/* * Copyright © 2020 Valve Corporation * * SPDX-License-Identifier: MIT */ #include "aco_ir.h" #include "util/crc32.h" #include #include #include #include namespace aco { namespace { class BlockCycleEstimator { public: enum resource { null = 0, scalar, branch_sendmsg, valu, valu_complex, lds, export_gds, vmem, resource_count, }; BlockCycleEstimator(Program* program_) : program(program_) {} Program* program; int32_t cur_cycle = 0; int32_t res_available[(int)BlockCycleEstimator::resource_count] = {0}; unsigned res_usage[(int)BlockCycleEstimator::resource_count] = {0}; int32_t reg_available[512] = {0}; std::deque mem_ops[wait_type_num]; void add(aco_ptr& instr); void join(const BlockCycleEstimator& other); private: unsigned get_waitcnt_cost(wait_imm imm); unsigned get_dependency_cost(aco_ptr& instr); void use_resources(aco_ptr& instr); int32_t cycles_until_res_available(aco_ptr& instr); }; struct perf_info { int latency; BlockCycleEstimator::resource rsrc0; unsigned cost0; BlockCycleEstimator::resource rsrc1; unsigned cost1; }; static bool is_dual_issue_capable(const Program& program, const Instruction& instr) { if (program.gfx_level < GFX11 || !instr.isVALU() || instr.isDPP()) return false; switch (instr.opcode) { case aco_opcode::v_fma_f32: case aco_opcode::v_fmac_f32: case aco_opcode::v_fmaak_f32: case aco_opcode::v_fmamk_f32: case aco_opcode::v_mul_f32: case aco_opcode::v_add_f32: case aco_opcode::v_sub_f32: case aco_opcode::v_subrev_f32: case aco_opcode::v_mul_legacy_f32: case aco_opcode::v_fma_legacy_f32: case aco_opcode::v_fmac_legacy_f32: case aco_opcode::v_fma_f16: case aco_opcode::v_fmac_f16: case aco_opcode::v_fmaak_f16: case aco_opcode::v_fmamk_f16: case aco_opcode::v_mul_f16: case aco_opcode::v_add_f16: case aco_opcode::v_sub_f16: case aco_opcode::v_subrev_f16: case aco_opcode::v_mov_b32: case aco_opcode::v_movreld_b32: case aco_opcode::v_movrels_b32: case aco_opcode::v_movrelsd_b32: case aco_opcode::v_movrelsd_2_b32: case aco_opcode::v_cndmask_b32: case aco_opcode::v_writelane_b32_e64: case aco_opcode::v_mov_b16: case aco_opcode::v_cndmask_b16: case aco_opcode::v_max_f32: case aco_opcode::v_min_f32: case aco_opcode::v_max_f16: case aco_opcode::v_min_f16: case aco_opcode::v_max_i16_e64: case aco_opcode::v_min_i16_e64: case aco_opcode::v_max_u16_e64: case aco_opcode::v_min_u16_e64: case aco_opcode::v_add_i16: case aco_opcode::v_sub_i16: case aco_opcode::v_mad_i16: case aco_opcode::v_add_u16_e64: case aco_opcode::v_sub_u16_e64: case aco_opcode::v_mad_u16: case aco_opcode::v_mul_lo_u16_e64: case aco_opcode::v_not_b16: case aco_opcode::v_and_b16: case aco_opcode::v_or_b16: case aco_opcode::v_xor_b16: case aco_opcode::v_lshrrev_b16_e64: case aco_opcode::v_ashrrev_i16_e64: case aco_opcode::v_lshlrev_b16_e64: case aco_opcode::v_dot2_bf16_bf16: case aco_opcode::v_dot2_f32_bf16: case aco_opcode::v_dot2_f16_f16: case aco_opcode::v_dot2_f32_f16: case aco_opcode::v_dot2c_f32_f16: return true; case aco_opcode::v_fma_mix_f32: case aco_opcode::v_fma_mixlo_f16: case aco_opcode::v_fma_mixhi_f16: { /* dst and acc type must match */ if (instr.valu().opsel_hi[2] == (instr.opcode == aco_opcode::v_fma_mix_f32)) return false; /* If all operands are vgprs, two must be the same. */ for (unsigned i = 0; i < 3; i++) { if (instr.operands[i].isConstant() || instr.operands[i].isOfType(RegType::sgpr)) return true; for (unsigned j = 0; j < i; j++) { if (instr.operands[i].physReg() == instr.operands[j].physReg()) return true; } } return false; } default: return false; } } static perf_info get_perf_info(const Program& program, const Instruction& instr) { instr_class cls = instr_info.classes[(int)instr.opcode]; #define WAIT(res) BlockCycleEstimator::res, 0 #define WAIT_USE(res, cnt) BlockCycleEstimator::res, cnt if (program.gfx_level >= GFX10) { /* fp64 might be incorrect */ switch (cls) { case instr_class::valu32: case instr_class::valu_convert32: case instr_class::valu_fma: return {5, WAIT_USE(valu, 1)}; case instr_class::valu64: return {6, WAIT_USE(valu, 2), WAIT_USE(valu_complex, 2)}; case instr_class::valu_quarter_rate32: return {8, WAIT_USE(valu, 4), WAIT_USE(valu_complex, 4)}; case instr_class::valu_transcendental32: return {10, WAIT_USE(valu, 1), WAIT_USE(valu_complex, 4)}; case instr_class::valu_double: return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)}; case instr_class::valu_double_add: return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)}; case instr_class::valu_double_convert: return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)}; case instr_class::valu_double_transcendental: return {24, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)}; case instr_class::salu: return {2, WAIT_USE(scalar, 1)}; case instr_class::sfpu: return {4, WAIT_USE(scalar, 1)}; case instr_class::valu_pseudo_scalar_trans: return {7, WAIT_USE(valu, 1), WAIT_USE(valu_complex, 1)}; case instr_class::smem: return {0, WAIT_USE(scalar, 1)}; case instr_class::branch: case instr_class::sendmsg: return {0, WAIT_USE(branch_sendmsg, 1)}; case instr_class::ds: return instr.isDS() && instr.ds().gds ? perf_info{0, WAIT_USE(export_gds, 1)} : perf_info{0, WAIT_USE(lds, 1)}; case instr_class::exp: return {0, WAIT_USE(export_gds, 1)}; case instr_class::vmem: return {0, WAIT_USE(vmem, 1)}; case instr_class::wmma: { /* int8 and (b)f16 have the same performance. */ uint8_t cost = instr.opcode == aco_opcode::v_wmma_i32_16x16x16_iu4 ? 16 : 32; return {cost, WAIT_USE(valu, cost)}; } case instr_class::barrier: case instr_class::waitcnt: case instr_class::other: default: return {0}; } } else { switch (cls) { case instr_class::valu32: return {4, WAIT_USE(valu, 4)}; case instr_class::valu_convert32: return {16, WAIT_USE(valu, 16)}; case instr_class::valu64: return {8, WAIT_USE(valu, 8)}; case instr_class::valu_quarter_rate32: return {16, WAIT_USE(valu, 16)}; case instr_class::valu_fma: return program.dev.has_fast_fma32 ? perf_info{4, WAIT_USE(valu, 4)} : perf_info{16, WAIT_USE(valu, 16)}; case instr_class::valu_transcendental32: return {16, WAIT_USE(valu, 16)}; case instr_class::valu_double: return {64, WAIT_USE(valu, 64)}; case instr_class::valu_double_add: return {32, WAIT_USE(valu, 32)}; case instr_class::valu_double_convert: return {16, WAIT_USE(valu, 16)}; case instr_class::valu_double_transcendental: return {64, WAIT_USE(valu, 64)}; case instr_class::salu: return {4, WAIT_USE(scalar, 4)}; case instr_class::smem: return {4, WAIT_USE(scalar, 4)}; case instr_class::branch: return {8, WAIT_USE(branch_sendmsg, 8)}; return {4, WAIT_USE(branch_sendmsg, 4)}; case instr_class::ds: return instr.isDS() && instr.ds().gds ? perf_info{4, WAIT_USE(export_gds, 4)} : perf_info{4, WAIT_USE(lds, 4)}; case instr_class::exp: return {16, WAIT_USE(export_gds, 16)}; case instr_class::vmem: return {4, WAIT_USE(vmem, 4)}; case instr_class::barrier: case instr_class::waitcnt: case instr_class::other: default: return {4}; } } #undef WAIT_USE #undef WAIT } void BlockCycleEstimator::use_resources(aco_ptr& instr) { perf_info perf = get_perf_info(*program, *instr); if (perf.rsrc0 != resource_count) { res_available[(int)perf.rsrc0] = cur_cycle + perf.cost0; res_usage[(int)perf.rsrc0] += perf.cost0; } if (perf.rsrc1 != resource_count) { res_available[(int)perf.rsrc1] = cur_cycle + perf.cost1; res_usage[(int)perf.rsrc1] += perf.cost1; } } int32_t BlockCycleEstimator::cycles_until_res_available(aco_ptr& instr) { perf_info perf = get_perf_info(*program, *instr); int32_t cost = 0; if (perf.rsrc0 != resource_count) cost = MAX2(cost, res_available[(int)perf.rsrc0] - cur_cycle); if (perf.rsrc1 != resource_count) cost = MAX2(cost, res_available[(int)perf.rsrc1] - cur_cycle); return cost; } static std::array get_wait_counter_info(amd_gfx_level gfx_level, aco_ptr& instr) { /* These numbers are all a bit nonsense. LDS/VMEM/SMEM/EXP performance * depends a lot on the situation. */ std::array info{}; if (instr->isEXP()) { info[wait_type_exp] = 16; } else if (instr->isLDSDIR()) { info[wait_type_exp] = 13; } else if (instr->isFlatLike()) { info[wait_type_lgkm] = instr->isFlat() ? 