/* * Copyright © 2014-2015 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef NIR_BUILDER_H #define NIR_BUILDER_H #include "util/bitscan.h" #include "util/half_float.h" #include "nir_control_flow.h" #ifdef __cplusplus extern "C" { #endif struct exec_list; typedef struct nir_builder { nir_cursor cursor; /* Whether new ALU instructions will be marked "exact" */ bool exact; /* Whether to run divergence analysis on inserted instructions (loop merge * and header phis are not updated). */ bool update_divergence; /* Float_controls2 bits. See nir_alu_instr for details. */ uint32_t fp_fast_math; nir_shader *shader; nir_function_impl *impl; } nir_builder; static inline nir_builder nir_builder_create(nir_function_impl *impl) { nir_builder b; memset(&b, 0, sizeof(b)); b.exact = false; b.impl = impl; b.shader = impl->function->shader; return b; } /* Requires the cursor to be inside a nir_function_impl. */ static inline nir_builder nir_builder_at(nir_cursor cursor) { nir_cf_node *current_block = &nir_cursor_current_block(cursor)->cf_node; nir_builder b = nir_builder_create(nir_cf_node_get_function(current_block)); b.cursor = cursor; return b; } nir_builder MUST_CHECK PRINTFLIKE(3, 4) nir_builder_init_simple_shader(gl_shader_stage stage, const nir_shader_compiler_options *options, const char *name, ...); typedef bool (*nir_instr_pass_cb)(struct nir_builder *, nir_instr *, void *); typedef bool (*nir_intrinsic_pass_cb)(struct nir_builder *, nir_intrinsic_instr *, void *); typedef bool (*nir_alu_pass_cb)(struct nir_builder *, nir_alu_instr *, void *); /** * Iterates over all the instructions in a NIR function and calls the given pass * on them. * * The pass should return true if it modified the function. In that case, only * the preserved metadata flags will be preserved in the function impl. * * The builder will be initialized to point at the function impl, but its * cursor is unset. */ static inline bool nir_function_instructions_pass(nir_function_impl *impl, nir_instr_pass_cb pass, nir_metadata preserved, void *cb_data) { bool progress = false; nir_builder b = nir_builder_create(impl); nir_foreach_block_safe(block, impl) { nir_foreach_instr_safe(instr, block) { progress |= pass(&b, instr, cb_data); } } if (progress) { nir_metadata_preserve(impl, preserved); } else { nir_metadata_preserve(impl, nir_metadata_all); } return progress; } /** * Iterates over all the instructions in a NIR shader and calls the given pass * on them. * * The pass should return true if it modified the shader. In that case, only * the preserved metadata flags will be preserved in the function impl. * * The builder will be initialized to point at the function impl, but its * cursor is unset. */ static inline bool nir_shader_instructions_pass(nir_shader *shader, nir_instr_pass_cb pass, nir_metadata preserved, void *cb_data) { bool progress = false; nir_foreach_function_impl(impl, shader) { progress |= nir_function_instructions_pass(impl, pass, preserved, cb_data); } return progress; } /** * Iterates over all the intrinsics in a NIR shader and calls the given pass on * them. * * The pass should return true if it modified the shader. In that case, only * the preserved metadata flags will be preserved in the function impl. * * The builder will be initialized to point at the function impl, but its * cursor is unset. */ static inline bool nir_shader_intrinsics_pass(nir_shader *shader, nir_intrinsic_pass_cb pass, nir_metadata preserved, void *cb_data) { bool progress = false; nir_foreach_function_impl(impl, shader) { bool func_progress = false; nir_builder b = nir_builder_create(impl); nir_foreach_block_safe(block, impl) { nir_foreach_instr_safe(instr, block) { if (instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); func_progress |= pass(&b, intr, cb_data); } } } if (func_progress) { nir_metadata_preserve(impl, preserved); progress = true; } else { nir_metadata_preserve(impl, nir_metadata_all); } } return progress; } /* As above, but for ALU */ static inline bool nir_shader_alu_pass(nir_shader *shader, nir_alu_pass_cb pass, nir_metadata preserved, void *cb_data) { bool progress = false; nir_foreach_function_impl(impl, shader) { bool func_progress = false; nir_builder b = nir_builder_create(impl); nir_foreach_block_safe(block, impl) { nir_foreach_instr_safe(instr, block) { if (instr->type == nir_instr_type_alu) { nir_alu_instr *intr = nir_instr_as_alu(instr); func_progress |= pass(&b, intr, cb_data); } } } if (func_progress) { nir_metadata_preserve(impl, preserved); progress = true; } else { nir_metadata_preserve(impl, nir_metadata_all); } } return progress; } void nir_builder_instr_insert(nir_builder *build, nir_instr *instr); void nir_builder_instr_insert_at_top(nir_builder *build, nir_instr *instr); static inline nir_instr * nir_builder_last_instr(nir_builder *build) { assert(build->cursor.option == nir_cursor_after_instr); return build->cursor.instr; } /* General nir_build_alu() taking a variable arg count with NULLs for the rest. */ nir_def * nir_build_alu(nir_builder *build, nir_op op, nir_def *src0, nir_def *src1, nir_def *src2, nir_def *src3); /* Fixed-arg-count variants to reduce size of codegen. */ nir_def * nir_build_alu1(nir_builder *build, nir_op op, nir_def *src0); nir_def * nir_build_alu2(nir_builder *build, nir_op op, nir_def *src0, nir_def *src1); nir_def * nir_build_alu3(nir_builder *build, nir_op op, nir_def *src0, nir_def *src1, nir_def *src2); nir_def * nir_build_alu4(nir_builder *build, nir_op op, nir_def *src0, nir_def *src1, nir_def *src2, nir_def *src3); nir_def *nir_build_alu_src_arr(nir_builder *build, nir_op op, nir_def **srcs); nir_def * nir_build_tex_deref_instr(nir_builder *build, nir_texop op, nir_deref_instr *texture, nir_deref_instr *sampler, unsigned num_extra_srcs, const nir_tex_src *extra_srcs); nir_instr *nir_builder_last_instr(nir_builder *build); void nir_builder_cf_insert(nir_builder *build, nir_cf_node *cf); bool nir_builder_is_inside_cf(nir_builder *build, nir_cf_node *cf_node); nir_if * nir_push_if(nir_builder *build, nir_def *condition); nir_if * nir_push_else(nir_builder *build, nir_if *nif); void nir_pop_if(nir_builder *build, nir_if *nif); nir_def * nir_if_phi(nir_builder *build, nir_def *then_def, nir_def *else_def); nir_loop * nir_push_loop(nir_builder *build); nir_loop * nir_push_continue(nir_builder *build, nir_loop *loop); void nir_pop_loop(nir_builder *build, nir_loop *loop); static inline nir_def * nir_undef(nir_builder *build, unsigned num_components, unsigned bit_size) { nir_undef_instr *undef = nir_undef_instr_create(build->shader, num_components, bit_size); if (!undef) return NULL; nir_builder_instr_insert_at_top(build, &undef->instr); return &undef->def; } static inline nir_def * nir_build_imm(nir_builder *build, unsigned num_components, unsigned bit_size, const nir_const_value *value) { nir_load_const_instr *load_const = nir_load_const_instr_create(build->shader, num_components, bit_size); if (!load_const) return NULL; memcpy(load_const->value, value, sizeof(nir_const_value) * num_components); nir_builder_instr_insert(build, &load_const->instr); return &load_const->def; } static inline nir_def * nir_imm_zero(nir_builder *build, unsigned num_components, unsigned bit_size) { nir_load_const_instr *load_const = nir_load_const_instr_create(build->shader, num_components, bit_size); /* nir_load_const_instr_create uses rzalloc so it's already zero */ nir_builder_instr_insert(build, &load_const->instr); return &load_const->def; } static inline nir_def * nir_imm_boolN_t(nir_builder *build, bool x, unsigned bit_size) { nir_const_value v = nir_const_value_for_bool(x, bit_size); return nir_build_imm(build, 1, bit_size, &v); } static inline nir_def * nir_imm_bool(nir_builder *build, bool x) { return nir_imm_boolN_t(build, x, 1); } static inline nir_def * nir_imm_true(nir_builder *build) { return nir_imm_bool(build, true); } static inline nir_def * nir_imm_false(nir_builder *build) { return nir_imm_bool(build, false); } static inline nir_def * nir_imm_floatN_t(nir_builder *build, double x, unsigned bit_size) { nir_const_value v = nir_const_value_for_float(x, bit_size); return nir_build_imm(build, 1, bit_size, &v); } static inline nir_def * nir_imm_float16(nir_builder *build, float x) { return nir_imm_floatN_t(build, x, 16); } static inline nir_def * nir_imm_float(nir_builder *build, float x) { return nir_imm_floatN_t(build, x, 32); } static inline nir_def * nir_imm_double(nir_builder *build, double x) { return nir_imm_floatN_t(build, x, 64); } static inline nir_def * nir_imm_vec2(nir_builder *build, float x, float y) { nir_const_value v[2] = { nir_const_value_for_float(x, 32), nir_const_value_for_float(y, 32), }; return nir_build_imm(build, 2, 32, v); } static inline nir_def * nir_imm_vec3(nir_builder *build, float x, float y, float z) { nir_const_value v[3] = { nir_const_value_for_float(x, 32), nir_const_value_for_float(y, 32), nir_const_value_for_float(z, 32), }; return nir_build_imm(build, 3, 32, v); } static inline nir_def * nir_imm_vec4(nir_builder *build, float x, float y, float z, float w) { nir_const_value v[4] = { nir_const_value_for_float(x, 32), nir_const_value_for_float(y, 32), nir_const_value_for_float(z, 32), nir_const_value_for_float(w, 32), }; return nir_build_imm(build, 4, 32, v); } static inline nir_def * nir_imm_vec4_16(nir_builder *build, float x, float y, float z, float w) { nir_const_value v[4] = { nir_const_value_for_float(x, 16), nir_const_value_for_float(y, 16), nir_const_value_for_float(z, 16), nir_const_value_for_float(w, 16), }; return nir_build_imm(build, 4, 16, v); } static inline nir_def * nir_imm_intN_t(nir_builder *build, uint64_t x, unsigned bit_size) { nir_const_value v = nir_const_value_for_raw_uint(x, bit_size); return nir_build_imm(build, 1, bit_size, &v); } static inline nir_def * nir_imm_int(nir_builder *build, int x) { return nir_imm_intN_t(build, x, 32); } static inline nir_def * nir_imm_int64(nir_builder *build, int64_t x) { return nir_imm_intN_t(build, x, 64); } static inline nir_def * nir_imm_ivec2(nir_builder *build, int x, int y) { nir_const_value v[2] = { nir_const_value_for_int(x, 32), nir_const_value_for_int(y, 32), }; return nir_build_imm(build, 2, 32, v); } static inline nir_def * nir_imm_ivec3_intN(nir_builder *build, int x, int y, int z, unsigned bit_size) { nir_const_value v[3] = { nir_const_value_for_int(x, bit_size), nir_const_value_for_int(y, bit_size), nir_const_value_for_int(z, bit_size), }; return nir_build_imm(build, 3, bit_size, v); } static inline nir_def * nir_imm_uvec2_intN(nir_builder *build, unsigned x, unsigned y, unsigned bit_size) { nir_const_value v[2] = { nir_const_value_for_uint(x, bit_size), nir_const_value_for_uint(y, bit_size), }; return nir_build_imm(build, 2, bit_size, v); } static inline nir_def * nir_imm_uvec3_intN(nir_builder *build, unsigned x, unsigned y, unsigned z, unsigned bit_size) { nir_const_value v[3] = { nir_const_value_for_uint(x, bit_size), nir_const_value_for_uint(y, bit_size), nir_const_value_for_uint(z, bit_size), }; return nir_build_imm(build, 3, bit_size, v); } static inline nir_def * nir_imm_ivec3(nir_builder *build, int x, int y, int z) { return nir_imm_ivec3_intN(build, x, y, z, 32); } static inline nir_def * nir_imm_ivec4_intN(nir_builder *build, int x, int y, int z, int w, unsigned bit_size) { nir_const_value v[4] = { nir_const_value_for_int(x, bit_size), nir_const_value_for_int(y, bit_size), nir_const_value_for_int(z, bit_size), nir_const_value_for_int(w, bit_size), }; return nir_build_imm(build, 4, bit_size, v); } static inline nir_def * nir_imm_ivec4(nir_builder *build, int x, int y, int z, int w) { return nir_imm_ivec4_intN(build, x, y, z, w, 32); } nir_def * nir_builder_alu_instr_finish_and_insert(nir_builder *build, nir_alu_instr *instr); /* for the couple special cases with more than 4 src args: */ nir_def * nir_build_alu_src_arr(nir_builder *build, nir_op op, nir_def **srcs); /* Generic builder for system values. */ nir_def * nir_load_system_value(nir_builder *build, nir_intrinsic_op op, int index, unsigned num_components, unsigned bit_size); #include "nir_builder_opcodes.h" #undef nir_deref_mode_is nir_def * nir_type_convert(nir_builder *b, nir_def *src, nir_alu_type src_type, nir_alu_type dest_type, nir_rounding_mode rnd); static inline nir_def * nir_convert_to_bit_size(nir_builder *b, nir_def *src, nir_alu_type type, unsigned bit_size) { return nir_type_convert(b, src, type, (nir_alu_type)(type | bit_size), nir_rounding_mode_undef); } static inline nir_def * nir_i2iN(nir_builder *b, nir_def *src, unsigned bit_size) { return nir_convert_to_bit_size(b, src, nir_type_int, bit_size); } static inline nir_def * nir_u2uN(nir_builder *b, nir_def *src, unsigned bit_size) { return nir_convert_to_bit_size(b, src, nir_type_uint, bit_size); } static inline nir_def * nir_b2bN(nir_builder *b, nir_def *src, unsigned bit_size) { return nir_convert_to_bit_size(b, src, nir_type_bool, bit_size); } static inline nir_def * nir_f2fN(nir_builder *b, nir_def *src, unsigned bit_size) { return nir_convert_to_bit_size(b, src, nir_type_float, bit_size); } static inline nir_def * nir_i2b(nir_builder *b, nir_def *src) { return nir_ine_imm(b, src, 0); } static inline nir_def * nir_b2iN(nir_builder *b, nir_def *src, uint32_t bit_size) { return nir_type_convert(b, src, nir_type_bool, (nir_alu_type)(nir_type_int | bit_size), nir_rounding_mode_undef); } static inline nir_def * nir_b2fN(nir_builder *b, nir_def *src, uint32_t bit_size) { return nir_type_convert(b, src, nir_type_bool, (nir_alu_type)(nir_type_float | bit_size), nir_rounding_mode_undef); } static inline nir_def * nir_i2fN(nir_builder *b, nir_def *src, unsigned bit_size) { return nir_type_convert(b, src, nir_type_int, (nir_alu_type)(nir_type_float | bit_size), nir_rounding_mode_undef); } static inline nir_def * nir_u2fN(nir_builder *b, nir_def *src, unsigned bit_size) { return nir_type_convert(b, src, nir_type_uint, (nir_alu_type)(nir_type_float | bit_size), nir_rounding_mode_undef); } static inline nir_def * nir_f2uN(nir_builder *b, nir_def *src, unsigned bit_size) { return nir_type_convert(b, src, nir_type_float, (nir_alu_type)(nir_type_uint | bit_size), nir_rounding_mode_undef); } static inline nir_def * nir_f2iN(nir_builder *b, nir_def *src, unsigned bit_size) { return nir_type_convert(b, src, nir_type_float, (nir_alu_type)(nir_type_int | bit_size), nir_rounding_mode_undef); } static inline nir_def * nir_vec(nir_builder *build, nir_def **comp, unsigned num_components) { return nir_build_alu_src_arr(build, nir_op_vec(num_components), comp); } nir_def * nir_vec_scalars(nir_builder *build, nir_scalar *comp, unsigned num_components); static inline nir_def * nir_mov_alu(nir_builder *build, nir_alu_src src, unsigned num_components) { if (src.src.ssa->num_components == num_components) { bool any_swizzles = false; for (unsigned i = 0; i < num_components; i++) { if (src.swizzle[i] != i) any_swizzles = true; } if (!any_swizzles) return src.src.ssa; } nir_alu_instr *mov = nir_alu_instr_create(build->shader, nir_op_mov); nir_def_init(&mov->instr, &mov->def, num_components, nir_src_bit_size(src.src)); mov->exact = build->exact; mov->fp_fast_math = build->fp_fast_math; mov->src[0] = src; nir_builder_instr_insert(build, &mov->instr); return &mov->def; } /** * Construct a mov that reswizzles the source's components. */ static inline nir_def * nir_swizzle(nir_builder *build, nir_def *src, const unsigned *swiz, unsigned num_components) { assert(num_components <= NIR_MAX_VEC_COMPONENTS); nir_alu_src alu_src = { NIR_SRC_INIT }; alu_src.src = nir_src_for_ssa(src); bool is_identity_swizzle = true; for (unsigned i = 0; i < num_components && i < NIR_MAX_VEC_COMPONENTS; i++) { if (swiz[i] != i) is_identity_swizzle = false; alu_src.swizzle[i] = swiz[i]; } if (num_components == src->num_components && is_identity_swizzle) return src; return nir_mov_alu(build, alu_src, num_components); } /* Selects the right fdot given the number of components in each source. */ static inline nir_def * nir_fdot(nir_builder *build, nir_def *src0, nir_def *src1) { assert(src0->num_components == src1->num_components); switch (src0->num_components) { case 1: return nir_fmul(build, src0, src1); case 2: return nir_fdot2(build, src0, src1); case 3: return nir_fdot3(build, src0, src1); case 4: return nir_fdot4(build, src0, src1); case 5: return nir_fdot5(build, src0, src1); case 8: return nir_fdot8(build, src0, src1); case 16: return nir_fdot16(build, src0, src1); default: unreachable("bad component size"); } return NULL; } static inline nir_def * nir_ball_iequal(nir_builder *b, nir_def *src0, nir_def *src1) { switch (src0->num_components) { case 1: return nir_ieq(b, src0, src1); case 2: return nir_ball_iequal2(b, src0, src1); case 3: return nir_ball_iequal3(b, src0, src1); case 4: return nir_ball_iequal4(b, src0, src1); case 5: return nir_ball_iequal5(b, src0, src1); case 8: return nir_ball_iequal8(b, src0, src1); case 16: return nir_ball_iequal16(b, src0, src1); default: unreachable("bad component size"); } } static inline nir_def * nir_ball(nir_builder *b, nir_def *src) { return nir_ball_iequal(b, src, nir_imm_true(b)); } static inline nir_def * nir_bany_inequal(nir_builder *b, nir_def *src0, nir_def *src1) { switch (src0->num_components) { case 1: return nir_ine(b, src0, src1); case 2: return nir_bany_inequal2(b, src0, src1); case 3: return nir_bany_inequal3(b, src0, src1); case 4: return nir_bany_inequal4(b, src0, src1); case 5: return nir_bany_inequal5(b, src0, src1); case 8: return nir_bany_inequal8(b, src0, src1); case 16: return nir_bany_inequal16(b, src0, src1); default: unreachable("bad component size"); } } static inline nir_def * nir_bany(nir_builder *b, nir_def *src) { return nir_bany_inequal(b, src, nir_imm_false(b)); } static inline nir_def * nir_channel(nir_builder *b, nir_def *def, unsigned c) { return nir_swizzle(b, def, &c, 1); } static inline nir_def * nir_channels(nir_builder *b, nir_def *def, nir_component_mask_t mask) { unsigned num_channels = 0, swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 }; for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) { if ((mask & (1 << i)) == 0) continue; swizzle[num_channels++] = i; } return nir_swizzle(b, def, swizzle, num_channels); } static inline nir_def * _nir_select_from_array_helper(nir_builder *b, nir_def **arr, nir_def *idx, unsigned start, unsigned end) { if (start == end - 1) { return arr[start]; } else { unsigned mid = start + (end - start) / 2; return nir_bcsel(b, nir_ilt_imm(b, idx, mid), _nir_select_from_array_helper(b, arr, idx, start, mid), _nir_select_from_array_helper(b, arr, idx, mid, end)); } } static inline nir_def * nir_select_from_ssa_def_array(nir_builder *b, nir_def **arr, unsigned arr_len, nir_def *idx) { return _nir_select_from_array_helper(b, arr, idx, 0, arr_len); } static inline nir_def * nir_vector_extract(nir_builder *b, nir_def *vec, nir_def *c) { nir_src c_src = nir_src_for_ssa(c); if (nir_src_is_const(c_src)) { uint64_t c_const = nir_src_as_uint(c_src); if (c_const < vec->num_components) return nir_channel(b, vec, c_const); else return nir_undef(b, 1, vec->bit_size); } else { nir_def *comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < vec->num_components; i++) comps[i] = nir_channel(b, vec, i); return nir_select_from_ssa_def_array(b, comps, vec->num_components, c); } } /** Replaces the component of `vec` specified by `c` with `scalar` */ static inline nir_def * nir_vector_insert_imm(nir_builder *b, nir_def *vec, nir_def *scalar, unsigned c) { assert(scalar->num_components == 1); assert(c < vec->num_components); nir_op vec_op = nir_op_vec(vec->num_components); nir_alu_instr *vec_instr = nir_alu_instr_create(b->shader, vec_op); for (unsigned i = 0; i < vec->num_components; i++) { if (i == c) { vec_instr->src[i].src = nir_src_for_ssa(scalar); vec_instr->src[i].swizzle[0] = 0; } else { vec_instr->src[i].src = nir_src_for_ssa(vec); vec_instr->src[i].swizzle[0] = i; } } return nir_builder_alu_instr_finish_and_insert(b, vec_instr); } /** Replaces the component of `vec` specified by `c` with `scalar` */ static inline nir_def * nir_vector_insert(nir_builder *b, nir_def *vec, nir_def *scalar, nir_def *c) { assert(scalar->num_components == 1); assert(c->num_components == 1); nir_src c_src = nir_src_for_ssa(c); if (nir_src_is_const(c_src)) { uint64_t c_const = nir_src_as_uint(c_src); if (c_const < vec->num_components) return nir_vector_insert_imm(b, vec, scalar, c_const); else return vec; } else { nir_const_value per_comp_idx_const[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) per_comp_idx_const[i] = nir_const_value_for_int(i, c->bit_size); nir_def *per_comp_idx = nir_build_imm(b, vec->num_components, c->bit_size, per_comp_idx_const); /* nir_builder will automatically splat out scalars to vectors so an * insert is as simple as "if I'm the channel, replace me with the * scalar." */ return nir_bcsel(b, nir_ieq(b, c, per_comp_idx), scalar, vec); } } static inline nir_def * nir_replicate(nir_builder *b, nir_def *scalar, unsigned num_components) { assert(scalar->num_components == 1); assert(num_components <= NIR_MAX_VEC_COMPONENTS); nir_def *copies[NIR_MAX_VEC_COMPONENTS] = { NULL }; for (unsigned i = 0; i < num_components; ++i) copies[i] = scalar; return nir_vec(b, copies, num_components); } static inline nir_def * nir_iadd_imm(nir_builder *build, nir_def *x, uint64_t y) { assert(x->bit_size <= 64); y &= BITFIELD64_MASK(x->bit_size); if (y == 0) { return x; } else { return nir_iadd(build, x, nir_imm_intN_t(build, y, x->bit_size)); } } static inline nir_def * nir_iadd_imm_nuw(nir_builder *b, nir_def *x, uint64_t y) { nir_def *d = nir_iadd_imm(b, x, y); if (d != x && d->parent_instr->type == nir_instr_type_alu) nir_instr_as_alu(d->parent_instr)->no_unsigned_wrap = true; return d; } static inline nir_def * nir_iadd_nuw(nir_builder *b, nir_def *x, nir_def *y) { nir_def *d = nir_iadd(b, x, y); nir_instr_as_alu(d->parent_instr)->no_unsigned_wrap = true; return d; } static inline nir_def * nir_fgt_imm(nir_builder *build, nir_def *src1, double src2) { return nir_flt(build, nir_imm_floatN_t(build, src2, src1->bit_size), src1); } static inline nir_def * nir_fle_imm(nir_builder *build, nir_def *src1, double src2) { return