/* * Copyright © 2018 Valve Corporation * * SPDX-License-Identifier: MIT */ #include "aco_ir.h" #include "util/memstream.h" #include "util/ralloc.h" #include #include #include #include namespace aco { static void aco_log(Program* program, enum aco_compiler_debug_level level, const char* prefix, const char* file, unsigned line, const char* fmt, va_list args) { char* msg; if (program->debug.shorten_messages) { msg = ralloc_vasprintf(NULL, fmt, args); } else { msg = ralloc_strdup(NULL, prefix); ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line); ralloc_asprintf_append(&msg, " "); ralloc_vasprintf_append(&msg, fmt, args); } if (program->debug.func) program->debug.func(program->debug.private_data, level, msg); fprintf(program->debug.output, "%s\n", msg); ralloc_free(msg); } void _aco_err(Program* program, const char* file, unsigned line, const char* fmt, ...) { va_list args; va_start(args, fmt); aco_log(program, ACO_COMPILER_DEBUG_LEVEL_ERROR, "ACO ERROR:\n", file, line, fmt, args); va_end(args); } bool validate_ir(Program* program) { bool is_valid = true; auto check = [&program, &is_valid](bool success, const char* msg, aco::Instruction* instr) -> void { if (!success) { char* out; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &out, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "%s: ", msg); aco_print_instr(program->gfx_level, instr, memf); u_memstream_close(&mem); aco_err(program, "%s", out); free(out); is_valid = false; } }; /* check reachability */ if (program->progress < CompilationProgress::after_lower_to_hw) { std::map> def_blocks; for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) { for (Definition def : instr->definitions) { if (!def.isTemp()) continue; check(!def_blocks.count(def.tempId()), "Temporary defined twice", instr.get()); def_blocks[def.tempId()] = std::make_pair(block.index, false); } } } for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) { for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (!op.isTemp()) continue; uint32_t use_block_idx = block.index; if (instr->opcode == aco_opcode::p_phi || instr->opcode == aco_opcode::p_boolean_phi) use_block_idx = block.logical_preds[i]; else if (instr->opcode == aco_opcode::p_linear_phi) use_block_idx = block.linear_preds[i]; auto it = def_blocks.find(op.tempId()); if (it != def_blocks.end()) { Block& def_block = program->blocks[it->second.first]; Block& use_block = program->blocks[use_block_idx]; bool dominates = def_block.index == use_block_idx ? (use_block_idx == block.index ? it->second.second : true) : (op.regClass().is_linear() ? dominates_linear(def_block, use_block) : dominates_logical(def_block, use_block)); if (!dominates) { char msg[256]; snprintf(msg, sizeof(msg), "Definition of %%%u does not dominate use", op.tempId()); check(false, msg, instr.get()); } } else { char msg[256]; snprintf(msg, sizeof(msg), "%%%u never defined", op.tempId()); check(false, msg, instr.get()); } } for (Definition def : instr->definitions) { if (def.isTemp()) def_blocks[def.tempId()].second = true; } } } } for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) { if (program->progress < CompilationProgress::after_lower_to_hw) { for (const Operand& op : instr->operands) check(!op.isTemp() || op.regClass() == program->temp_rc[op.tempId()], "Operand RC not consistent.", instr.get()); for (const Definition& def : instr->definitions) check(!def.isTemp() || def.regClass() == program->temp_rc[def.tempId()], "Definition RC not consistent.", instr.get()); } unsigned pck_defs = instr_info.definitions[(int)instr->opcode]; unsigned pck_ops = instr_info.operands[(int)instr->opcode]; if (pck_defs != 0) { /* Before GFX10 v_cmpx also writes VCC. */ if (instr->isVOPC() && program->gfx_level < GFX10 && pck_defs == exec_hi) pck_defs = vcc | (exec_hi << 8); for (unsigned i = 0; i < 4; i++) { uint32_t def = (pck_defs >> (i * 8)) & 0xff; if (def == 0) { check(i == instr->definitions.size(), "Too many definitions", instr.get()); break; } else { check(i < instr->definitions.size(), "Too few definitions", instr.get()); if (i >= instr->definitions.size()) break; } if (def == m0) { check(instr->definitions[i].isFixed() && instr->definitions[i].physReg() == m0, "Definition needs m0", instr.get()); } else if (def == scc) { check(instr->definitions[i].isFixed() && instr->definitions[i].physReg() == scc, "Definition needs scc", instr.get()); } else if (def == exec_hi) { RegClass rc = instr->isSALU() ? s2 : program->lane_mask; check(instr->definitions[i].isFixed() && instr->definitions[i].physReg() == exec && instr->definitions[i].regClass() == rc, "Definition needs exec", instr.get()); } else if (def == exec_lo) { check(instr->definitions[i].isFixed() && instr->definitions[i].physReg() == exec_lo && instr->definitions[i].regClass() == s1, "Definition needs exec_lo", instr.get()); } else if (def == vcc) { check(instr->definitions[i].regClass() == program->lane_mask, "Definition has to be lane mask", instr.get()); check(!instr->definitions[i].isFixed() || instr->definitions[i].physReg() == vcc || instr->isVOP3() || instr->isSDWA(), "Definition has to be vcc", instr.get()); } else { check(instr->definitions[i].size() == def, "Definition has wrong size", instr.get()); } } } if (pck_ops != 0) { for (unsigned i = 0; i < 4; i++) { uint32_t op = (pck_ops >> (i * 8)) & 0xff; if (op == 0) { check(i == instr->operands.size(), "Too many operands", instr.get()); break; } else { check(i < instr->operands.size(), "Too few operands", instr.get()); if (i >= instr->operands.size()) break; } if (op == m0) { check(instr->operands[i].isFixed() && instr->operands[i].physReg() == m0, "Operand needs m0", instr.get()); } else if (op == scc) { check(instr->operands[i].isFixed() && instr->operands[i].physReg() == scc, "Operand needs scc", instr.get()); } else if (op == exec_hi) { RegClass rc = instr->isSALU() ? s2 : program->lane_mask; check(instr->operands[i].isFixed() && instr->operands[i].physReg() == exec && instr->operands[i].hasRegClass() && instr->operands[i].regClass() == rc, "Operand needs exec", instr.get()); } else if (op == exec_lo) { check(instr->operands[i].isFixed() && instr->operands[i].physReg() == exec_lo && instr->operands[i].hasRegClass() && instr->operands[i].regClass() == s1, "Operand needs exec_lo", instr.get()); } else if (op == vcc) { check(instr->operands[i].hasRegClass() && instr->operands[i].regClass() == program->lane_mask, "Operand has to be lane mask", instr.get()); check(!instr->operands[i].isFixed() || instr->operands[i].physReg() == vcc || instr->isVOP3(), "Operand has to be vcc", instr.get()); } else { check(instr->operands[i].size() == op || (instr->operands[i].isFixed() && instr->operands[i].physReg() >= 128 && instr->operands[i].physReg() < 256), "Operand has wrong size", instr.get()); } } } /* check base format */ Format base_format = instr->format; base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA); base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP16); base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP8); if ((uint32_t)base_format & (uint32_t)Format::VOP1) base_format = Format::VOP1; else if ((uint32_t)base_format & (uint32_t)Format::VOP2) base_format = Format::VOP2; else if ((uint32_t)base_format & (uint32_t)Format::VOPC) base_format = Format::VOPC; else if (base_format == Format::VINTRP) { if (instr->opcode == aco_opcode::v_interp_p1ll_f16 || instr->opcode == aco_opcode::v_interp_p1lv_f16 || instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || instr->opcode == aco_opcode::v_interp_p2_f16 || instr->opcode == aco_opcode::v_interp_p2_hi_f16) { /* v_interp_*_fp16 are considered VINTRP by the compiler but * they are emitted as VOP3. */ base_format = Format::VOP3; } else { base_format = Format::VINTRP; } } check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get()); /* check VOP3 modifiers */ if (instr->isVOP3() && withoutDPP(instr->format) != Format::VOP3) { check(base_format == Format::VOP2 || base_format == Format::VOP1 || base_format == Format::VOPC || base_format == Format::VINTRP, "Format cannot have VOP3/VOP3B applied", instr.get()); } if (instr->isDPP()) { check(base_format == Format::VOP2 || base_format == Format::VOP1 || base_format == Format::VOPC || base_format == Format::VOP3 || base_format == Format::VOP3P, "Format cannot have DPP applied", instr.get()); check((!instr->isVOP3() && !instr->isVOP3P()) || program->gfx_level >= GFX11, "VOP3+DPP is GFX11+ only", instr.get()); bool fi = instr->isDPP8() ? instr->dpp8().fetch_inactive : instr->dpp16().fetch_inactive; check(!fi || program->gfx_level >= GFX10, "DPP Fetch-Inactive is GFX10+ only", instr.get()); } /* check SDWA */ if (instr->isSDWA()) { check(base_format == Format::VOP2 || base_format == Format::VOP1 || base_format == Format::VOPC, "Format cannot have SDWA applied", instr.get()); check(program->gfx_level >= GFX8, "SDWA is GFX8 to GFX10.3 only", instr.get()); check(program->gfx_level < GFX11, "SDWA is GFX8 to GFX10.3 only", instr.get()); SDWA_instruction& sdwa = instr->sdwa(); check(sdwa.omod == 0 || program->gfx_level >= GFX9, "SDWA omod only supported on GFX9+", instr.get()); if (base_format == Format::VOPC) { check(sdwa.clamp == false || program->gfx_level == GFX8, "SDWA VOPC clamp only supported on GFX8", instr.get()); check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) || program->gfx_level >= GFX9, "SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get()); } else { const Definition& def = instr->definitions[0]; check(def.bytes() <= 4, "SDWA definitions must not be larger than 4 bytes", instr.get()); check(def.bytes() >= sdwa.dst_sel.size() + sdwa.dst_sel.offset(), "SDWA definition selection size must be at most definition size", instr.get()); check( sdwa.dst_sel.size() == 1 || sdwa.dst_sel.size() == 2 || sdwa.dst_sel.size() == 4, "SDWA definition selection size must be 1, 2 or 4 bytes", instr.get()); check(sdwa.dst_sel.offset() % sdwa.dst_sel.size() == 0, "Invalid selection offset", instr.get()); check(def.bytes() == 4 || def.bytes() == sdwa.dst_sel.size(), "SDWA dst_sel size must be definition size for subdword definitions", instr.get()); check(def.bytes() == 4 || sdwa.dst_sel.offset() == 0, "SDWA dst_sel offset must be 0 for subdword definitions", instr.get()); } for (unsigned i = 0; i < std::min(2, instr->operands.size()); i++) { const Operand& op = instr->operands[i]; check(op.bytes() <= 4, "SDWA operands must not be larger than 4 bytes", instr.get()); check(op.bytes() >= sdwa.sel[i].size() + sdwa.sel[i].offset(), "SDWA operand selection size must be at most operand size", instr.get()); check(sdwa.sel[i].size() == 1 || sdwa.sel[i].size() == 2 || sdwa.sel[i].size() == 4, "SDWA operand selection size must be 1, 2 or 4 bytes", instr.get()); check(sdwa.sel[i].offset() % sdwa.sel[i].size() == 0, "Invalid selection offset", instr.get()); } if (instr->operands.size() >= 3) { check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc, "3rd operand must be fixed to vcc with SDWA", instr.get()); } if (instr->definitions.size() >= 2) { check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc, "2nd definition must be fixed to vcc with SDWA", instr.get()); } const bool sdwa_opcodes = instr->opcode != aco_opcode::v_fmac_f32 && instr->opcode != aco_opcode::v_fmac_f16 && instr->opcode != aco_opcode::v_fmamk_f32 && instr->opcode != aco_opcode::v_fmaak_f32 && instr->opcode != aco_opcode::v_fmamk_f16 && instr->opcode != aco_opcode::v_fmaak_f16 && instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32; const bool feature_mac = program->gfx_level == GFX8 && (instr->opcode == aco_opcode::v_mac_f32 && instr->opcode == aco_opcode::v_mac_f16); check(sdwa_opcodes || feature_mac, "SDWA can't be used with this opcode", instr.get()); } /* check opsel */ if (instr->opcode == aco_opcode::v_permlane16_b32 || instr->opcode == aco_opcode::v_permlanex16_b32) { check(instr->valu().opsel <= 0x3, "Unexpected opsel for permlane", instr.get()); } else if (instr->isVOP3() || instr->isVOP1() || instr->isVOP2() || instr->isVOPC()) { VALU_instruction& valu = instr->valu(); check(valu.opsel == 0 || program->gfx_level >= GFX9, "Opsel is only supported on GFX9+", instr.get()); check(valu.opsel == 0 || instr->format == Format::VOP3 || program->gfx_level >= GFX11, "Opsel is only supported for VOP3 before GFX11", instr.get()); for (unsigned i = 0; i < 3; i++) { if (i >= instr->operands.size() || (!instr->isVOP3() && !instr->operands[i].isOfType(RegType::vgpr)) || (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed())) check(!valu.opsel[i], "Unexpected opsel for operand", instr.get()); } if (instr->definitions[0].regClass().is_subdword() && !instr->definitions[0].isFixed()) check(!valu.opsel[3], "Unexpected opsel for sub-dword definition", instr.get()); } else if (instr->opcode == aco_opcode::v_fma_mixlo_f16 || instr->opcode == aco_opcode::v_fma_mixhi_f16 || instr->opcode == aco_opcode::v_fma_mix_f32) { check(instr->definitions[0].regClass() == (instr->opcode == aco_opcode::v_fma_mix_f32 ? v1 : v2b), "v_fma_mix_f32/v_fma_mix_f16 