/* * Copyright © 2018 Red Hat Inc. * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "nir.h" #include "nir_builder.h" #include "nir_builtin_builder.h" nir_def * nir_cross3(nir_builder *b, nir_def *x, nir_def *y) { unsigned yzx[3] = { 1, 2, 0 }; unsigned zxy[3] = { 2, 0, 1 }; return nir_ffma(b, nir_swizzle(b, x, yzx, 3), nir_swizzle(b, y, zxy, 3), nir_fneg(b, nir_fmul(b, nir_swizzle(b, x, zxy, 3), nir_swizzle(b, y, yzx, 3)))); } nir_def * nir_cross4(nir_builder *b, nir_def *x, nir_def *y) { nir_def *cross = nir_cross3(b, x, y); return nir_vec4(b, nir_channel(b, cross, 0), nir_channel(b, cross, 1), nir_channel(b, cross, 2), nir_imm_intN_t(b, 0, cross->bit_size)); } nir_def * nir_fast_length(nir_builder *b, nir_def *vec) { return nir_fsqrt(b, nir_fdot(b, vec, vec)); } nir_def * nir_nextafter(nir_builder *b, nir_def *x, nir_def *y) { nir_def *zero = nir_imm_intN_t(b, 0, x->bit_size); nir_def *one = nir_imm_intN_t(b, 1, x->bit_size); nir_def *condeq = nir_feq(b, x, y); nir_def *conddir = nir_flt(b, x, y); nir_def *condzero = nir_feq(b, x, zero); uint64_t sign_mask = 1ull << (x->bit_size - 1); uint64_t min_abs = 1; if (nir_is_denorm_flush_to_zero(b->shader->info.float_controls_execution_mode, x->bit_size)) { switch (x->bit_size) { case 16: min_abs = 1 << 10; break; case 32: min_abs = 1 << 23; break; case 64: min_abs = 1ULL << 52; break; } /* Flush denorm to zero to avoid returning a denorm when condeq is true. */ x = nir_fmul_imm(b, x, 1.0); } /* beware of: +/-0.0 - 1 == NaN */ nir_def *xn = nir_bcsel(b, condzero, nir_imm_intN_t(b, sign_mask | min_abs, x->bit_size), nir_isub(b, x, one)); /* beware of -0.0 + 1 == -0x1p-149 */ nir_def *xp = nir_bcsel(b, condzero, nir_imm_intN_t(b, min_abs, x->bit_size), nir_iadd(b, x, one)); /* nextafter can be implemented by just +/- 1 on the int value */ nir_def *res = nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn); return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res)); } nir_def * nir_normalize(nir_builder *b, nir_def *vec) { if (vec->num_components == 1) return nir_fsign(b, vec); nir_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size); nir_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size); nir_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size); /* scale the input to increase precision */ nir_def *maxc = nir_fmax_abs_vec_comp(b, vec); nir_def *svec = nir_fdiv(b, vec, maxc); /* for inf */ nir_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1); nir_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec); nir_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp))); return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res); } nir_def * nir_smoothstep(nir_builder *b, nir_def *edge0, nir_def *edge1, nir_def *x) { nir_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size); nir_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size); /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */ nir_def *t = nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0), nir_fsub(b, edge1, edge0))); /* result = t * t * (3 - 2 * t) */ return nir_fmul(b, t, nir_fmul(b, t, nir_a_minus_bc(b, f3, f2, t))); } nir_def * nir_upsample(nir_builder *b, nir_def *hi, nir_def *lo) { assert(lo->num_components == hi->num_components); assert(lo->bit_size == hi->bit_size); nir_def *res[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < lo->num_components; ++i) { nir_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i)); res[i] = nir_pack_bits(b, vec, vec->bit_size * 2); } return nir_vec(b, res, lo->num_components); } nir_def * nir_atan(nir_builder *b, nir_def *y_over_x) { const uint32_t bit_size = y_over_x->bit_size; nir_def *abs_y_over_x = nir_fabs(b, y_over_x); /* * range-reduction, first step: * * / y_over_x if |y_over_x| <= 1.0; * u = < * \ 1.0 / y_over_x otherwise * * x = |u| for the corrected sign. */ nir_def *le_1 = nir_fle_imm(b, abs_y_over_x, 1.0); nir_def *u = nir_bcsel(b, le_1, y_over_x, nir_frcp(b, y_over_x)); /* * approximate atan by evaluating polynomial using Horner's method: * * x * 0.9999793128310355 - x^3 * 0.3326756418091246 + * x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 + * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444 */ float coeffs[] = { -0.0121323213173444f, 0.0536813784310406f, -0.1173503194786851f, 0.1938924977115610f, -0.3326756418091246f, 0.9999793128310355f }; nir_def *x_2 = nir_fmul(b, u, u); nir_def *res = nir_imm_floatN_t(b, coeffs[0], bit_size); for (unsigned i = 1; i < ARRAY_SIZE(coeffs); ++i) { res = nir_ffma_imm2(b, res, x_2, coeffs[i]); } /* range-reduction fixup value */ nir_def *bias = nir_bcsel(b, le_1, nir_imm_floatN_t(b, 0, bit_size), nir_imm_floatN_t(b, -M_PI_2, bit_size)); /* multiply through by x while fixing up the range reduction */ nir_def *tmp = nir_ffma(b, nir_fabs(b, u), res, bias); /* sign fixup */ return nir_copysign(b, tmp, y_over_x); } nir_def * nir_atan2(nir_builder *b, nir_def *y, nir_def *x) { assert(y->bit_size == x->bit_size); const uint32_t bit_size = x->bit_size; nir_def *zero = nir_imm_floatN_t(b, 0, bit_size); nir_def *one = nir_imm_floatN_t(b, 1, bit_size); /* If we're on the left half-plane rotate the coordinates π/2 clock-wise * for the y=0 discontinuity to end up aligned with the vertical * discontinuity of atan(s/t) along t=0. This also makes sure that we * don't attempt to divide by