nir_fge(build, nir_imm_floatN_t(build, src2, src1->bit_size), src1); } /* Use nir_iadd(x, -y) for reversing parameter ordering */ static inline nir_def * nir_isub_imm(nir_builder *build, uint64_t y, nir_def *x) { return nir_isub(build, nir_imm_intN_t(build, y, x->bit_size), x); } static inline nir_def * nir_imax_imm(nir_builder *build, nir_def *x, int64_t y) { return nir_imax(build, x, nir_imm_intN_t(build, y, x->bit_size)); } static inline nir_def * nir_imin_imm(nir_builder *build, nir_def *x, int64_t y) { return nir_imin(build, x, nir_imm_intN_t(build, y, x->bit_size)); } static inline nir_def * nir_umax_imm(nir_builder *build, nir_def *x, uint64_t y) { return nir_umax(build, x, nir_imm_intN_t(build, y, x->bit_size)); } static inline nir_def * nir_umin_imm(nir_builder *build, nir_def *x, uint64_t y) { return nir_umin(build, x, nir_imm_intN_t(build, y, x->bit_size)); } static inline nir_def * _nir_mul_imm(nir_builder *build, nir_def *x, uint64_t y, bool amul) { assert(x->bit_size <= 64); y &= BITFIELD64_MASK(x->bit_size); if (y == 0) { return nir_imm_intN_t(build, 0, x->bit_size); } else if (y == 1) { return x; } else if ((!build->shader->options || !build->shader->options->lower_bitops) && util_is_power_of_two_or_zero64(y)) { return nir_ishl(build, x, nir_imm_int(build, ffsll(y) - 1)); } else if (amul) { return nir_amul(build, x, nir_imm_intN_t(build, y, x->bit_size)); } else { return nir_imul(build, x, nir_imm_intN_t(build, y, x->bit_size)); } } static inline nir_def * nir_imul_imm(nir_builder *build, nir_def *x, uint64_t y) { return _nir_mul_imm(build, x, y, false); } static inline nir_def * nir_amul_imm(nir_builder *build, nir_def *x, uint64_t y) { return _nir_mul_imm(build, x, y, true); } static inline nir_def * nir_fadd_imm(nir_builder *build, nir_def *x, double y) { return nir_fadd(build, x, nir_imm_floatN_t(build, y, x->bit_size)); } static inline nir_def * nir_fsub_imm(nir_builder *build, double x, nir_def *y) { return nir_fsub(build, nir_imm_floatN_t(build, x, y->bit_size), y); } static inline nir_def * nir_fmul_imm(nir_builder *build, nir_def *x, double y) { return nir_fmul(build, x, nir_imm_floatN_t(build, y, x->bit_size)); } static inline nir_def * nir_fdiv_imm(nir_builder *build, nir_def *x, double y) { return nir_fdiv(build, x, nir_imm_floatN_t(build, y, x->bit_size)); } static inline nir_def * nir_fpow_imm(nir_builder *build, nir_def *x, double y) { return nir_fpow(build, x, nir_imm_floatN_t(build, y, x->bit_size)); } static inline nir_def * nir_iand_imm(nir_builder *build, nir_def *x, uint64_t y) { assert(x->bit_size <= 64); y &= BITFIELD64_MASK(x->bit_size); if (y == 0) { return nir_imm_intN_t(build, 0, x->bit_size); } else if (y == BITFIELD64_MASK(x->bit_size)) { return x; } else { return nir_iand(build, x, nir_imm_intN_t(build, y, x->bit_size)); } } static inline nir_def * nir_test_mask(nir_builder *build, nir_def *x, uint64_t mask) { assert(mask <= BITFIELD64_MASK(x->bit_size)); return nir_ine_imm(build, nir_iand_imm(build, x, mask), 0); } static inline nir_def * nir_ior_imm(nir_builder *build, nir_def *x, uint64_t y) { assert(x->bit_size <= 64); y &= BITFIELD64_MASK(x->bit_size); if (y == 0) { return x; } else if (y == BITFIELD64_MASK(x->bit_size)) { return nir_imm_intN_t(build, y, x->bit_size); } else return nir_ior(build, x, nir_imm_intN_t(build, y, x->bit_size)); } static inline nir_def * nir_ishl_imm(nir_builder *build, nir_def *x, uint32_t y) { if (y == 0) { return x; } else { assert(y < x->bit_size); return nir_ishl(build, x, nir_imm_int(build, y)); } } static inline nir_def * nir_ishr_imm(nir_builder *build, nir_def *x, uint32_t y) { if (y == 0) { return x; } else { return nir_ishr(build, x, nir_imm_int(build, y)); } } static inline nir_def * nir_ushr_imm(nir_builder *build, nir_def *x, uint32_t y) { if (y == 0) { return x; } else { return nir_ushr(build, x, nir_imm_int(build, y)); } } static inline nir_def * nir_imod_imm(nir_builder *build, nir_def *x, uint64_t y) { return nir_imod(build, x, nir_imm_intN_t(build, y, x->bit_size)); } static inline nir_def * nir_udiv_imm(nir_builder *build, nir_def *x, uint64_t y) { assert(x->bit_size <= 64); y &= BITFIELD64_MASK(x->bit_size); if (y == 1) { return x; } else if (util_is_power_of_two_nonzero64(y)) { return nir_ushr_imm(build, x, ffsll(y) - 1); } else { return nir_udiv(build, x, nir_imm_intN_t(build, y, x->bit_size)); } } static inline nir_def * nir_umod_imm(nir_builder *build, nir_def *x, uint64_t y) { assert(y > 0 && y <= u_uintN_max(x->bit_size)); if (util_is_power_of_two_nonzero64(y)) { return nir_iand_imm(build, x, y - 1); } else { return nir_umod(build, x, nir_imm_intN_t(build, y, x->bit_size)); } } static inline nir_def * nir_ibfe_imm(nir_builder *build, nir_def *x, uint32_t offset, uint32_t size) { return nir_ibfe(build, x, nir_imm_int(build, offset), nir_imm_int(build, size)); } static inline nir_def * nir_ubfe_imm(nir_builder *build, nir_def *x, uint32_t offset, uint32_t size) { return nir_ubfe(build, x, nir_imm_int(build, offset), nir_imm_int(build, size)); } static inline nir_def * nir_ubitfield_extract_imm(nir_builder *build, nir_def *x, uint32_t offset, uint32_t size) { return nir_ubitfield_extract(build, x, nir_imm_int(build, offset), nir_imm_int(build, size)); } static inline nir_def * nir_extract_u8_imm(nir_builder *b, nir_def *a, unsigned i) { return nir_extract_u8(b, a, nir_imm_intN_t(b, i, a->bit_size)); } static inline nir_def * nir_extract_i8_imm(nir_builder *b, nir_def *a, unsigned i) { return nir_extract_i8(b, a, nir_imm_intN_t(b, i, a->bit_size)); } static inline nir_def * nir_fclamp(nir_builder *b, nir_def *x, nir_def *min_val, nir_def *max_val) { return nir_fmin(b, nir_fmax(b, x, min_val), max_val); } static inline nir_def * nir_iclamp(nir_builder *b, nir_def *x, nir_def *min_val, nir_def *max_val) { return nir_imin(b, nir_imax(b, x, min_val), max_val); } static inline nir_def * nir_uclamp(nir_builder *b, nir_def *x, nir_def *min_val, nir_def *max_val) { return nir_umin(b, nir_umax(b, x, min_val), max_val); } static inline nir_def * nir_ffma_imm12(nir_builder *build, nir_def *src0, double src1, double src2) { if (build->shader->options && build->shader->options->avoid_ternary_with_two_constants) return nir_fadd_imm(build, nir_fmul_imm(build, src0, src1), src2); else return nir_ffma(build, src0, nir_imm_floatN_t(build, src1, src0->bit_size), nir_imm_floatN_t(build, src2, src0->bit_size)); } static inline nir_def * nir_ffma_imm1(nir_builder *build, nir_def *src0, double src1, nir_def *src2) { return nir_ffma(build, src0, nir_imm_floatN_t(build, src1, src0->bit_size), src2); } static inline nir_def * nir_ffma_imm2(nir_builder *build, nir_def *src0, nir_def *src1, double src2) { return nir_ffma(build, src0, src1, nir_imm_floatN_t(build, src2, src0->bit_size)); } static inline nir_def * nir_a_minus_bc(nir_builder *build, nir_def *src0, nir_def *src1, nir_def *src2) { return nir_ffma(build, nir_fneg(build, src1), src2, src0); } static inline nir_def * nir_pack_bits(nir_builder *b, nir_def *src, unsigned dest_bit_size) { assert(src->num_components * src->bit_size == dest_bit_size); switch (dest_bit_size) { case 64: switch (src->bit_size) { case 32: return nir_pack_64_2x32(b, src); case 16: return nir_pack_64_4x16(b, src); default: break; } break; case 32: switch (src->bit_size) { case 32: return src; case 16: return nir_pack_32_2x16(b, src); case 8: return nir_pack_32_4x8(b, src); default: break; } break; default: break; } /* If we got here, we have no dedicated unpack opcode. */ nir_def *dest = nir_imm_intN_t(b, 0, dest_bit_size); for (unsigned i = 0; i < src->num_components; i++) { nir_def *val = nir_u2uN(b, nir_channel(b, src, i), dest_bit_size); val = nir_ishl(b, val, nir_imm_int(b, i * src->bit_size)); dest = nir_ior(b, dest, val); } return dest; } static inline nir_def * nir_unpack_bits(nir_builder *b, nir_def *src, unsigned dest_bit_size) { assert(src->num_components == 1); assert(src->bit_size >= dest_bit_size); const unsigned dest_num_components = src->bit_size / dest_bit_size; assert(dest_num_components <= NIR_MAX_VEC_COMPONENTS); switch (src->bit_size) { case 64: switch (dest_bit_size) { case 32: return nir_unpack_64_2x32(b, src); case 16: return nir_unpack_64_4x16(b, src); default: break; } break; case 32: switch (dest_bit_size) { case 32: return src; case 16: return nir_unpack_32_2x16(b, src); case 8: return nir_unpack_32_4x8(b, src); default: break; } break; default: break; } /* If we got here, we have no dedicated unpack opcode. */ nir_def *dest_comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < dest_num_components; i++) { nir_def *val = nir_ushr_imm(b, src, i * dest_bit_size); dest_comps[i] = nir_u2uN(b, val, dest_bit_size); } return nir_vec(b, dest_comps, dest_num_components); } /** * Treats srcs as if it's one big blob of bits and extracts the range of bits * given by * * [first_bit, first_bit + dest_num_components * dest_bit_size) * * The range can have any alignment or size as long as it's an integer number * of destination components and fits inside the concatenated sources. * * TODO: The one caveat here is that we can't handle byte alignment if 64-bit * values are involved because that would require pack/unpack to/from a vec8 * which NIR currently does not support. */ static inline nir_def * nir_extract_bits(nir_builder *b, nir_def **srcs, unsigned num_srcs, unsigned first_bit, unsigned dest_num_components, unsigned dest_bit_size) { const unsigned num_bits = dest_num_components * dest_bit_size; /* Figure out the common bit size */ unsigned common_bit_size = dest_bit_size; for (unsigned i = 0; i < num_srcs; i++) common_bit_size = MIN2(common_bit_size, srcs[i]->bit_size); if (first_bit > 0) common_bit_size = MIN2(common_bit_size, (1u << (ffs(first_bit) - 1))); /* We don't want to have to deal with 1-bit values */ assert(common_bit_size >= 8); nir_def *common_comps[NIR_MAX_VEC_COMPONENTS * sizeof(uint64_t)]; assert(num_bits / common_bit_size <= ARRAY_SIZE(common_comps)); /* First, unpack to the common bit size and select the components from the * source. */ int src_idx = -1; unsigned src_start_bit = 0; unsigned src_end_bit = 0; for (unsigned i = 0; i < num_bits / common_bit_size; i++) { const unsigned bit = first_bit + (i * common_bit_size); while (bit >= src_end_bit) { src_idx++; assert(src_idx < (int)num_srcs); src_start_bit = src_end_bit; src_end_bit += srcs[src_idx]->bit_size * srcs[src_idx]->num_components; } assert(bit >= src_start_bit); assert(bit + common_bit_size <= src_end_bit); const unsigned rel_bit = bit - src_start_bit; const unsigned src_bit_size = srcs[src_idx]->bit_size; nir_def *comp = nir_channel(b, srcs[src_idx], rel_bit / src_bit_size); if (srcs[src_idx]->bit_size > common_bit_size) { nir_def *unpacked = nir_unpack_bits(b, comp, common_bit_size); comp = nir_channel(b, unpacked, (rel_bit % src_bit_size) / common_bit_size); } common_comps[i] = comp; } /* Now, re-pack the destination if we have to */ if (dest_bit_size > common_bit_size) { unsigned common_per_dest = dest_bit_size / common_bit_size; nir_def *dest_comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < dest_num_components; i++) { nir_def *unpacked = nir_vec(b, common_comps + i * common_per_dest, common_per_dest); dest_comps[i] = nir_pack_bits(b, unpacked, dest_bit_size); } return nir_vec(b, dest_comps, dest_num_components); } else { assert(dest_bit_size == common_bit_size); return nir_vec(b, common_comps, dest_num_components); } } static inline nir_def * nir_bitcast_vector(nir_builder *b, nir_def *src, unsigned dest_bit_size) { assert((src->bit_size * src->num_components) % dest_bit_size == 0); const unsigned dest_num_components = (src->bit_size * src->num_components) / dest_bit_size; assert(dest_num_components <= NIR_MAX_VEC_COMPONENTS); return nir_extract_bits(b, &src, 1, 0, dest_num_components, dest_bit_size); } static inline nir_def * nir_trim_vector(nir_builder *b, nir_def *src, unsigned num_components) { assert(src->num_components >= num_components); if (src->num_components == num_components) return src; return nir_channels(b, src, nir_component_mask(num_components)); } /** * Pad a value to N components with undefs of matching bit size. * If the value already contains >= num_components, it is returned without change. */ static inline nir_def * nir_pad_vector(nir_builder *b, nir_def *src, unsigned num_components) { assert(src->num_components <= num_components); if (src->num_components == num_components) return src; nir_scalar components[NIR_MAX_VEC_COMPONENTS]; nir_scalar undef = nir_get_scalar(nir_undef(b, 1, src->bit_size), 0); unsigned i = 0; for (; i < src->num_components; i++) components[i] = nir_get_scalar(src, i); for (; i < num_components; i++) components[i] = undef; return nir_vec_scalars(b, components, num_components); } /** * Pad a value to N components with copies of the given immediate of matching * bit size. If the value already contains >= num_components, it is returned * without change. */ static inline nir_def * nir_pad_vector_imm_int(nir_builder *b, nir_def *src, uint64_t imm_val, unsigned num_components) { assert(src->num_components <= num_components); if (src->num_components == num_components) return src; nir_scalar components[NIR_MAX_VEC_COMPONENTS]; nir_scalar imm = nir_get_scalar(nir_imm_intN_t(b, imm_val, src->bit_size), 0); unsigned i = 0; for (; i < src->num_components; i++) components[i] = nir_get_scalar(src, i); for (; i < num_components; i++) components[i] = imm; return nir_vec_scalars(b, components, num_components); } /** * Pad a value to 4 components with undefs of matching bit size. * If the value already contains >= 4 components, it is returned without change. */ static inline nir_def * nir_pad_vec4(nir_builder *b, nir_def *src) { return nir_pad_vector(b, src, 4); } /** * Resizes a vector by either trimming off components or adding undef * components, as needed. Only use this helper if it's actually what you * need. Prefer nir_pad_vector() or nir_trim_vector() instead if you know a * priori which direction you're resizing. */ static inline nir_def * nir_resize_vector(nir_builder *b, nir_def *src, unsigned num_components) { if (src->num_components < num_components) return nir_pad_vector(b, src, num_components); else return nir_trim_vector(b, src, num_components); } nir_def * nir_ssa_for_alu_src(nir_builder *build, nir_alu_instr *instr, unsigned srcn); static inline unsigned nir_get_ptr_bitsize(nir_shader *shader) { if (shader->info.stage == MESA_SHADER_KERNEL) return shader->info.cs.ptr_size; return 32; } static inline nir_deref_instr * nir_build_deref_var(nir_builder *build, nir_variable *var) { nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_var); deref->modes = (nir_variable_mode)var->data.mode; deref->type = var->type; deref->var = var; nir_def_init(&deref->instr, &deref->def, 