must have v1/v2b definition", instr.get()); } else if (instr->isVOP3P()) { VALU_instruction& vop3p = instr->valu(); for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed()) check(!vop3p.opsel_lo[i] && !vop3p.opsel_hi[i], "Unexpected opsel for subdword operand", instr.get()); } check(instr->definitions[0].regClass() == v1 || instr_info.classes[(int)instr->opcode] == instr_class::wmma, "VOP3P must have v1 definition", instr.get()); } /* check for undefs */ for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isUndefined()) { bool flat = instr->isFlatLike(); bool can_be_undef = is_phi(instr) || instr->isEXP() || instr->isReduction() || instr->opcode == aco_opcode::p_create_vector || instr->opcode == aco_opcode::p_start_linear_vgpr || instr->opcode == aco_opcode::p_jump_to_epilog || instr->opcode == aco_opcode::p_dual_src_export_gfx11 || instr->opcode == aco_opcode::p_end_with_regs || (instr->opcode == aco_opcode::p_interp_gfx11 && i == 0) || (instr->opcode == aco_opcode::p_bpermute_permlane && i == 0) || (flat && i == 1) || (instr->isMIMG() && (i == 1 || i == 2)) || ((instr->isMUBUF() || instr->isMTBUF()) && i == 1) || (instr->isScratch() && i == 0) || (instr->isDS() && i == 0) || (instr->opcode == aco_opcode::p_init_scratch && i == 0); check(can_be_undef, "Undefs can only be used in certain operands", instr.get()); } else { check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || instr->operands[i].isConstant(), "Uninitialized Operand", instr.get()); } } for (Operand& op : instr->operands) { if (op.isFixed() || !op.hasRegClass() || !op.regClass().is_linear_vgpr() || op.isUndefined()) continue; /* Only kill linear VGPRs in top-level blocks. Otherwise, we might have to move linear * VGPRs to make space for normal ones and that isn't possible inside control flow. */ if (op.isKill()) { check(block.kind & block_kind_top_level, "Linear VGPR operands must only be killed at top-level blocks", instr.get()); } } /* check subdword definitions */ for (unsigned i = 0; i < instr->definitions.size(); i++) { if (instr->definitions[i].regClass().is_subdword()) check(instr->definitions[i].bytes() <= 4 || instr->isPseudo() || instr->isVMEM(), "Only Pseudo and VMEM instructions can write subdword registers > 4 bytes", instr.get()); } if ((instr->isSALU() && instr->opcode != aco_opcode::p_constaddr_addlo && instr->opcode != aco_opcode::p_resumeaddr_addlo) || instr->isVALU()) { /* check literals */ Operand literal(s1); for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (!op.isLiteral()) continue; check(!instr->isDPP() && !instr->isSDWA() && (!instr->isVOP3() || program->gfx_level >= GFX10) && (!instr->isVOP3P() || program->gfx_level >= GFX10), "Literal applied on wrong instruction format", instr.get()); check(literal.isUndefined() || (literal.size() == op.size() && literal.constantValue() == op.constantValue()), "Only 1 Literal allowed", instr.get()); literal = op; check(instr->isSALU() || instr->isVOP3() || instr->isVOP3P() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get()); } /* check num sgprs for VALU */ if (instr->isVALU()) { bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64_e64 || instr->opcode == aco_opcode::v_lshlrev_b64 || instr->opcode == aco_opcode::v_lshrrev_b64 || instr->opcode == aco_opcode::v_ashrrev_i64; unsigned const_bus_limit = 1; if (program->gfx_level >= GFX10 && !is_shift64) const_bus_limit = 2; uint32_t scalar_mask = instr->isVOP3() || instr->isVOP3P() || instr->isVINTERP_INREG() ? 0x7 : 0x5; if (instr->isSDWA()) scalar_mask = program->gfx_level >= GFX9 ? 0x7 : 0x4; else if (instr->isDPP()) scalar_mask = 0x4; if (instr->isVOPC() || instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 || instr_info.classes[(int)instr->opcode] == instr_class::valu_pseudo_scalar_trans) { check(instr->definitions[0].regClass().type() == RegType::sgpr, "Wrong Definition type for VALU instruction", instr.get()); } else { check(instr->definitions[0].regClass().type() == RegType::vgpr, "Wrong Definition type for VALU instruction", instr.get()); } unsigned num_sgprs = 0; unsigned sgpr[] = {0, 0}; for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64) { check(i != 1 || op.isOfType(RegType::sgpr) || op.isConstant(), "Must be a SGPR or a constant", instr.get()); check(i == 1 || (op.isOfType(RegType::vgpr) && op.bytes() <= 4), "Wrong Operand type for VALU instruction", instr.get()); continue; } if (instr->opcode == aco_opcode::v_permlane16_b32 || instr->opcode == aco_opcode::v_permlanex16_b32 || instr->opcode == aco_opcode::v_permlane64_b32) { check(i != 0 || op.isOfType(RegType::vgpr), "Operand 0 of v_permlane must be VGPR", instr.get()); check(i == 0 || op.isOfType(RegType::sgpr) || op.isConstant(), "Lane select operands of v_permlane must be SGPR or constant", instr.get()); } if (instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64) { check(i != 2 || (op.isOfType(RegType::vgpr) && op.bytes() <= 4), "Wrong Operand type for VALU instruction", instr.get()); check(i == 2 || op.isOfType(RegType::sgpr) || op.isConstant(), "Must be a SGPR or a constant", instr.get()); continue; } if (op.isOfType(RegType::sgpr)) { check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", instr.get()); if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) { if (num_sgprs < 2) sgpr[num_sgprs++] = op.tempId(); } } if (op.isConstant() && !op.isLiteral()) check(scalar_mask & (1 << i), "Wrong source position for constant argument", instr.get()); } check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, "Too many SGPRs/literals", instr.get()); /* Validate modifiers. */ check(!instr->valu().opsel || instr->isVOP3() || instr->isVOP1() || instr->isVOP2() || instr->isVOPC() || instr->isVINTERP_INREG(), "OPSEL set for unsupported instruction format", instr.get()); check(!instr->valu().opsel_lo || instr->isVOP3P(), "OPSEL_LO set for unsupported instruction format", instr.get()); check(!instr->valu().opsel_hi || instr->isVOP3P(), "OPSEL_HI set for unsupported instruction format", instr.get()); check(!instr->valu().omod || instr->isVOP3() || instr->isSDWA(), "OMOD set for unsupported instruction format", instr.get()); check(!instr->valu().clamp || instr->isVOP3() || instr->isVOP3P() || instr->isSDWA() || instr->isVINTERP_INREG(), "CLAMP set for unsupported instruction format", instr.get()); for (bool abs : instr->valu().abs) { check(!abs || instr->isVOP3() || instr->isVOP3P() || instr->isSDWA() || instr->isDPP16(), "ABS/NEG_HI set for unsupported instruction format", instr.get()); } for (bool neg : instr->valu().neg) { check(!neg || instr->isVOP3() || instr->isVOP3P() || instr->isSDWA() || instr->isDPP16() || instr->isVINTERP_INREG(), "NEG/NEG_LO set for unsupported instruction format", instr.get()); } } if (instr->isSOP1() || instr->isSOP2()) { if (!instr->definitions.empty()) check(instr->definitions[0].regClass().