invert); Builder bld(program); Operand then = phi->operands[0]; const Operand els = phi->operands[1]; /* Only -1 (all lanes true) and 0 (all lanes false) constants are supported here. */ assert(!then.isConstant() || then.constantEquals(0) || then.constantEquals(-1)); assert(els.constantEquals(0) || els.constantEquals(-1)); if (!then.isConstant()) { /* Left-hand operand is not constant, so we need to emit a phi to access it. */ bld.reset(&invert_block.instructions, invert_block.instructions.begin()); then = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), then, Operand(bld.lm)); } auto after_phis = std::find_if(invert_block.instructions.begin(), invert_block.instructions.end(), [](const aco_ptr& instr) -> bool { return !is_phi(instr.get()); }); bld.reset(&invert_block.instructions, after_phis); Temp tmp; if (then.constantEquals(-1) && els.constantEquals(0)) { tmp = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm)); } else { Builder::WaveSpecificOpcode opc = els.constantEquals(0) ? Builder::s_and : Builder::s_orn2; tmp = bld.sop2(opc, bld.def(bld.lm), bld.def(s1, scc), then, Operand(exec, bld.lm)); } /* We can't delete the original phi because that'd invalidate the iterator in lower_phis, * so just make it a trivial phi instead. */ phi->opcode = aco_opcode::p_linear_phi; phi->operands[0] = Operand(tmp); phi->operands[1] = Operand(tmp); } void init_state(Program* program, Block* block, ssa_state* state, aco_ptr& phi) { Builder bld(program); /* do this here to avoid resizing in case of no boolean phis */ state->rc = phi->definitions[0].regClass(); state->visited.resize(program->blocks.size()); state->outputs.resize(program->blocks.size()); state->any_pred_defined.resize(program->blocks.size()); state->loop_nest_depth = block->loop_nest_depth; if (block->kind & block_kind_loop_exit) state->loop_nest_depth += 1; std::fill(state->visited.begin(), state->visited.end(), false); std::fill(state->any_pred_defined.begin(), state->any_pred_defined.end(), pred_defined::undef); for (unsigned i = 0; i < block->logical_preds.size(); i++) { if (phi->operands[i].isUndefined()) continue; pred_defined defined = pred_defined::temp; if (phi->operands[i].isConstant() && phi->opcode == aco_opcode::p_boolean_phi) defined = phi->operands[i].constantValue() ? pred_defined::const_1 : pred_defined::const_0; for (unsigned succ : program->blocks[block->logical_preds[i]].linear_succs) state->any_pred_defined[succ] |= defined; } unsigned start = block->logical_preds[0]; unsigned end = block->linear_preds.back(); /* The value might not be loop-invariant if the loop has a divergent break and * - this is a boolean phi, which must be combined with logical exits from previous iterations * - or the loop also has an additional linear exit (continue_or_break), which might be taken in * a different iteration than the logical exit */ bool continue_or_break = block->linear_preds.size() > block->logical_preds.size(); bool has_divergent_break = std::any_of( block->logical_preds.begin(), block->logical_preds.end(), [&](unsigned pred) { return !(program->blocks[pred].kind & block_kind_uniform); }); if (block->kind & block_kind_loop_exit && has_divergent_break && (phi->opcode == aco_opcode::p_boolean_phi || continue_or_break)) { /* Start at the loop pre-header as we need the value from previous iterations. */ while (program->blocks[start].loop_nest_depth >= state->loop_nest_depth) start--; end = block->index - 1; /* If the loop-header has a back-edge, we need to insert a phi. * This will contain a defined value */ if (program->blocks[start + 1].linear_preds.size() > 1) { if (phi->opcode == aco_opcode::p_boolean_phi) { state->any_pred_defined[start + 1] = pred_defined::temp | pred_defined::zero; /* add dominating zero: this allows to emit simpler merge sequences * if we can ensure that all disabled lanes are always zero on incoming