/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" #include "nir_builder_opcodes.h" #include "nir_vla.h" /* * This file implements an out-of-SSA pass as described in "Revisiting * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by * Boissinot et al. */ struct from_ssa_state { nir_builder builder; void *dead_ctx; struct exec_list dead_instrs; bool phi_webs_only; struct hash_table *merge_node_table; nir_instr *instr; bool progress; }; /* Returns if def @a comes after def @b. * * The core observation that makes the Boissinot algorithm efficient * is that, given two properly sorted sets, we can check for * interference in these sets via a linear walk. This is accomplished * by doing single combined walk over union of the two sets in DFS * order. It doesn't matter what DFS we do so long as we're * consistent. Fortunately, the dominance algorithm we ran prior to * this pass did such a walk and recorded the pre- and post-indices in * the blocks. * * We treat SSA undefs as always coming before other instruction types. */ static bool def_after(nir_def *a, nir_def *b) { if (a->parent_instr->type == nir_instr_type_undef) return false; if (b->parent_instr->type == nir_instr_type_undef) return true; /* If they're in the same block, we can rely on whichever instruction * comes first in the block. */ if (a->parent_instr->block == b->parent_instr->block) return a->parent_instr->index > b->parent_instr->index; /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */ return a->parent_instr->block->dom_pre_index > b->parent_instr->block->dom_pre_index; } /* Returns true if a dominates b */ static bool ssa_def_dominates(nir_def *a, nir_def *b) { if (a->parent_instr->type == nir_instr_type_undef) { /* SSA undefs always dominate */ return true; } if (def_after(a, b)) { return false; } else if (a->parent_instr->block == b->parent_instr->block) { return def_after(b, a); } else { return nir_block_dominates(a->parent_instr->block, b->parent_instr->block); } } /* The following data structure, which I have named merge_set is a way of * representing a set registers of non-interfering registers. This is * based on the concept of a "dominance forest" presented in "Fast Copy * Coalescing and Live-Range Identification" by Budimlic et al. but the * implementation concept is taken from "Revisiting Out-of-SSA Translation * for Correctness, Code Quality, and Efficiency" by Boissinot et al. * * Each SSA definition is associated with a merge_node and the association * is represented by a combination of a hash table and the "def" parameter * in the merge_node structure. The merge_set stores a linked list of * merge_nodes, ordered by a pre-order DFS walk of the dominance tree. (Since * the liveness analysis pass indexes the SSA values in dominance order for * us, this is an easy thing to keep up.) It is assumed that no pair of the * nodes in a given set interfere. Merging two sets or checking for * interference can be done in a single linear-time merge-sort walk of the * two lists of nodes. */ struct merge_set; typedef struct { struct exec_node node; struct merge_set *set; nir_def *def; } merge_node; typedef struct merge_set { struct exec_list nodes; unsigned size; bool divergent; nir_def *reg_decl; } merge_set; #if 0 static void merge_set_dump(merge_set *set, FILE *fp) { NIR_VLA(nir_def *, dom, set->size); int dom_idx = -1; foreach_list_typed(merge_node, node, node, &set->nodes) { while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) dom_idx--; for (int i = 0; i <= dom_idx; i++) fprintf(fp, " "); fprintf(fp, "ssa_%d\n", node->def->index); dom[++dom_idx] = node->def; } } #endif static merge_node * get_merge_node(nir_def *def, struct from_ssa_state *state) { struct hash_entry *entry = _mesa_hash_table_search(state->merge_node_table, def); if (entry) return entry->data; merge_set *set = rzalloc(state->dead_ctx, merge_set); exec_list_make_empty(&set->nodes); set->size = 1; set->divergent = def->divergent; merge_node *node = ralloc(state->dead_ctx, merge_node); node->set = set; node->def = def; exec_list_push_head(&set->nodes, &node->node); _mesa_hash_table_insert(state->merge_node_table, def, node); return node; } static bool merge_nodes_interfere(merge_node *a, merge_node *b) { /* There's no need to check for interference within the same set, * because we assume, that sets themselves are already * interference-free. */ if (a->set == b->set) return false; return nir_defs_interfere(a->def, b->def); } /* Merges b into a * * This algorithm uses def_after to ensure that the sets always stay in the * same order as the pre-order DFS done by the liveness algorithm. */ static merge_set * merge_merge_sets(merge_set *a, merge_set *b) { struct exec_node *an = exec_list_get_head(&a->nodes); struct exec_node *bn = exec_list_get_head(&b->nodes); while (!exec_node_is_tail_sentinel(bn)) { merge_node *a_node = exec_node_data(merge_node, an, node); merge_node *b_node = exec_node_data(merge_node, bn, node); if (exec_node_is_tail_sentinel(an) || def_after(a_node->def, b_node->def)) { struct exec_node *next = bn->next; exec_node_remove(bn); exec_node_insert_node_before(an, bn); exec_node_data(merge_node, bn, node)->set = a; bn = next; } else { an = an->next; } } a->size += b->size; b->size = 0; a->divergent |= b->divergent; return a; } /* Checks for any interference between two merge sets * * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA * Translation for Correctness, Code Quality, and Efficiency" by * Boissinot et al. */ static bool merge_sets_interfere(merge_set *a, merge_set *b) { /* List of all the nodes which dominate the current node, in dominance * order. */ NIR_VLA(merge_node *, dom, a->size + b->size); int dom_idx = -1; struct exec_node *an = exec_list_get_head(&a->nodes); struct exec_node *bn = exec_list_get_head(&b->nodes); while (!exec_node_is_tail_sentinel(an) || !exec_node_is_tail_sentinel(bn)) { /* We walk the union of the two sets in the same order as the pre-order * DFS done by liveness analysis. */ merge_node *current; if (exec_node_is_tail_sentinel(an)) { current = exec_node_data(merge_node, bn, node); bn = bn->next; } else if (exec_node_is_tail_sentinel(bn)) { current = exec_node_data(merge_node, an, node); an = an->next; } else { merge_node *a_node = exec_node_data(merge_node, an, node); merge_node *b_node = exec_node_data(merge_node, bn, node); if (def_after(b_node->def, a_node->def)) { current = a_node; an = an->next; } else { current = b_node; bn = bn->next; } } /* Because our walk is a pre-order DFS, we can maintain the list of * dominating nodes as a simple stack, pushing every node onto the list * after we visit it and popping any non-dominating nodes off before we * visit the current node. */ while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx]->def, current->def)) dom_idx--; /* There are three invariants of this algorithm that are important here: * * 1. There is no interference within either set a or set b. * 2. None of the nodes processed up until this point interfere. * 3. All the dominators of `current` have been processed * * Because of these invariants, we only need to check the current node * against its minimal dominator. If any other node N in the union * interferes with current, then N must dominate current because we are * in SSA form. If N dominates current then it must also dominate our * minimal dominator dom[dom_idx]. Since N is live at current it must * also be live at the minimal dominator which means N interferes with * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above, * the algorithm would have already terminated. Therefore, if we got * here, the only node that can possibly interfere with current is the * minimal dominator dom[dom_idx]. * * This is what allows us to do a interference check of the union of the * two sets with a single linear-time walk. */ if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) return true; dom[++dom_idx] = current; } return false; } static bool add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx) { bool