zero along the vertical line, which may give * unspecified results on non-GLSL 4.1-capable hardware. */ nir_def *flip = nir_fge(b, zero, x); nir_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y); nir_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x)); /* If the magnitude of the denominator exceeds some huge value, scale down * the arguments in order to prevent the reciprocal operation from flushing * its result to zero, which would cause precision problems, and for s * infinite would cause us to return a NaN instead of the correct finite * value. * * If fmin and fmax are respectively the smallest and largest positive * normalized floating point values representable by the implementation, * the constants below should be in agreement with: * * huge <= 1 / fmin * scale <= 1 / fmin / fmax (for |t| >= huge) * * In addition scale should be a negative power of two in order to avoid * loss of precision. The values chosen below should work for most usual * floating point representations with at least the dynamic range of ATI's * 24-bit representation. */ const double huge_val = bit_size >= 32 ? 1e18 : 16384; nir_def *scale = nir_bcsel(b, nir_fge_imm(b, nir_fabs(b, t), huge_val), nir_imm_floatN_t(b, 0.25, bit_size), one); nir_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale)); nir_def *abs_s_over_t = nir_fmul(b, nir_fabs(b, nir_fmul(b, s, scale)), nir_fabs(b, rcp_scaled_t)); /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily * that ∞/∞ = 1) in order to comply with the rather artificial rules * inherited from IEEE 754-2008, namely: * * "atan2(±∞, −∞) is ±3π/4 * atan2(±∞, +∞) is ±π/4" * * Note that this is inconsistent with the rules for the neighborhood of * zero that are based on iterated limits: * * "atan2(±0, −0) is ±π * atan2(±0, +0) is ±0" * * but GLSL specifically allows implementations to deviate from IEEE rules * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as * well). */ nir_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)), one, abs_s_over_t); /* Calculate the arctangent and fix up the result if we had flipped the * coordinate system. */ nir_def *arc = nir_ffma_imm1(b, nir_b2fN(b, flip, bit_size), M_PI_2, nir_atan(b, tan)); /* Rather convoluted calculation of the sign of the result. When x < 0 we * cannot use fsign because we need to be able to distinguish between * negative and positive zero. We don't use bitwise arithmetic tricks for * consistency with the GLSL front-end. When x >= 0 rcp_scaled_t will * always be non-negative so this won't be able to distinguish between * negative and positive zero, but we don't care because atan2 is * continuous along the whole positive y = 0 half-line, so it won't affect * the result significantly. */ return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero), nir_fneg(b, arc), arc); } nir_def * nir_build_texture_query(nir_builder *b, nir_tex_instr *tex, nir_texop texop, unsigned components, nir_alu_type dest_type, bool include_coord, bool include_lod) { nir_tex_instr *query; unsigned num_srcs = include_lod ? 1 : 0; for (unsigned i = 0; i < tex->num_srcs; i++) { if ((tex->src[i].src_type == nir_tex_src_coord && include_coord) || tex->src[i].src_type == nir_tex_src_texture_deref || tex->src[i].src_type == nir_tex_src_sampler_deref || tex->src[i].src_type == nir_tex_src_texture_offset || tex->src[i].src_type == nir_tex_src_sampler_offset || tex->src[i].src_type == nir_tex_src_texture_handle || tex->src[i].src_type == nir_tex_src_sampler_handle) num_srcs++; } query = nir_tex_instr_create(b->shader, num_srcs); query->op = texop; query->sampler_dim = tex->sampler_dim; query->is_array = tex->is_array; query->is_shadow = tex->is_shadow; query->is_new_style_shadow = tex->is_new_style_shadow; query->texture_index = tex->texture_index; query->sampler_index = tex->sampler_index; query->dest_type = dest_type; if (include_coord) { query->coord_components = tex->coord_components; } unsigned idx = 0; for (unsigned i = 0; i < tex->num_srcs; i++) { if ((tex->src[i].src_type == nir_tex_src_coord && include_coord) || tex->src[i].src_type == nir_tex_src_texture_deref || tex->src[i].src_type == nir_tex_src_sampler_deref || tex->src[i].src_type == nir_tex_src_texture_offset || tex->src[i].src_type == nir_tex_src_sampler_offset || tex->src[i].src_type == nir_tex_src_texture_handle || tex->src[i].src_type == nir_tex_src_sampler_handle) { query->src[idx].src = nir_src_for_ssa(tex->src[i].src.ssa); query->src[idx].src_type = tex->src[i].src_type; idx++; } } /* Add in an LOD because some back-ends require it */ if (include_lod) { query->src[idx] = nir_tex_src_for_ssa(nir_tex_src_lod, nir_imm_int(b, 0)); } nir_def_init(&query->instr, &query->def, nir_tex_instr_dest_size(query), nir_alu_type_get_type_size(dest_type)); nir_builder_instr_insert(b, &query->instr); return &query->def; } nir_def * nir_get_texture_size(nir_builder *b, nir_tex_instr *tex) { b->cursor = nir_before_instr(&tex->instr); return nir_build_texture_query(b, tex, nir_texop_txs, nir_tex_instr_dest_size(tex), nir_type_int32, false, true); } nir_def * nir_get_texture_lod(nir_builder *b, nir_tex_instr *tex) { b->cursor = nir_before_instr(&tex->instr); nir_def *tql = nir_build_texture_query(b, tex, nir_texop_lod, 2, nir_type_float32, true, false); /* The LOD is the y component of the result */ return nir_channel(b, tql, 1); }