20 : 0; if (!instr->definitions.empty() || gfx_level < GFX10) info[wait_type_vm] = 320; else info[wait_type_vs] = 320; } else if (instr->isSMEM()) { wait_type type = gfx_level >= GFX12 ? wait_type_km : wait_type_lgkm; if (instr->definitions.empty()) { info[type] = 200; } else if (instr->operands.empty()) { /* s_memtime and s_memrealtime */ info[type] = 1; } else { bool likely_desc_load = instr->operands[0].size() == 2; bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4); bool const_offset = instr->operands[1].isConstant() && (!soe || instr->operands.back().isConstant()); if (likely_desc_load || const_offset) info[type] = 30; /* likely to hit L0 cache */ else info[type] = 200; } } else if (instr->isDS()) { info[wait_type_lgkm] = 20; } else if (instr->isVMEM() && instr->definitions.empty() && gfx_level >= GFX10) { info[wait_type_vs] = 320; } else if (instr->isVMEM()) { uint8_t vm_type = get_vmem_type(gfx_level, instr.get()); wait_type type = wait_type_vm; if (gfx_level >= GFX12 && vm_type == vmem_bvh) type = wait_type_bvh; else if (gfx_level >= GFX12 && vm_type == vmem_sampler) type = wait_type_sample; info[type] = 320; } return info; } static wait_imm get_wait_imm(Program* program, aco_ptr& instr) { wait_imm imm; if (instr->opcode == aco_opcode::s_endpgm) { for (unsigned i = 0; i < wait_type_num; i++) imm[i] = 0; } else if (imm.unpack(program->gfx_level, instr.get())) { } else if (instr->isVINTERP_INREG()) { imm.exp = instr->vinterp_inreg().wait_exp; if (imm.exp == 0x7) imm.exp = wait_imm::unset_counter; } else { /* If an instruction increases a counter, it waits for it to be below maximum first. */ std::array wait_info = get_wait_counter_info(program->gfx_level, instr); wait_imm max = wait_imm::max(program->gfx_level); for (unsigned i = 0; i < wait_type_num; i++) { if (wait_info[i]) imm[i] = max[i] - 1; } } return imm; } unsigned BlockCycleEstimator::get_dependency_cost(aco_ptr& instr) { int deps_available = cur_cycle; wait_imm imm = get_wait_imm(program, instr); for (unsigned i = 0; i < wait_type_num; i++) { if (imm[i] == wait_imm::unset_counter) continue; for (int j = 0; j < (int)mem_ops[i].size() - imm[i]; j++) deps_available = MAX2(deps_available, mem_ops[i][j]); } if (instr->opcode == aco_opcode::s_endpgm) { for (unsigned i = 0; i < 512; i++) deps_available = MAX2(deps_available, reg_available[i]); } else if (program->gfx_level >= GFX10) { for (Operand& op : instr->operands) { if (op.isConstant() || op.isUndefined()) continue; for (unsigned i = 0; i < op.size(); i++) deps_available = MAX2(deps_available, reg_available[op.physReg().reg() + i]); } } if (program->gfx_level < GFX10) deps_available = align(deps_available, 4); return deps_available - cur_cycle; } static bool is_vector(aco_opcode op) { switch (instr_info.classes[(int)op]) { case instr_class::valu32: case instr_class::valu_convert32: case instr_class::valu_fma: case instr_class::valu_double: case instr_class::valu_double_add: case instr_class::valu_double_convert: case instr_class::valu_double_transcendental: case instr_class::vmem: case instr_class::ds: case instr_class::exp: case instr_class::valu64: case instr_class::valu_quarter_rate32: case instr_class::valu_transcendental32: return true; default: return false; } } void BlockCycleEstimator::add(aco_ptr& instr) { perf_info perf = get_perf_info(*program, *instr); cur_cycle += get_dependency_cost(instr); unsigned start; bool dual_issue = program->gfx_level >= GFX10 && program->wave_size == 64 && is_vector(instr->opcode) && !is_dual_issue_capable(*program, *instr) && program->workgroup_size > 32; for (unsigned i = 0; i < (dual_issue ? 2 : 1); i++) { cur_cycle += cycles_until_res_available(instr); start = cur_cycle; use_resources(instr); /* GCN is in-order and doesn't begin the next instruction until the current one finishes */ cur_cycle += program->gfx_level >= GFX10 ? 