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get()); for (const Operand& op : instr->operands) { check(op.isConstant() || op.isOfType(RegType::sgpr), "Wrong Operand type for SALU instruction", instr.get()); } } } switch (instr->format) { case Format::PSEUDO: { if (instr->opcode == aco_opcode::p_create_vector || instr->opcode == aco_opcode::p_start_linear_vgpr) { unsigned size = 0; for (const Operand& op : instr->operands) { check(op.bytes() < 4 || size % 4 == 0, "Operand is not aligned", instr.get()); size += op.bytes(); } if (!instr->operands.empty() || instr->opcode == aco_opcode::p_create_vector) { check(size == instr->definitions[0].bytes(), "Definition size does not match operand sizes", instr.get()); } if (instr->definitions[0].regClass().type() == RegType::sgpr) { for (const Operand& op : instr->operands) { check(op.isConstant() || op.regClass().type() == RegType::sgpr, "Wrong Operand type for scalar vector", instr.get()); } } if (instr->opcode == aco_opcode::p_start_linear_vgpr) check(instr->definitions[0].regClass().is_linear_vgpr(), "Definition must be linear VGPR", instr.get()); } else if (instr->opcode == aco_opcode::p_extract_vector) { check(!instr->operands[0].isConstant() && instr->operands[1].isConstant(), "Wrong Operand types", instr.get()); check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= instr->operands[0].bytes(), "Index out of range", instr.get()); check(instr->definitions[0].regClass().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr, "Cannot extract SGPR value from VGPR vector", instr.get()); check(program->gfx_level >= GFX9 || !instr->definitions[0].regClass().is_subdword() || instr->operands[0].regClass().type() == RegType::vgpr, "Cannot extract subdword from SGPR before GFX9+", instr.get()); } else if (instr->opcode == aco_opcode::p_split_vector) { check(!instr->operands[0].isConstant(), "Operand must not be constant", instr.get()); unsigned size = 0; for (const Definition& def : instr->definitions) { size += def.bytes(); } check(size == instr->operands[0].bytes(), "Operand size does not match definition sizes", instr.get()); if (instr->operands[0].isOfType(RegType::vgpr)) { for (const Definition& def : instr->definitions) check(def.regClass().type() == RegType::vgpr, "Wrong Definition type for VGPR split_vector", instr.get()); } else { for (const Definition& def : instr->definitions) check(program->gfx_level >= GFX9 || !def.regClass().is_subdword(), "Cannot split SGPR into subdword VGPRs before GFX9+", instr.get()); } } else if (instr->opcode == aco_opcode::p_parallelcopy) { check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get()); for (unsigned i = 0; i < instr->operands.size(); i++) { check(instr->definitions[i].bytes() == instr->operands[i].bytes(), "Operand and Definition size must match", instr.get()); if (instr->operands[i].hasRegClass()) { check((instr->definitions[i].regClass().type() == instr->operands[i].regClass().type()) || (instr->definitions[i].regClass().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr), "Operand and Definition types do not match", instr.get()); check(instr->definitions[i].regClass().is_linear_vgpr() == instr->operands[i].regClass().is_linear_vgpr(), "Operand and Definition types do not match", instr.get()); } else { check(!instr->definitions[i].regClass().is_linear_vgpr(), "Can only copy linear VGPRs into linear VGPRs, not constant/undef", instr.get()); } } } else if (instr->opcode == aco_opcode::p_phi) { check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get()); check(instr->definitions[0].regClass().type() == RegType::vgpr, "Logical Phi Definition must be vgpr", instr.get()); for (const Operand& op : instr->operands) check(instr->definitions[0].size() == op.size(), "Operand sizes must match Definition size", instr.get()); } else if (instr->opcode == aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get()); check(instr->definitions[0].size() == op.size(), "Operand sizes must match Definition size", instr.get()); } check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get()); } else if (instr->opcode == aco_opcode::p_extract || instr->opcode == aco_opcode::p_insert) { check(!instr->operands[0].isConstant(), "Data operand must not be constant", instr.get()); check(instr->operands[1].isConstant(), "Index must be constant", instr.get()); if (instr->opcode == aco_opcode::p_extract) check(instr->operands[3].isConstant(), "Sign-extend flag must be constant", instr.get()); check(instr->definitions[0].regClass().type() != RegType::sgpr || instr->operands[0].regClass().type() == RegType::sgpr, "Can't extract/insert VGPR to SGPR", instr.get()); if (instr->opcode == aco_opcode::p_insert) check(instr->operands[0].bytes() == instr->definitions[0].bytes(), "Sizes of p_insert data operand and definition must match", instr.get()); if (instr->definitions[0].regClass().type() == RegType::sgpr) check(instr->definitions.size() >= 2 && instr->definitions[1].isFixed() && instr->definitions[1].physReg() == scc, "SGPR extract/insert needs an SCC definition", instr.get()); unsigned data_bits = instr->operands[0].bytes() * 8u; unsigned op_bits = instr->operands[2].constantValue(); if (instr->opcode == aco_opcode::p_insert) { check(op_bits == 8 || op_bits == 16, "Size must be 8 or 16", instr.get()); check(op_bits < data_bits, "Size must be smaller than source", instr.get()); } else if (instr->opcode == aco_opcode::p_extract) { check(op_bits == 8 || op_bits == 16 || op_bits == 32, "Size must be 8 or 16 or 32", instr.get()); check(data_bits >= op_bits, "Can't extract more bits than what the data has.", instr.get()); } unsigned comp = data_bits / MAX2(op_bits, 1); check(instr->operands[1].constantValue() < comp, "Index must be in-bounds", instr.get()); } else if (instr->opcode == aco_opcode::p_jump_to_epilog) { check(instr->definitions.size() == 0, "p_jump_to_epilog must have 0 definitions", instr.get()); check(instr->operands.size() > 0 && instr->operands[0].isOfType(RegType::sgpr) && instr->operands[0].size() == 2, "First operand of p_jump_to_epilog must be a SGPR", instr.get()); for (unsigned i = 1; i < instr->operands.size(); i++) { check(instr->operands[i].isOfType(RegType::vgpr) || instr->operands[i].isOfType(RegType::sgpr) || instr->operands[i].isUndefined(), "Other