1, nir_get_ptr_bitsize(build->shader)); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_array(nir_builder *build, nir_deref_instr *parent, nir_def *index) { assert(glsl_type_is_array(parent->type) || glsl_type_is_matrix(parent->type) || glsl_type_is_vector(parent->type)); assert(index->bit_size == parent->def.bit_size); nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_array); deref->modes = parent->modes; deref->type = glsl_get_array_element(parent->type); deref->parent = nir_src_for_ssa(&parent->def); deref->arr.index = nir_src_for_ssa(index); nir_def_init(&deref->instr, &deref->def, parent->def.num_components, parent->def.bit_size); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_array_imm(nir_builder *build, nir_deref_instr *parent, int64_t index) { nir_def *idx_ssa = nir_imm_intN_t(build, index, parent->def.bit_size); return nir_build_deref_array(build, parent, idx_ssa); } static inline nir_deref_instr * nir_build_deref_ptr_as_array(nir_builder *build, nir_deref_instr *parent, nir_def *index) { assert(parent->deref_type == nir_deref_type_array || parent->deref_type == nir_deref_type_ptr_as_array || parent->deref_type == nir_deref_type_cast); assert(index->bit_size == parent->def.bit_size); nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_ptr_as_array); deref->modes = parent->modes; deref->type = parent->type; deref->parent = nir_src_for_ssa(&parent->def); deref->arr.index = nir_src_for_ssa(index); nir_def_init(&deref->instr, &deref->def, parent->def.num_components, parent->def.bit_size); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_array_wildcard(nir_builder *build, nir_deref_instr *parent) { assert(glsl_type_is_array(parent->type) || glsl_type_is_matrix(parent->type)); nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_array_wildcard); deref->modes = parent->modes; deref->type = glsl_get_array_element(parent->type); deref->parent = nir_src_for_ssa(&parent->def); nir_def_init(&deref->instr, &deref->def, parent->def.num_components, parent->def.bit_size); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_struct(nir_builder *build, nir_deref_instr *parent, unsigned index) { assert(glsl_type_is_struct_or_ifc(parent->type)); nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_struct); deref->modes = parent->modes; deref->type = glsl_get_struct_field(parent->type, index); deref->parent = nir_src_for_ssa(&parent->def); deref->strct.index = index; nir_def_init(&deref->instr, &deref->def, parent->def.num_components, parent->def.bit_size); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_cast_with_alignment(nir_builder *build, nir_def *parent, nir_variable_mode modes, const struct glsl_type *type, unsigned ptr_stride, unsigned align_mul, unsigned align_offset) { nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_cast); deref->modes = modes; deref->type = type; deref->parent = nir_src_for_ssa(parent); deref->cast.align_mul = align_mul; deref->cast.align_offset = align_offset; deref->cast.ptr_stride = ptr_stride; nir_def_init(&deref->instr, &deref->def, parent->num_components, parent->bit_size); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_cast(nir_builder *build, nir_def *parent, nir_variable_mode modes, const struct glsl_type *type, unsigned ptr_stride) { return nir_build_deref_cast_with_alignment(build, parent, modes, type, ptr_stride, 0, 0); } static inline nir_deref_instr * nir_alignment_deref_cast(nir_builder *build, nir_deref_instr *parent, uint32_t align_mul, uint32_t align_offset) { nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_cast); deref->modes = parent->modes; deref->type = parent->type; deref->parent = nir_src_for_ssa(&parent->def); deref->cast.ptr_stride = nir_deref_instr_array_stride(deref); deref->cast.align_mul = align_mul; deref->cast.align_offset = align_offset; nir_def_init(&deref->instr, &deref->def, parent->def.num_components, parent->def.bit_size); nir_builder_instr_insert(build, &deref->instr); return deref; } /** Returns a deref that follows another but starting from the given parent * * The new deref will be the same type and take the same array or struct index * as the leader deref but it may have a different parent. This is very * useful for walking deref paths. */ static inline nir_deref_instr * nir_build_deref_follower(nir_builder *b, nir_deref_instr *parent, nir_deref_instr *leader) { /* If the derefs would have the same parent, don't make a new one */ if (leader->parent.ssa == &parent->def) return leader; UNUSED nir_deref_instr *leader_parent = nir_src_as_deref(leader->parent); switch (leader->deref_type) { case nir_deref_type_var: unreachable("A var dereference cannot have a parent"); break; case nir_deref_type_array: case nir_deref_type_array_wildcard: assert(glsl_type_is_matrix(parent->type) || glsl_type_is_array(parent->type) || (leader->deref_type == nir_deref_type_array && glsl_type_is_vector(parent->type))); assert(glsl_get_length(parent->type) == glsl_get_length(leader_parent->type)); if (leader->deref_type == nir_deref_type_array) { nir_def *index = nir_i2iN(b, leader->arr.index.ssa, parent->def.bit_size); return nir_build_deref_array(b, parent, index); } else { return nir_build_deref_array_wildcard(b, parent); } case nir_deref_type_struct: assert(glsl_type_is_struct_or_ifc(parent->type)); assert(glsl_get_length(parent->type) == glsl_get_length(leader_parent->type)); return nir_build_deref_struct(b, parent, leader->strct.index); case nir_deref_type_cast: return nir_build_deref_cast_with_alignment(b, &parent->def, leader->modes, leader->type, leader->cast.ptr_stride, leader->cast.align_mul, leader->cast.align_offset); case nir_deref_type_ptr_as_array: { assert(parent->deref_type == nir_deref_type_array || parent->deref_type == nir_deref_type_ptr_as_array || parent->deref_type == nir_deref_type_cast); nir_def *index = nir_i2iN(b, leader->arr.index.ssa, parent->def.bit_size); return nir_build_deref_ptr_as_array(b, parent, index); } default: unreachable("Invalid deref instruction type"); } return NULL; } static inline nir_def * nir_load_deref_with_access(nir_builder *build, nir_deref_instr *deref, enum gl_access_qualifier access) { return nir_build_load_deref(build, glsl_get_vector_elements(deref->type), glsl_get_bit_size(deref->type), &deref->def, access); } #undef nir_load_deref static inline nir_def * nir_load_deref(nir_builder *build, nir_deref_instr *deref) { return nir_load_deref_with_access(build, deref, (enum gl_access_qualifier)0); } static inline void nir_store_deref_with_access(nir_builder *build, nir_deref_instr *deref, nir_def *value, unsigned writemask, enum gl_access_qualifier access) { writemask &= (1u << value->num_components) - 1u; nir_build_store_deref(build, &deref->def, value, writemask, access); } #undef nir_store_deref static inline void nir_store_deref(nir_builder *build, nir_deref_instr *deref, nir_def *value, unsigned writemask) { nir_store_deref_with_access(build, deref, value, writemask, (enum gl_access_qualifier)0); } static inline void nir_build_write_masked_store(nir_builder *b, nir_deref_instr *vec_deref, nir_def *value, unsigned component) { assert(value->num_components == 1); unsigned num_components = glsl_get_components(vec_deref->type); assert(num_components > 1 && num_components <= NIR_MAX_VEC_COMPONENTS); nir_def *vec = nir_vector_insert_imm(b, nir_undef(b, num_components, value->bit_size), value, component); nir_store_deref(b, vec_deref, vec, (1u << component)); } static inline void nir_build_write_masked_stores(nir_builder *b, nir_deref_instr *vec_deref, nir_def *value, nir_def *index, unsigned start, unsigned end) { if (start == end - 1) { nir_build_write_masked_store(b, vec_deref, value, start); } else { unsigned mid = start + (end - start) / 2; nir_push_if(b, nir_ilt_imm(b, index, mid)); nir_build_write_masked_stores(b, vec_deref, value, index, start, mid); nir_push_else(b, NULL); nir_build_write_masked_stores(b, vec_deref, value, index, mid, end); nir_pop_if(b, NULL); } } static inline void nir_copy_deref_with_access(nir_builder *build, nir_deref_instr *dest, nir_deref_instr *src, enum gl_access_qualifier dest_access, enum gl_access_qualifier src_access) { nir_build_copy_deref(build, &dest->def, &src->def, dest_access, src_access); } #undef nir_copy_deref static inline void nir_copy_deref(nir_builder *build, nir_deref_instr *dest, nir_deref_instr *src) { nir_copy_deref_with_access(build, dest, src, (enum gl_access_qualifier)0, (enum gl_access_qualifier)0); } static inline void nir_memcpy_deref_with_access(nir_builder *build, nir_deref_instr *dest, nir_deref_instr *src, nir_def *size, enum gl_access_qualifier dest_access, enum gl_access_qualifier src_access) { nir_build_memcpy_deref(build, &dest->def, &src->def, size, dest_access, src_access); } #undef nir_memcpy_deref static inline void nir_memcpy_deref(nir_builder *build, nir_deref_instr *dest, nir_deref_instr *src, nir_def *size) { nir_memcpy_deref_with_access(build, dest, src, size, (enum gl_access_qualifier)0, (enum gl_access_qualifier)0); } static inline nir_def * nir_load_var(nir_builder *build, nir_variable *var) { return nir_load_deref(build, nir_build_deref_var(build, var)); } static inline void nir_store_var(nir_builder *build, nir_variable *var, nir_def *value, unsigned writemask) { nir_store_deref(build, nir_build_deref_var(build, var), value, writemask); } static inline void nir_copy_var(nir_builder *build, nir_variable *dest, nir_variable *src) { nir_copy_deref(build, nir_build_deref_var(build, dest), nir_build_deref_var(build, src)); } static inline nir_def * nir_load_array_var(nir_builder *build, nir_variable *var, nir_def *index) { nir_deref_instr *deref = nir_build_deref_array(build, nir_build_deref_var(build, var), index); return nir_load_deref(build, deref); } static inline nir_def * nir_load_array_var_imm(nir_builder *build, nir_variable *var, int64_t index) { nir_deref_instr *deref = nir_build_deref_array_imm(build, nir_build_deref_var(build, var), index); return nir_load_deref(build, deref); } static inline void nir_store_array_var(nir_builder *build, nir_variable *var, nir_def *index, nir_def *value, unsigned writemask) { nir_deref_instr *deref = nir_build_deref_array(build, nir_build_deref_var(build, var), index); nir_store_deref(build, deref, value, writemask); } static inline void nir_store_array_var_imm(nir_builder *build, nir_variable *var, int64_t index, nir_def *value, unsigned writemask) { nir_deref_instr *deref = nir_build_deref_array_imm(build, nir_build_deref_var(build, var), index); nir_store_deref(build, deref, value, writemask); } #undef nir_load_global static inline nir_def * nir_load_global(nir_builder *build, nir_def *addr, unsigned align, unsigned num_components, unsigned bit_size) { nir_intrinsic_instr *load = nir_intrinsic_instr_create(build->shader, nir_intrinsic_load_global); load->num_components = num_components; load->src[0] = nir_src_for_ssa(addr); nir_intrinsic_set_align(load, align, 0); nir_def_init(&load->instr, &load->def, num_components, bit_size); nir_builder_instr_insert(build, &load->instr); return &load->def; } #undef nir_store_global static inline void nir_store_global(nir_builder *build, nir_def *addr, unsigned align, nir_def *value, nir_component_mask_t write_mask) { nir_intrinsic_instr *store = nir_intrinsic_instr_create(build->shader, nir_intrinsic_store_global); store->num_components = value->num_components; store->src[0] = nir_src_for_ssa(value); store->src[1] = nir_src_for_ssa(addr); nir_intrinsic_set_write_mask(store, write_mask & BITFIELD_MASK(value->num_components)); nir_intrinsic_set_align(store, align, 0); nir_builder_instr_insert(build, &store->instr); } #undef nir_load_global_constant static inline nir_def * nir_load_global_constant(nir_builder *build, nir_def *addr, unsigned align, unsigned num_components, unsigned bit_size) { nir_intrinsic_instr *load = nir_intrinsic_instr_create(build->shader, nir_intrinsic_load_global_constant); load->num_components = num_components; load->src[0] = nir_src_for_ssa(addr); nir_intrinsic_set_align(load, align, 0); nir_def_init(&load->instr, &load->def, num_components, bit_size); nir_builder_instr_insert(build, &load->instr); return &load->def; } #undef nir_load_param static inline nir_def * nir_load_param(nir_builder *build, uint32_t param_idx) { assert(param_idx < build->impl->function->num_params); nir_parameter *param = &build->impl->function->params[param_idx]; return nir_build_load_param(build, param->num_components, param->bit_size, param_idx); } #undef nir_decl_reg static inline nir_def * nir_decl_reg(nir_builder *b, unsigned num_components, unsigned bit_size, unsigned num_array_elems) { nir_intrinsic_instr *decl = nir_intrinsic_instr_create(b->shader, nir_intrinsic_decl_reg); nir_intrinsic_set_num_components(decl, num_components); nir_intrinsic_set_bit_size(decl, bit_size); nir_intrinsic_set_num_array_elems(decl, num_array_elems); nir_intrinsic_set_divergent(decl, true); nir_def_init(&decl->instr, &decl->def, 1, 32); nir_builder_instr_insert_at_top(b, &decl->instr); return &decl->def; } #undef nir_load_reg static inline nir_def * nir_load_reg(nir_builder *b, nir_def *reg) { nir_intrinsic_instr *decl = nir_reg_get_decl(reg); unsigned num_components = nir_intrinsic_num_components(decl); unsigned bit_size = nir_intrinsic_bit_size(decl); nir_def *res = nir_build_load_reg(b, num_components, bit_size, reg); res->divergent = nir_intrinsic_divergent(decl); return res; } #undef nir_store_reg static inline void nir_store_reg(nir_builder *b, nir_def *value, nir_def *reg) { ASSERTED nir_intrinsic_instr *decl = nir_reg_get_decl(reg); ASSERTED unsigned num_components = nir_intrinsic_num_components(decl); ASSERTED unsigned bit_size = nir_intrinsic_bit_size(decl); assert(value->num_components == num_components); assert(value->bit_size == bit_size); nir_build_store_reg(b, value, reg); } static inline nir_tex_src nir_tex_src_for_ssa(nir_tex_src_type src_type, nir_def *def) { nir_tex_src src; src.src = nir_src_for_ssa(def); src.src_type = src_type; return src; } #undef nir_ddx #undef nir_ddx_fine #undef nir_ddx_coarse #undef nir_ddy #undef nir_ddy_fine #undef nir_ddy_coarse static inline nir_def * nir_build_deriv(nir_builder *b, nir_def *x, nir_op alu, nir_intrinsic_op intrin) { /* For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives * states: * * If neither layout qualifier is specified, derivatives in compute * shaders return zero, which is consistent with the handling of built-in * texture functions like texture() in GLSL 4.50 compute shaders. * * We handle that here so the rest of the stack doesn't have to worry about * it and for consistency with previous behaviour. In the future, we might * move this to glsl-to-nir. */ if (b->shader->info.stage == MESA_SHADER_COMPUTE && b->shader->info.derivative_group == DERIVATIVE_GROUP_NONE) { return