values */ state->any_pred_defined[start] = pred_defined::const_0; } else { state->any_pred_defined[start + 1] = pred_defined::temp; } } } /* For loop header phis, don't propagate the incoming value */ if (block->kind & block_kind_loop_header) { state->any_pred_defined[block->index] = pred_defined::undef; } for (unsigned j = start; j <= end; j++) { if (state->any_pred_defined[j] == pred_defined::undef) continue; for (unsigned succ : program->blocks[j].linear_succs) state->any_pred_defined[succ] |= state->any_pred_defined[j]; } state->any_pred_defined[block->index] = pred_defined::undef; for (unsigned i = 0; i < phi->operands.size(); i++) { /* If the Operand is undefined, just propagate the previous value. */ if (phi->operands[i].isUndefined()) continue; unsigned pred = block->logical_preds[i]; if (phi->opcode == aco_opcode::p_boolean_phi && state->any_pred_defined[pred] != pred_defined::undef) { /* Needs merge code sequence. */ state->outputs[pred] = Operand(bld.tmp(state->rc)); } else { state->outputs[pred] = phi->operands[i]; } assert(state->outputs[pred].size() == state->rc.size()); state->visited[pred] = true; } init_outputs(program, state, start, end); } void lower_phi_to_linear(Program* program, ssa_state* state, Block* block, aco_ptr& phi) { if (block->linear_preds == block->logical_preds) { phi->opcode = aco_opcode::p_linear_phi; return; } if ((block->kind & block_kind_merge) && phi->opcode == aco_opcode::p_boolean_phi && phi->operands.size() == 2 && phi->operands[1].isConstant()) { build_const_else_merge_code(program, program->blocks[block->linear_idom], phi); return; } init_state(program, block, state, phi); if (phi->opcode == aco_opcode::p_boolean_phi) { /* Divergent boolean phis are lowered to logical arithmetic and linear phis. */ for (unsigned i = 0; i < phi->operands.size(); i++) build_merge_code(program, state, &program->blocks[block->logical_preds[i]], phi->operands[i]); } unsigned num_preds = block->linear_preds.size(); if (phi->operands.size() != num_preds) { Instruction* new_phi{ create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)}; new_phi->definitions[0] = phi->definitions[0]; phi.reset(new_phi); } else { phi->opcode = aco_opcode::p_linear_phi; } assert(phi->operands.size() == num_preds); for (unsigned i = 0; i < num_preds; i++) phi->operands[i] = state->outputs[block->linear_preds[i]]; return; } void lower_subdword_phis(Program* program, Block* block, aco_ptr& phi) { Builder bld(program); for (unsigned i = 0; i < phi->operands.size(); i++) { if (phi->operands[i].isUndefined()) continue; if (phi->operands[i].regClass() == phi->definitions[0].regClass()) continue; assert(phi->operands[i].isTemp()); Block* pred = &program->blocks[block->logical_preds[i]]; Temp phi_src = phi->operands[i].getTemp(); assert(phi_src.regClass().type() == RegType::sgpr); Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size())); insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr()); Temp new_phi_src = bld.tmp(phi->definitions[0].regClass()); insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector, Definition(new_phi_src), tmp, Operand::zero()) .get_ptr()); phi->operands[i].setTemp(new_phi_src); } return; } } /* end namespace */ void lower_phis(Program* program) { ssa_state state; for (Block& block : program->blocks) { for (aco_ptr& phi : block.instructions) { if (phi->opcode == aco_opcode::p_boolean_phi) { assert(program->wave_size == 64 ? phi->definitions[0].regClass() == s2 : phi->definitions[0].regClass() == s1); lower_phi_to_linear(program, &state, &block, phi); } else if (phi->opcode == aco_opcode::p_phi) { if (phi->definitions[0].regClass().type() == RegType::sgpr) lower_phi_to_linear(program, &state, &block, phi); else if (phi->definitions[0].regClass().is_subdword()) lower_subdword_phis(program, &block, phi); } else if (!is_phi(phi)) { break; } } } } } // namespace aco