operands of p_jump_to_epilog must be VGPRs, SGPRs or undef", instr.get()); } } else if (instr->opcode == aco_opcode::p_dual_src_export_gfx11) { check(instr->definitions.size() == 6, "p_dual_src_export_gfx11 must have 6 definitions", instr.get()); check(instr->definitions[2].regClass() == program->lane_mask, "Third definition of p_dual_src_export_gfx11 must be a lane mask", instr.get()); check(instr->definitions[3].regClass() == program->lane_mask, "Fourth definition of p_dual_src_export_gfx11 must be a lane mask", instr.get()); check(instr->definitions[4].physReg() == vcc, "Fifth definition of p_dual_src_export_gfx11 must be vcc", instr.get()); check(instr->definitions[5].physReg() == scc, "Sixth definition of p_dual_src_export_gfx11 must be scc", instr.get()); check(instr->operands.size() == 8, "p_dual_src_export_gfx11 must have 8 operands", instr.get()); for (unsigned i = 0; i < instr->operands.size(); i++) { check( instr->operands[i].isOfType(RegType::vgpr) || instr->operands[i].isUndefined(), "Operands of p_dual_src_export_gfx11 must be VGPRs or undef", instr.get()); } } break; } case Format::PSEUDO_REDUCTION: { for (const Operand& op : instr->operands) check(op.regClass().type() == RegType::vgpr, "All operands of PSEUDO_REDUCTION instructions must be in VGPRs.", instr.get()); if (instr->opcode == aco_opcode::p_reduce && instr->reduction().cluster_size == program->wave_size) check(instr->definitions[0].regClass().type() == RegType::sgpr || program->wave_size == 32, "The result of unclustered reductions must go into an SGPR.", instr.get()); else check(instr->definitions[0].regClass().type() == RegType::vgpr, "The result of scans and clustered reductions must go into a VGPR.", instr.get()); break; } case Format::SMEM: { if (instr->operands.size() >= 1) check(instr->operands[0].isOfType(RegType::sgpr), "SMEM operands must be sgpr", instr.get()); if (instr->operands.size() >= 2) check(instr->operands[1].isConstant() || instr->operands[1].isOfType(RegType::sgpr), "SMEM offset must be constant or sgpr", instr.get()); if (!instr->definitions.empty()) check(instr->definitions[0].regClass().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get()); break; } case Format::MTBUF: case Format::MUBUF: { check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get()); check(instr->operands[1].isOfType(RegType::vgpr), "VADDR must be in vgpr for VMEM instructions", instr.get()); check(instr->operands[0].isOfType(RegType::sgpr), "VMEM resource constant must be sgpr", instr.get()); check(instr->operands.size() < 4 || instr->operands[3].isOfType(RegType::vgpr), "VMEM write data must be vgpr", instr.get()); if (instr->operands.size() >= 3 && instr->operands[2].isConstant()) check(program->gfx_level < GFX12 || instr->operands[2].constantValue() == 0, "VMEM SOFFSET must not be non-zero constant on GFX12+", instr.get()); const bool d16 = instr->opcode == aco_opcode::buffer_load_dword || // FIXME: used to spill subdword variables instr->opcode == aco_opcode::buffer_load_ubyte || instr->opcode == aco_opcode::buffer_load_sbyte || instr->opcode == aco_opcode::buffer_load_ushort || instr->opcode == aco_opcode::buffer_load_sshort || instr->opcode == aco_opcode::buffer_load_ubyte_d16 || instr->opcode == aco_opcode::buffer_load_ubyte_d16_hi || instr->opcode == aco_opcode::buffer_load_sbyte_d16 || instr->opcode == aco_opcode::buffer_load_sbyte_d16_hi || instr->opcode == aco_opcode::buffer_load_short_d16 || instr->opcode == aco_opcode::buffer_load_short_d16_hi || instr->opcode == aco_opcode::buffer_load_format_d16_x || instr->opcode == aco_opcode::buffer_load_format_d16_hi_x || instr->opcode == aco_opcode::buffer_load_format_d16_xy || instr->opcode == aco_opcode::buffer_load_format_d16_xyz || instr->opcode == aco_opcode::buffer_load_format_d16_xyzw || instr->opcode == aco_opcode::tbuffer_load_format_d16_x || instr->opcode == aco_opcode::tbuffer_load_format_d16_xy || instr->opcode == aco_opcode::tbuffer_load_format_d16_xyz || instr->opcode == aco_opcode::tbuffer_load_format_d16_xyzw; if (instr->definitions.size()) { check(instr->definitions[0].regClass().type() == RegType::vgpr, "VMEM definitions[0] (VDATA) must be VGPR", instr.get()); check(d16 || !instr->definitions[0].regClass().is_subdword(), "Only D16 opcodes can load subdword values.", instr.get()); check(instr->definitions[0].bytes() <= 8 || !d16, "D16 opcodes can only load up to 8 bytes.", instr.get()); } break; } case Format::MIMG: { check(instr->operands.size() >= 4, "MIMG instructions must have at least 4 operands", instr.get()); check(instr->operands[0].hasRegClass() && (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8), "MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get()); if (instr->operands[1].hasRegClass()) check(instr->operands[1].regClass() == s4, "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get()); if (!instr->operands[2].isUndefined()) { bool is_cmpswap = instr->opcode == aco_opcode::image_atomic_cmpswap || instr->opcode == aco_opcode::image_atomic_fcmpswap; check(instr->definitions.empty() || (instr->definitions[0].regClass() == instr->operands[2].regClass() || is_cmpswap), "MIMG operands[2] (VDATA) must be the same as definitions[0] for atomics and " "TFE/LWE loads", instr.get()); } if (instr->mimg().strict_wqm) { check(instr->operands[3].hasRegClass() && instr->operands[3].regClass().is_linear_vgpr(), "MIMG operands[3] must be temp linear VGPR.", instr.get()); unsigned total_size = 0; for (unsigned i = 4; i < instr->operands.size(); i++) { check(instr->operands[i].hasRegClass() && instr->operands[i].regClass() == v1, "MIMG operands[4+] (VADDR) must be v1", instr.get()); total_size += instr->operands[i].bytes(); } check(total_size <= instr->operands[3].bytes(), "MIMG operands[4+] must fit within operands[3].", instr.get()); } else { check(instr->operands.size() == 4 || program->gfx_level >= GFX10, "NSA is only supported on GFX10+", instr.get()); for (unsigned i = 3; i < instr->operands.size(); i++) { check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr, "MIMG operands[3+] (VADDR) must be VGPR", instr.get()); if (instr->operands.size() > 4) { if (program->gfx_level < GFX11) { check(instr->operands[i].regClass() == v1, "GFX10 MIMG VADDR must be v1 if NSA is used", instr.get()); } else { unsigned num_scalar = program->gfx_level >= GFX12 ? (instr->operands.size() - 4) : 4; if (instr->opcode != aco_opcode::image_bvh_intersect_ray && instr->opcode != aco_opcode::image_bvh64_intersect_ray && i < 3 + num_scalar) { check(instr->operands[i].regClass() == v1, "first 4 GFX11 MIMG VADDR must be v1 if NSA is used", instr.get()); } } } } } if (instr->definitions.size()) { check(instr->definitions[0].regClass().type() == RegType::vgpr, "MIMG definitions[0] (VDATA) must be VGPR", instr.get()); check(instr->mimg().d16 || !instr->definitions[0].regClass().is_subdword(), "Only D16 MIMG instructions can load subdword values.", instr.get()); check(instr->definitions[0].bytes() <= 8 || !instr->mimg().d16, "D16 MIMG instructions can only load up to 8 bytes.", instr.get()); } break; } case Format::DS: { for (const Operand& op : instr->operands) { check(op.isOfType(RegType::vgpr) || op.physReg() == m0 || op.isUndefined(), "Only VGPRs are valid DS instruction operands", instr.get()); } if (!instr->definitions.empty()) check(instr->definitions[0].regClass().