1 : perf.latency; } wait_imm imm = get_wait_imm(program, instr); for (unsigned i = 0; i < wait_type_num; i++) { while (mem_ops[i].size() > imm[i]) mem_ops[i].pop_front(); } std::array wait_info = get_wait_counter_info(program->gfx_level, instr); for (unsigned i = 0; i < wait_type_num; i++) { if (wait_info[i]) mem_ops[i].push_back(cur_cycle + wait_info[i]); } /* This is inaccurate but shouldn't affect anything after waitcnt insertion. * Before waitcnt insertion, this is necessary to consider memory operations. */ unsigned latency = 0; for (unsigned i = 0; i < wait_type_num; i++) latency = MAX2(latency, i == wait_type_vs ? 0 : wait_info[i]); int32_t result_available = start + MAX2(perf.latency, (int32_t)latency); for (Definition& def : instr->definitions) { int32_t* available = ®_available[def.physReg().reg()]; for (unsigned i = 0; i < def.size(); i++) available[i] = MAX2(available[i], result_available); } } void BlockCycleEstimator::join(const BlockCycleEstimator& pred) { assert(cur_cycle == 0); for (unsigned i = 0; i < (unsigned)resource_count; i++) { assert(res_usage[i] == 0); res_available[i] = MAX2(res_available[i], pred.res_available[i] - pred.cur_cycle); } for (unsigned i = 0; i < 512; i++) reg_available[i] = MAX2(reg_available[i], pred.reg_available[i] - pred.cur_cycle + cur_cycle); for (unsigned i = 0; i < wait_type_num; i++) { std::deque& ops = mem_ops[i]; const std::deque& pred_ops = pred.mem_ops[i]; for (unsigned j = 0; j < MIN2(ops.size(), pred_ops.size()); j++) ops.rbegin()[j] = MAX2(ops.rbegin()[j], pred_ops.rbegin()[j] - pred.cur_cycle); for (int j = pred_ops.size() - ops.size() - 1; j >= 0; j--) ops.push_front(pred_ops[j] - pred.cur_cycle); } } } /* end namespace */ /* sgpr_presched/vgpr_presched */ void collect_presched_stats(Program* program) { RegisterDemand presched_demand; for (Block& block : program->blocks) presched_demand.update(block.register_demand); program->statistics[aco_statistic_sgpr_presched] = presched_demand.sgpr; program->statistics[aco_statistic_vgpr_presched] = presched_demand.vgpr; } /* instructions/branches/vmem_clauses/smem_clauses/cycles */ void collect_preasm_stats(Program* program) { for (Block& block : program->blocks) { std::set vmem_clause; std::set smem_clause; program->statistics[aco_statistic_instructions] += block.instructions.size(); for (aco_ptr& instr : block.instructions) { const bool is_branch = instr->isSOPP() && instr_info.classes[(int)instr->opcode] == instr_class::branch; if (is_branch) program->statistics[aco_statistic_branches]++; if (instr->isVALU() || instr->isVINTRP()) program->statistics[aco_statistic_valu]++; if (instr->isSALU() && !instr->isSOPP() && instr_info.classes[(int)instr->opcode] != instr_class::waitcnt) program->statistics[aco_statistic_salu]++; if (instr->isVOPD()) program->statistics[aco_statistic_vopd]++; if ((instr->isVMEM() || instr->isScratch() || instr->isGlobal()) && !instr->operands.empty()) { if (std::none_of(vmem_clause.begin(), vmem_clause.end(), [&](Instruction* other) { return should_form_clause(instr.get(), other); })) program->statistics[aco_statistic_vmem_clauses]++; vmem_clause.insert(instr.get()); program->statistics[aco_statistic_vmem]++; } else { vmem_clause.clear(); } if (instr->isSMEM() && !instr->operands.empty()) { if (std::none_of(smem_clause.begin(), smem_clause.end(), [&](Instruction* other) { return should_form_clause(instr.get(), other); })) program->statistics[aco_statistic_smem_clauses]++; smem_clause.insert(instr.get()); program->statistics[aco_statistic_smem]++; } else { smem_clause.clear(); } } } double latency = 0; double usage[(int)BlockCycleEstimator::resource_count] = {0}; std::vector blocks(program->blocks.size(), program); constexpr const unsigned vmem_latency = 320; for (const Definition def : program->args_pending_vmem) { blocks[0].mem_ops[wait_type_vm].push_back(vmem_latency); for (unsigned i = 0; i < def.size(); i++) blocks[0].reg_available[def.physReg().reg() + i] = vmem_latency; } for (Block& block : program->blocks) { BlockCycleEstimator& block_est = blocks[block.index]; for (unsigned pred : block.linear_preds) block_est.join(blocks[pred]); for (aco_ptr& instr : block.instructions) { unsigned before = block_est.cur_cycle; block_est.add(instr); instr->pass_flags = block_est.cur_cycle - before; } /* TODO: it would be nice to be able to consider estimated loop trip * counts used for loop unrolling. */ /* TODO: estimate the trip_count of divergent loops (those which break * divergent) higher than of uniform loops */ /* Assume loops execute 8-2 times, uniform branches are taken 50% the time, * and any lane in the wave takes a side of a divergent branch 75% of the * time. */ double iter = 1.0; iter *= block.loop_nest_depth > 0 ? 8.0 : 1.0; iter *= block.loop_nest_depth > 1 ? 4.0 : 1.0; iter *= block.loop_nest_depth > 2 ? pow(2.0, block.loop_nest_depth - 2) : 1.0; iter *= pow(0.5, block.uniform_if_depth); iter *= pow(0.75, block.divergent_if_logical_depth); bool divergent_if_linear_else = block.logical_preds.empty() && block.linear_preds.size() == 1 && block.linear_succs.size() == 1 && program->blocks[block.linear_preds[0]].kind & (block_kind_branch | block_kind_invert); if (divergent_if_linear_else) iter *= 0.25; latency += block_est.cur_cycle * iter; for (unsigned i = 0; i < (unsigned)BlockCycleEstimator::resource_count; i++) usage[i] += block_est.res_usage[i] * iter; } /* This likely exaggerates the effectiveness of parallelism because it * ignores instruction ordering. It can assume there might be SALU/VALU/etc * work to from other waves while one is idle but that might not be the case * because those other waves have not reached such a point yet. */ double parallelism = program->num_waves; for (unsigned i = 0; i < (unsigned)BlockCycleEstimator::resource_count; i++) { if (usage[i] > 0.0) parallelism = MIN2(parallelism, latency / usage[i]); } double waves_per_cycle = 1.0 / latency * parallelism; double wave64_per_cycle = waves_per_cycle * (program->wave_size / 64.0); double max_utilization = 1.0; if (program->workgroup_size != UINT_MAX) max_utilization = program->workgroup_size / (double)align(program->workgroup_size, program->wave_size); wave64_per_cycle *= max_utilization; program->statistics[aco_statistic_latency] = round(latency); program->statistics[aco_statistic_inv_throughput] = round(1.0 / wave64_per_cycle); if (debug_flags & DEBUG_PERF_INFO) { aco_print_program(program, stderr, print_no_ssa | print_perf_info); fprintf(stderr, "num_waves: %u\n", program->num_waves); fprintf(stderr, "salu_smem_usage: %f\n", usage[(int)BlockCycleEstimator::scalar]); fprintf(stderr, "branch_sendmsg_usage: %f\n", usage[(int)BlockCycleEstimator::branch_sendmsg]); fprintf(stderr, "valu_usage: %f\n", usage[(int)BlockCycleEstimator::valu]); fprintf(stderr, "valu_complex_usage: %f\n", usage[(int)BlockCycleEstimator::valu_complex]); fprintf(stderr, "lds_usage: %f\n", usage[(int)BlockCycleEstimator::lds]); fprintf(stderr, "export_gds_usage: %f\n", usage[(int)BlockCycleEstimator::export_gds]); fprintf(stderr, "vmem_usage: %f\n", usage[(int)BlockCycleEstimator::vmem]); fprintf(stderr, "latency: %f\n", latency); fprintf(stderr, "parallelism: %f\n", parallelism); fprintf(stderr, "max_utilization: %f\n", max_utilization); fprintf(stderr, "wave64_per_cycle: %f\n", wave64_per_cycle); fprintf(stderr, "\n"); } } void collect_postasm_stats(Program* program, const std::vector& code) { program->statistics[aco_statistic_hash] = util_hash_crc32(code.data(), code.size() * 4); } Instruction_cycle_info get_cycle_info(const Program& program, const Instruction& instr) { perf_info info = get_perf_info(program, instr); return Instruction_cycle_info{(unsigned)info.latency, std::max(info.cost0, info.cost1)}; } } // namespace aco