nir_imm_zero(b, x->num_components, x->bit_size); } /* Otherwise, build the derivative instruction: either intrinsic or ALU. */ if (b->shader->options->has_ddx_intrinsics) { if (b->shader->options->scalarize_ddx && x->num_components > 1) { nir_def *res[NIR_MAX_VEC_COMPONENTS] = { NULL }; for (unsigned i = 0; i < x->num_components; ++i) { res[i] = _nir_build_ddx(b, x->bit_size, nir_channel(b, x, i)); nir_instr_as_intrinsic(res[i]->parent_instr)->intrinsic = intrin; } return nir_vec(b, res, x->num_components); } else { nir_def *res = _nir_build_ddx(b, x->bit_size, x); nir_instr_as_intrinsic(res->parent_instr)->intrinsic = intrin; return res; } } else { return nir_build_alu1(b, alu, x); } } #define DEF_DERIV(op) \ static inline nir_def * \ nir_##op(nir_builder *build, nir_def *src0) \ { \ return nir_build_deriv(build, src0, nir_op_f##op, nir_intrinsic_##op); \ } DEF_DERIV(ddx) DEF_DERIV(ddx_fine) DEF_DERIV(ddx_coarse) DEF_DERIV(ddy) DEF_DERIV(ddy_fine) DEF_DERIV(ddy_coarse) /* * Find a texture source, remove it, and return its nir_def. If the texture * source does not exist, return NULL. This is useful for texture lowering pass * that consume their input sources and produce a new lowered source. */ static inline nir_def * nir_steal_tex_src(nir_tex_instr *tex, nir_tex_src_type type_) { int idx = nir_tex_instr_src_index(tex, type_); if (idx < 0) return NULL; nir_def *ssa = tex->src[idx].src.ssa; nir_tex_instr_remove_src(tex, idx); return ssa; } static inline nir_def * nir_tex_deref(nir_builder *b, nir_deref_instr *t, nir_deref_instr *s, nir_def *coord) { nir_tex_src srcs[] = { nir_tex_src_for_ssa(nir_tex_src_coord, coord) }; return nir_build_tex_deref_instr(b, nir_texop_tex, t, s, ARRAY_SIZE(srcs), srcs); } static inline nir_def * nir_txl_deref(nir_builder *b, nir_deref_instr *t, nir_deref_instr *s, nir_def *coord, nir_def *lod) { nir_tex_src srcs[] = { nir_tex_src_for_ssa(nir_tex_src_coord, coord), nir_tex_src_for_ssa(nir_tex_src_lod, lod), }; return nir_build_tex_deref_instr(b, nir_texop_txl, t, s, ARRAY_SIZE(srcs), srcs); } static inline nir_def * nir_txl_zero_deref(nir_builder *b, nir_deref_instr *t, nir_deref_instr *s, nir_def *coord) { return nir_txl_deref(b, t, s, coord, nir_imm_float(b, 0)); } static inline bool nir_tex_type_has_lod(const struct glsl_type *tex_type) { switch (glsl_get_sampler_dim(tex_type)) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: return true; default: return false; } } static inline nir_def * nir_txf_deref(nir_builder *b, nir_deref_instr *t, nir_def *coord, nir_def *lod) { nir_tex_src srcs[2]; unsigned num_srcs = 0; srcs[num_srcs++] = nir_tex_src_for_ssa(nir_tex_src_coord, coord); if (lod == NULL && nir_tex_type_has_lod(t->type)) lod = nir_imm_int(b, 0); if (lod != NULL) srcs[num_srcs++] = nir_tex_src_for_ssa(nir_tex_src_lod, lod); return nir_build_tex_deref_instr(b, nir_texop_txf, t, NULL, num_srcs, srcs); } static inline nir_def * nir_txf_ms_deref(nir_builder *b, nir_deref_instr *t, nir_def *coord, nir_def *ms_index) { nir_tex_src srcs[] = { nir_tex_src_for_ssa(nir_tex_src_coord, coord), nir_tex_src_for_ssa(nir_tex_src_ms_index, ms_index), }; return nir_build_tex_deref_instr(b, nir_texop_txf_ms, t, NULL, ARRAY_SIZE(srcs), srcs); } static inline nir_def * nir_txs_deref(nir_builder *b, nir_deref_instr *t, nir_def *lod) { nir_tex_src srcs[1]; unsigned num_srcs = 0; if (lod == NULL && nir_tex_type_has_lod(t->type)) lod = nir_imm_int(b, 0); if (lod != NULL) srcs[num_srcs++] = nir_tex_src_for_ssa(nir_tex_src_lod, lod); return nir_build_tex_deref_instr(b, nir_texop_txs, t, NULL, num_srcs, srcs); } static inline nir_def * nir_samples_identical_deref(nir_builder *b, nir_deref_instr *t, nir_def *coord) { nir_tex_src srcs[] = { nir_tex_src_for_ssa(nir_tex_src_coord, coord) }; return nir_build_tex_deref_instr(b, nir_texop_samples_identical, t, NULL, ARRAY_SIZE(srcs), srcs); } /* calculate a `(1 << value) - 1` in ssa without overflows */ static inline nir_def * nir_mask(nir_builder *b, nir_def *bits, unsigned dst_bit_size) { return nir_ushr(b, nir_imm_intN_t(b, -1, dst_bit_size), nir_isub_imm(b, dst_bit_size, nir_u2u32(b, bits))); } static inline nir_def * nir_load_barycentric(nir_builder *build, nir_intrinsic_op op, unsigned interp_mode) { unsigned num_components = op == nir_intrinsic_load_barycentric_model ? 3 : 2; nir_intrinsic_instr *bary = nir_intrinsic_instr_create(build->shader, op); nir_def_init(&bary->instr, &bary->def, num_components, 32); nir_intrinsic_set_interp_mode(bary, interp_mode); nir_builder_instr_insert(build, &bary->instr); return &bary->def; } static inline void nir_jump(nir_builder *build, nir_jump_type jump_type) { assert(jump_type != nir_jump_goto && jump_type != nir_jump_goto_if); nir_jump_instr *jump = nir_jump_instr_create(build->shader, jump_type); nir_builder_instr_insert(build, &jump->instr); } static inline void nir_goto(nir_builder *build, struct nir_block *target) { assert(!build->impl->structured); nir_jump_instr *jump = nir_jump_instr_create(build->shader, nir_jump_goto); jump->target = target; nir_builder_instr_insert(build, &jump->instr); } static inline void nir_goto_if(nir_builder *build, struct nir_block *target, nir_def *cond, struct nir_block *else_target) { assert(!build->impl->structured); nir_jump_instr *jump = nir_jump_instr_create(build->shader, nir_jump_goto_if); jump->condition = nir_src_for_ssa(cond); jump->target = target; jump->else_target = else_target; nir_builder_instr_insert(build, &jump->instr); } static inline void nir_break_if(nir_builder *build, nir_def *cond) { nir_if *nif = nir_push_if(build, cond); { nir_jump(build, nir_jump_break); } nir_pop_if(build, nif); } static inline void nir_build_call(nir_builder *build, nir_function *func, size_t count, nir_def **args) { assert(count == func->num_params && "parameter count must match"); nir_call_instr *call = nir_call_instr_create(build->shader, func); for (unsigned i = 0; i < count; ++i) { call->params[i] = nir_src_for_ssa(args[i]); } nir_builder_instr_insert(build, &call->instr); } static inline void nir_discard(nir_builder *build) { if (build->shader->options->discard_is_demote) nir_demote(build); else nir_terminate(build); } static inline void nir_discard_if(nir_builder *build, nir_def *src) { if (build->shader->options->discard_is_demote) nir_demote_if(build, src); else nir_terminate_if(build, src); } nir_def * nir_build_string(nir_builder *build, const char *value); /* * Call a given nir_function * with a variadic number of nir_def * arguments. * * Defined with __VA_ARGS__ instead of va_list so we can assert the correct * number of parameters are passed in. */ #define nir_call(build, func, ...) \ do { \ nir_def *args[] = { __VA_ARGS__ }; \ nir_build_call(build, func, ARRAY_SIZE(args), args); \ } while (0) nir_def * nir_compare_func(nir_builder *b, enum compare_func func, nir_def *src0, nir_def *src1); static inline void nir_scoped_memory_barrier(nir_builder *b, mesa_scope scope, nir_memory_semantics semantics, nir_variable_mode modes) { nir_barrier(b, SCOPE_NONE, scope, semantics, modes); } nir_def * nir_gen_rect_vertices(nir_builder *b, nir_def *z, nir_def *w); /* Emits a printf in the same way nir_lower_printf(). Each of the variadic * argument is a pointer to a nir_def value. */ void nir_printf_fmt(nir_builder *b, bool use_printf_base_identifier, unsigned ptr_bit_size, const char *fmt, ...); #ifdef __cplusplus } /* extern "C" */ #endif #endif /* NIR_BUILDER_H */