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get()); break; } case Format::EXP: { for (unsigned i = 0; i < 4; i++) check(instr->operands[i].isOfType(RegType::vgpr), "Only VGPRs are valid Export arguments", instr.get()); break; } case Format::FLAT: check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get()); FALLTHROUGH; case Format::GLOBAL: check(instr->operands[0].isOfType(RegType::vgpr), "FLAT/GLOBAL address must be vgpr", instr.get()); FALLTHROUGH; case Format::SCRATCH: { check(instr->operands[0].isOfType(RegType::vgpr), "FLAT/GLOBAL/SCRATCH address must be undefined or vgpr", instr.get()); check(instr->operands[1].isOfType(RegType::sgpr), "FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get()); if (instr->format == Format::SCRATCH && program->gfx_level < GFX10_3) check(!instr->operands[0].isUndefined() || !instr->operands[1].isUndefined(), "SCRATCH must have either SADDR or ADDR operand", instr.get()); if (!instr->definitions.empty()) check(instr->definitions[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get()); else check(instr->operands[2].isOfType(RegType::vgpr), "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get()); break; } case Format::LDSDIR: { check(instr->definitions.size() == 1 && instr->definitions[0].regClass() == v1, "LDSDIR must have an v1 definition", instr.get()); check(instr->operands.size() == 1, "LDSDIR must have an operand", instr.get()); if (!instr->operands.empty()) { check(instr->operands[0].regClass() == s1, "LDSDIR must have an s1 operand", instr.get()); check(instr->operands[0].isFixed() && instr->operands[0].physReg() == m0, "LDSDIR must have an operand fixed to m0", instr.get()); } break; } default: break; } } } return is_valid; } bool validate_cfg(Program* program) { if (!(debug_flags & DEBUG_VALIDATE_IR)) return true; bool is_valid = true; auto check_block = [&program, &is_valid](bool success, const char* msg, aco::Block* block) -> void { if (!success) { aco_err(program, "%s: BB%u", msg, block->index); is_valid = false; } }; /* validate CFG */ for (unsigned i = 0; i < program->blocks.size(); i++) { Block& block = program->blocks[i]; check_block(block.index == i, "block.index must match actual index", &block); /* predecessors/successors should be sorted */ for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++) check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block); for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++) check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block); for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++) check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block); for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++) check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block); /* critical edges are not allowed */ if (block.linear_preds.size() > 1) { for (unsigned pred : block.linear_preds) check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]); for (unsigned pred : block.logical_preds) check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]); } } return is_valid; } bool validate_live_vars(Program* program) { if (!(debug_flags & DEBUG_VALIDATE_LIVE_VARS)) return true; bool is_valid = true; const int prev_num_waves = program->num_waves; const monotonic_buffer_resource old_memory = std::move(program->live.memory); const std::vector prev_live_in = std::move(program->live.live_in); const RegisterDemand prev_max_demand = program->max_reg_demand; std::vector block_demands(program->blocks.size()); std::vector live_in_demands(program->blocks.size()); std::vector> register_demands(program->blocks.size()); for (unsigned i = 0; i < program->blocks.size(); i++) { Block& b = program->blocks[i]; block_demands[i] = b.register_demand; live_in_demands[i] = b.live_in_demand; register_demands[i].reserve(b.instructions.size()); for (unsigned j = 0; j < b.instructions.size(); j++) register_demands[i].emplace_back(b.instructions[j]->register_demand); } aco::live_var_analysis(program); /* Validate RegisterDemand calculation */ for (unsigned i = 0; i < program->blocks.size(); i++) { Block& b = program->blocks[i]; if (!(b.register_demand == block_demands[i])) { is_valid = false; aco_err(program, "Register Demand not updated correctly for BB%d: got (%3u vgpr, %3u sgpr), but " "should be (%3u vgpr, %3u sgpr)", i, block_demands[i].vgpr, block_demands[i].sgpr, b.register_demand.vgpr, b.register_demand.sgpr); } if (!(b.live_in_demand == live_in_demands[i])) { is_valid = false; aco_err(program, "Live-in Demand not updated correctly for BB%d: got (%3u vgpr, %3u sgpr), but " "should be (%3u vgpr, %3u sgpr)", i, live_in_demands[i].vgpr, live_in_demands[i].sgpr, b.live_in_demand.vgpr, b.live_in_demand.sgpr); } for (unsigned j = 0; j < b.instructions.size(); j++) { if (b.instructions[j]->register_demand == register_demands[i][j]) continue; char* out; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &out, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "Register Demand not updated correctly: got (%3u vgpr, %3u sgpr), but should be " "(%3u vgpr, %3u sgpr): \n\t", register_demands[i][j].vgpr, register_demands[i][j].sgpr, b.instructions[j]->register_demand.vgpr, b.instructions[j]->register_demand.sgpr); aco_print_instr(program->gfx_level, b.instructions[j].get(), memf, print_kill); u_memstream_close(&mem); aco_err(program, "%s", out); free(out); is_valid = false; } } if (!(program->max_reg_demand == prev_max_demand) || program->num_waves != prev_num_waves) { is_valid = false; aco_err(program, "Max Register Demand and Num Waves not updated correctly: got (%3u vgpr, %3u sgpr) " "and %2u waves, but should be (%3u vgpr, %3u sgpr) and %2u waves", prev_max_demand.vgpr, prev_max_demand.sgpr, prev_num_waves, program->max_reg_demand.vgpr, program->max_reg_demand.sgpr, program->num_waves); } /* Validate Live-in sets */ for (unsigned i = 0; i < program->blocks.size(); i++) { if (prev_live_in[i] != program->live.live_in[i]) { char* out; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &out, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "Live-in set not updated correctly for BB%d:", i); fprintf(memf, "\nMissing values: "); for (unsigned t : program->live.live_in[i]) { if (prev_live_in[i].count(t) == 0) fprintf(memf, "%%%d, ", t); } fprintf(memf, "\nAdditional values: "); for (unsigned t : prev_live_in[i]) { if (program->live.live_in[i].count(t) == 0) fprintf(memf, "%%%d, ", t); } u_memstream_close(&mem); aco_err(program, "%s", out); free(out); is_valid = false; } } return is_valid; } /* RA validation */ namespace { struct Location { Location() : block(NULL), instr(NULL) {} Block* block; Instruction* instr; // NULL if it's the block's live-in }; struct Assignment { Location defloc; Location firstloc; PhysReg reg; bool valid; }; bool ra_fail(Program* program, Location loc, Location loc2, const char* fmt, ...) { va_list args; va_start(args, fmt); char msg[1024]; vsprintf(msg, fmt, args); va_end(args); char* out; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &out, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "RA error found at instruction in BB%d:\n", loc.block->index); if (loc.instr) { aco_print_instr(program->gfx_level, loc.instr, memf); fprintf(memf, "\n%s", msg); } else { fprintf(memf, "%s", msg); } if (loc2.block) { fprintf(memf, " in BB%d:\n", loc2.block->index); aco_print_instr(program->gfx_level, loc2.instr, memf); } fprintf(memf, "\n\n"); u_memstream_close(&mem); aco_err(program, "%s", out); free(out); return true; } bool validate_subdword_operand(amd_gfx_level gfx_level, const aco_ptr& instr, unsigned index) { Operand op = instr->operands[index]; unsigned byte = op.physReg().byte(); if (instr->opcode == aco_opcode::p_as_uniform) return byte == 0; if (instr->isPseudo() && gfx_level >= GFX8) return true; if (instr->isSDWA()) return byte + instr->sdwa().sel[index].offset() + instr->sdwa().sel[index].size() <= 4 && byte % instr->sdwa().sel[index].size() == 0; if (instr->isVOP3P()) { bool fma_mix = instr->opcode == aco_opcode::v_fma_mixlo_f16 || instr->opcode == aco_opcode::v_fma_mixhi_f16 || instr->opcode == aco_opcode::v_fma_mix_f32; return instr->valu().opsel_lo[index] == (byte >> 1) && instr->valu().opsel_hi[index] == (fma_mix || (byte >> 1)); } if (byte == 2 && can_use_opsel(gfx_level, instr->opcode, index)) return true; switch (instr->opcode) { case aco_opcode::v_cvt_f32_ubyte1: if (byte == 1) return true; break; case aco_opcode::v_cvt_f32_ubyte2: if (byte == 2) return true; break; case aco_opcode::v_cvt_f32_ubyte3: if (byte == 3) return true; break; case aco_opcode::ds_write_b8_d16_hi: case aco_opcode::ds_write_b16_d16_hi: if (byte == 2 && index == 1) return true; break; case aco_opcode::buffer_store_byte_d16_hi: case aco_opcode::buffer_store_short_d16_hi: case aco_opcode::buffer_store_format_d16_hi_x: if (byte == 2 && index == 3) return true; break; case aco_opcode::flat_store_byte_d16_hi: case aco_opcode::flat_store_short_d16_hi: case aco_opcode::scratch_store_byte_d16_hi: case aco_opcode::scratch_store_short_d16_hi: case aco_opcode::global_store_byte_d16_hi: case aco_opcode::global_store_short_d16_hi: if (byte == 2 && index == 2) return true; break; default: break; } return byte == 0; } bool validate_subdword_definition(amd_gfx_level gfx_level, const aco_ptr& instr) { Definition def = instr->definitions[0]; unsigned byte = def.physReg().byte(); if (instr->isPseudo() && gfx_level >= GFX8) return true; if (instr->isSDWA()) return byte + instr->sdwa().dst_sel.offset() + instr->sdwa().dst_sel.size() <= 4 && byte % instr->sdwa().dst_sel.size() == 0; if (byte == 2 && can_use_opsel(gfx_level, instr->opcode, -1)) return true; switch (instr->opcode) { case aco_opcode::v_interp_p2_hi_f16: case aco_opcode::v_fma_mixhi_f16: case aco_opcode::buffer_load_ubyte_d16_hi: case aco_opcode::buffer_load_sbyte_d16_hi: case aco_opcode::buffer_load_short_d16_hi: case aco_opcode::buffer_load_format_d16_hi_x: case aco_opcode::flat_load_ubyte_d16_hi: case aco_opcode::flat_load_short_d16_hi: case aco_opcode::scratch_load_ubyte_d16_hi: case aco_opcode::scratch_load_short_d16_hi: case aco_opcode::global_load_ubyte_d16_hi: case aco_opcode::global_load_short_d16_hi: case aco_opcode::ds_read_u8_d16_hi: case aco_opcode::ds_read_u16_d16_hi: return byte == 2; case aco_opcode::p_v_cvt_pk_u8_f32: return true; default: break; } return byte == 0; } unsigned get_subdword_bytes_written(Program* program, const aco_ptr& instr, unsigned index) { amd_gfx_level gfx_level = program->gfx_level; Definition def = instr->definitions[index]; if (instr->isPseudo()) return gfx_level >= GFX8 ? def.bytes() : def.size() * 4u; if (instr->isVALU() || instr->isVINTRP()) { assert(def.bytes() <= 2); if (instr->opcode == aco_opcode::p_v_cvt_pk_u8_f32) return 1; if (instr->isSDWA()) return instr->sdwa().dst_sel.size(); if (instr_is_16bit(gfx_level, instr->opcode)) return 2; return 4; } if (instr->isMIMG()) { assert(instr->mimg().d16); return program->dev.sram_ecc_enabled ? def.size() * 4u : def.bytes(); } switch (instr->opcode) { case aco_opcode::buffer_load_ubyte_d16: case aco_opcode::buffer_load_sbyte_d16: case aco_opcode::buffer_load_short_d16: case aco_opcode::buffer_load_format_d16_x: case aco_opcode::tbuffer_load_format_d16_x: case aco_opcode::flat_load_ubyte_d16: case aco_opcode::flat_load_short_d16: case aco_opcode::scratch_load_ubyte_d16: case aco_opcode::scratch_load_short_d16: case aco_opcode::global_load_ubyte_d16: case aco_opcode::global_load_short_d16: case aco_opcode::ds_read_u8_d16: case aco_opcode::ds_read_u16_d16: case aco_opcode::buffer_load_ubyte_d16_hi: case aco_opcode::buffer_load_sbyte_d16_hi: case aco_opcode::buffer_load_short_d16_hi: case aco_opcode::buffer_load_format_d16_hi_x: case aco_opcode::flat_load_ubyte_d16_hi: case aco_opcode::flat_load_short_d16_hi: case aco_opcode::scratch_load_ubyte_d16_hi: case aco_opcode::scratch_load_short_d16_hi: case aco_opcode::global_load_ubyte_d16_hi: case aco_opcode::global_load_short_d16_hi: case aco_opcode::ds_read_u8_d16_hi: case aco_opcode::ds_read_u16_d16_hi: return program->dev.sram_ecc_enabled ? 4 : 2; case aco_opcode::buffer_load_format_d16_xyz: case aco_opcode::tbuffer_load_format_d16_xyz: return program->dev.sram_ecc_enabled ? 8 : 6; default: return def.size() * 4; } } bool validate_instr_defs(Program* program, std::array& regs, const std::vector& assignments, const Location& loc, aco_ptr& instr) { bool err = false; for (unsigned i = 0; i < instr->definitions.size(); i++) { Definition& def = instr->definitions[i]; if (!def.isTemp()) continue; Temp tmp = def.getTemp(); PhysReg reg = assignments[tmp.id()].reg; for (unsigned j = 0; j < tmp.bytes(); j++) { if (regs[reg.reg_b + j]) err |= ra_fail(program, loc, assignments[regs[reg.reg_b + j]].defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]); regs[reg.reg_b + j] = tmp.id(); } if (def.regClass().is_subdword() && def.bytes() < 4) { unsigned written = get_subdword_bytes_written(program, instr, i); /* If written=4, the instruction still might write the upper half. In that case, it's * the lower half that isn't preserved */ for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) { unsigned written_reg = reg.reg() * 4u + j; if (regs[written_reg] && regs[written_reg] != def.tempId()) err |= ra_fail(program, loc, assignments[regs[written_reg]].defloc, "Assignment of element %d of %%%d overwrites the full register " "taken by %%%d from instruction", i, tmp.id(), regs[written_reg]); } } } for (const Definition& def : instr->definitions) { if (!def.isTemp()) continue; if (def.isKill()) { for (unsigned j = 0; j < def.getTemp().bytes(); j++) regs[def.physReg().reg_b + j] = 0; } } return err; } } /* end namespace */ bool validate_ra(Program* program) { if (!(debug_flags & DEBUG_VALIDATE_RA)) return false; bool err = false; aco::live_var_analysis(program); std::vector> phi_sgpr_ops(program->blocks.size()); uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->num_waves); std::vector assignments(program->peekAllocationId()); for (Block& block : program->blocks) { Location loc; loc.block = █ for (aco_ptr& instr : block.instructions) { if (instr->opcode == aco_opcode::p_phi) { for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isTemp() && instr->operands[i].getTemp().type() == RegType::sgpr && instr->operands[i].isFirstKill()) phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp()); } } loc.instr = instr.get(); for (unsigned i = 0; i < instr->operands.size(); i++) { Operand& op = instr->operands[i]; if (!op.isTemp()) continue; if (!op.isFixed()) err |= ra_fail(program, loc, Location(), "Operand %d is not assigned a register", i); if (assignments[op.tempId()].valid && assignments[op.tempId()].reg != op.physReg()) err |= ra_fail(program, loc, assignments[op.tempId()].firstloc, "Operand %d has an inconsistent register assignment with instruction", i); if ((op.getTemp().type() == RegType::vgpr && op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) || (op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < sgpr_limit)) err |= ra_fail(program, loc, assignments[op.tempId()].firstloc, "Operand %d has an out-of-bounds register assignment", i); if (op.physReg() == vcc && !program->needs_vcc) err |= ra_fail(program, loc, Location(), "Operand %d fixed to vcc but needs_vcc=false", i); if (op.regClass().is_subdword() && !validate_subdword_operand(program->gfx_level, instr, i)) err |= ra_fail(program, loc, Location(), "Operand %d not aligned correctly", i); if (!assignments[op.tempId()].firstloc.block) assignments[op.tempId()].firstloc = loc; if (!assignments[op.tempId()].defloc.block) { assignments[op.tempId()].reg = op.physReg(); assignments[op.tempId()].valid = true; } } for (unsigned i = 0; i < instr->definitions.size(); i++) { Definition& def = instr->definitions[i]; if (!def.isTemp()) continue; if (!def.isFixed()) err |= ra_fail(program, loc, Location(), "Definition %d is not assigned a register", i); if (assignments[def.tempId()].defloc.block) err |= ra_fail(program, loc, assignments[def.tempId()].defloc, "Temporary %%%d also defined by instruction", def.tempId()); if ((def.getTemp().type() == RegType::vgpr && def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) || (def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < sgpr_limit)) err |= ra_fail(program, loc, assignments[def.tempId()].firstloc, "Definition %d has an out-of-bounds register assignment", i); if (def.physReg() == vcc && !program->needs_vcc) err |= ra_fail(program, loc, Location(), "Definition %d fixed to vcc but needs_vcc=false", i); if (def.regClass().is_subdword() && !validate_subdword_definition(program->gfx_level, instr)) err |= ra_fail(program, loc, Location(), "Definition %d not aligned correctly", i); if (!assignments[def.tempId()].firstloc.block) assignments[def.tempId()].firstloc = loc; assignments[def.tempId()].defloc = loc; assignments[def.tempId()].reg = def.physReg(); assignments[def.tempId()].valid = true; } } } for (Block& block : program->blocks) { Location loc; loc.block = █ std::array regs; /* register file in bytes */ regs.fill(0); /* check live in */ for (unsigned id : program->live.live_in[block.index]) { Temp tmp(id, program->temp_rc[id]); PhysReg reg = assignments[id].reg; for (unsigned i = 0; i < tmp.bytes(); i++) { if (regs[reg.reg_b + i]) { err |= ra_fail(program, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-in", i, id, regs[reg.reg_b + i]); } regs[reg.reg_b + i] = id; } } for (aco_ptr& instr : block.instructions) { loc.instr = instr.get(); /* remove killed p_phi operands from regs */ if (instr->opcode == aco_opcode::p_logical_end) { for (Temp tmp : phi_sgpr_ops[block.index]) { PhysReg reg = assignments[tmp.id()].reg; for (unsigned i = 0; i < tmp.bytes(); i++) regs[reg.reg_b + i] = 0; } } if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { if (!op.isTemp()) continue; if (op.isFirstKillBeforeDef()) { for (unsigned j = 0; j < op.getTemp().bytes(); j++) regs[op.physReg().reg_b + j] = 0; } } } if (!instr->isBranch() || block.linear_succs.size() != 1) err |= validate_instr_defs(program, regs, assignments, loc, instr); if (!is_phi(instr)) { for (const Operand& op : instr->operands) { if (!op.isTemp()) continue; if (op.isLateKill() && op.isFirstKill()) { for (unsigned j = 0; j < op.getTemp().bytes(); j++) regs[op.physReg().reg_b + j] = 0; } } } else if (block.linear_preds.size() != 1 || program->blocks[block.linear_preds[0]].linear_succs.size() == 1) { for (unsigned pred : block.linear_preds) { aco_ptr& br = program->blocks[pred].instructions.back(); assert(br->isBranch()); err |= validate_instr_defs(program, regs, assignments, loc, br); } } } } return err; } } // namespace aco