need_end_copy = false; if (block->successors[0]) { nir_instr *instr = nir_block_first_instr(block->successors[0]); if (instr && instr->type == nir_instr_type_phi) need_end_copy = true; } if (block->successors[1]) { nir_instr *instr = nir_block_first_instr(block->successors[1]); if (instr && instr->type == nir_instr_type_phi) need_end_copy = true; } if (need_end_copy) { /* If one of our successors has at least one phi node, we need to * create a parallel copy at the end of the block but before the jump * (if there is one). */ nir_parallel_copy_instr *pcopy = nir_parallel_copy_instr_create(shader); nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr); } return true; } static nir_parallel_copy_instr * get_parallel_copy_at_end_of_block(nir_block *block) { nir_instr *last_instr = nir_block_last_instr(block); if (last_instr == NULL) return NULL; /* The last instruction may be a jump in which case the parallel copy is * right before it. */ if (last_instr->type == nir_instr_type_jump) last_instr = nir_instr_prev(last_instr); if (last_instr && last_instr->type == nir_instr_type_parallel_copy) return nir_instr_as_parallel_copy(last_instr); else return NULL; } /** Isolate phi nodes with parallel copies * * In order to solve the dependency problems with the sources and * destinations of phi nodes, we first isolate them by adding parallel * copies to the beginnings and ends of basic blocks. For every block with * phi nodes, we add a parallel copy immediately following the last phi * node that copies the destinations of all of the phi nodes to new SSA * values. We also add a parallel copy to the end of every block that has * a successor with phi nodes that, for each phi node in each successor, * copies the corresponding sorce of the phi node and adjust the phi to * used the destination of the parallel copy. * * In SSA form, each value has exactly one definition. What this does is * ensure that each value used in a phi also has exactly one use. The * destinations of phis are only used by the parallel copy immediately * following the phi nodes and. Thanks to the parallel copy at the end of * the predecessor block, the sources of phi nodes are are the only use of * that value. This allows us to immediately assign all the sources and * destinations of any given phi node to the same register without worrying * about interference at all. We do coalescing to get rid of the parallel * copies where possible. * * Before this pass can be run, we have to iterate over the blocks with * add_parallel_copy_to_end_of_block to ensure that the parallel copies at * the ends of blocks exist. We can create the ones at the beginnings as * we go, but the ones at the ends of blocks need to be created ahead of * time because of potential back-edges in the CFG. */ static bool isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx) { /* If we don't have any phis, then there's nothing for us to do. */ nir_phi_instr *last_phi = nir_block_last_phi_instr(block); if (last_phi == NULL) return true; /* If we have phi nodes, we need to create a parallel copy at the * start of this block but after the phi nodes. */ nir_parallel_copy_instr *block_pcopy = nir_parallel_copy_instr_create(shader); nir_instr_insert_after(&last_phi->instr, &block_pcopy->instr); nir_foreach_phi(phi, block) { nir_foreach_phi_src(src, phi) { if (nir_src_is_undef(src->src)) continue; nir_parallel_copy_instr *pcopy = get_parallel_copy_at_end_of_block(src->pred); assert(pcopy); nir_parallel_copy_entry *entry = rzalloc(dead_ctx, nir_parallel_copy_entry); entry->dest_is_reg = false; nir_def_init(&pcopy->instr, &entry->dest.def, phi->def.num_components, phi->def.bit_size); entry->dest.def.divergent = nir_src_is_divergent(src->src); /* We're adding a source to a live instruction so we need to use * nir_instr_init_src() */ entry->src_is_reg = false; nir_instr_init_src(&pcopy->instr, &entry->src, src->src.ssa); exec_list_push_tail(&pcopy->entries, &entry->node); nir_src_rewrite(&src->src, &entry->dest.def); } nir_parallel_copy_entry *entry = rzalloc(dead_ctx, nir_parallel_copy_entry); entry->dest_is_reg = false; nir_def_init(&block_pcopy->instr, &entry->dest.def, phi->def.num_components, phi->def.bit_size); entry->dest.def.divergent = phi->def.divergent; nir_def_rewrite_uses(&phi->def, &entry->dest.def); /* We're adding a source to a live instruction so we need to use * nir_instr_init_src(). * * Note that we do this after we've rewritten all uses of the phi to * entry->def, ensuring that entry->src will be the only remaining use * of the phi. */ entry->src_is_reg = false; nir_instr_init_src(&block_pcopy->instr, &entry->src, &phi->def); exec_list_push_tail(&block_pcopy->entries, &entry->node); } return true; } static bool coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state) { nir_foreach_phi(phi, block) { merge_node *dest_node = get_merge_node(&phi->def, state); nir_foreach_phi_src(src, phi) { if (nir_src_is_undef(src->src)) continue; merge_node *src_node = get_merge_node(src->src.ssa, state); if (src_node->set != dest_node->set) merge_merge_sets(dest_node->set, src_node->set); } } return true; } static void aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, struct from_ssa_state *state) { nir_foreach_parallel_copy_entry(entry, pcopy) { assert(!entry->src_is_reg); assert(!entry->dest_is_reg); assert(entry->dest.def.num_components == entry->src.ssa->num_components); /* Since load_const instructions are SSA only, we can't replace their * destinations with registers and, therefore, can't coalesce them. */ if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const) continue; merge_node *src_node = get_merge_node(entry->src.ssa, state); merge_node *dest_node = get_merge_node(&entry->dest.def, state); if (src_node->set == dest_node->set) continue; /* TODO: We can probably do better here but for now we should be safe if * we just don't coalesce things with different divergence. */ if (dest_node->set->divergent != src_node->set->divergent) continue; if (!merge_sets_interfere(src_node->set, dest_node->set)) merge_merge_sets(src_node->set, dest_node->set); } } static bool aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state) { nir_parallel_copy_instr *start_pcopy = NULL; nir_foreach_instr(instr, block) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) { if (instr->type != nir_instr_type_parallel_copy) break; /* The parallel copy must be right after the phis */ start_pcopy = nir_instr_as_parallel_copy(instr); aggressive_coalesce_parallel_copy(start_pcopy, state); break; } } nir_parallel_copy_instr *end_pcopy = get_parallel_copy_at_end_of_block(block); if (end_pcopy && end_pcopy != start_pcopy) aggressive_coalesce_parallel_copy(end_pcopy, state); return true; } static nir_def * decl_reg_for_ssa_def(nir_builder *b, nir_def *def) { return nir_decl_reg(b, def->num_components, def->bit_size, 0); } static void set_reg_divergent(nir_def *reg, bool divergent) { nir_intrinsic_instr *decl = nir_reg_get_decl(reg); nir_intrinsic_set_divergent(decl, divergent); } void nir_rewrite_uses_to_load_reg(nir_builder *b, nir_def *old, nir_def *reg) { nir_foreach_use_including_if_safe(use, old) { b->cursor = nir_before_src(use); /* If this is a parallel copy, it can just take the register directly */ if (!nir_src_is_if(use) && nir_src_parent_instr(use)->type == nir_instr_type_parallel_copy) { nir_parallel_copy_entry *copy_entry = list_entry(use, nir_parallel_copy_entry, src); assert(!copy_entry->src_is_reg); copy_entry->src_is_reg = true; nir_src_rewrite(©_entry->src, reg); continue; } /* If the immediate preceding instruction is a load_reg from the same * register, use it instead of creating a new load_reg. This helps when * a register is referenced in multiple sources in the same instruction, * which otherwise would turn into piles of unnecessary moves. */ nir_def *load = NULL; if (b->cursor.option == nir_cursor_before_instr) { nir_instr *prev = nir_instr_prev(b->cursor.instr); if (prev != NULL && prev->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(prev); if (intr->intrinsic == nir_intrinsic_load_reg && intr->src[0].ssa == reg && nir_intrinsic_base(intr) == 0) load = &intr->def; } } if (load == NULL) load = nir_load_reg(b, reg); nir_src_rewrite(use, load); } } static bool def_replace_with_reg(nir_def *def, nir_function_impl *impl) { /* These are handled elsewhere */ assert(def->parent_instr->type != nir_instr_type_undef && def->parent_instr->type != nir_instr_type_load_const); nir_builder b = nir_builder_create(impl); nir_def *reg = decl_reg_for_ssa_def(&b, def); nir_rewrite_uses_to_load_reg(&b, def, reg); if (def->parent_instr->type == nir_instr_type_phi) b.cursor = nir_before_block_after_phis(def->parent_instr->block); else b.cursor = nir_after_instr(def->parent_instr); nir_store_reg(&b, def, reg); return true; } static nir_def * reg_for_ssa_def(nir_def *def, struct from_ssa_state *state) { struct hash_entry *entry = _mesa_hash_table_search(state->merge_node_table, def); if (entry) { /* In this case, we're part of a phi web. Use the web's register. */ merge_node *node = (merge_node *)entry->data; /* If it doesn't have a register yet, create one. Note that all of * the things in the merge set should be the same so it doesn't * matter which node's definition we use. */ if (node->set->reg_decl == NULL) { node->set->reg_decl = decl_reg_for_ssa_def(&state->builder, def); set_reg_divergent(node->set->reg_decl, node->set->divergent); } return node->set->reg_decl; } else { assert(state->phi_webs_only); return NULL; } } static void remove_no_op_phi(nir_instr *instr, struct from_ssa_state *state) { #ifndef NDEBUG nir_phi_instr *phi = nir_instr_as_phi(instr); struct hash_entry *entry = _mesa_hash_table_search(state->merge_node_table, &phi->def); assert(entry != NULL); merge_node *node = (merge_node *)entry->data; nir_foreach_phi_src(src, phi) { if (nir_src_is_undef(src->src)) continue; entry = _mesa_hash_table_search(state->merge_node_table, src->src.ssa); assert(entry != NULL); merge_node *src_node = (merge_node *)entry->data; assert(src_node->set == node->set); } #endif nir_instr_remove(instr); } static bool rewrite_ssa_def(nir_def *def, void *void_state) { struct from_ssa_state *state = void_state; nir_def *reg = reg_for_ssa_def(def, state); if (reg == NULL) return true; assert(nir_def_is_unused(def)); /* At this point we know a priori that this SSA def is part of a * nir_dest. We can use exec_node_data to get the dest pointer. */ assert(def->parent_instr->type != nir_instr_type_load_const); nir_store_reg(&state->builder, def, reg); state->progress = true; return true; } static bool rewrite_src(nir_src *src, void *void_state) { struct from_ssa_state *state = void_state; nir_def *reg = reg_for_ssa_def(src->ssa, state); if (reg == NULL) return true; nir_src_rewrite(src, nir_load_reg(&state->builder, reg)); state->progress = true; return true; } /* Resolves ssa definitions to registers. While we're at it, we also * remove phi nodes. */ static void resolve_registers_impl(nir_function_impl *impl, struct from_ssa_state *state) { nir_foreach_block_reverse(block, impl) { /* Remove successor phis in case there's a back edge. */ for (unsigned i = 0; i < 2; i++) { nir_block *succ = block->successors[i]; if (succ == NULL) continue; nir_foreach_instr_safe(instr, succ) { if (instr->type != nir_instr_type_phi) break; remove_no_op_phi(instr, state); } } /* The following if is right after the block, handle its condition as the * last source "in" the block. */ nir_if *nif = nir_block_get_following_if(block); if (nif) { state->builder.cursor = nir_before_src(&nif->condition); rewrite_src(&nif->condition, state); } nir_foreach_instr_reverse_safe(instr, block) { switch (instr->type) { case nir_instr_type_phi: remove_no_op_phi(instr, state); break; case nir_instr_type_parallel_copy: { nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr); nir_foreach_parallel_copy_entry(entry, pcopy) { assert(!entry->dest_is_reg); /* Parallel copy destinations will always be registers */ nir_def *reg = reg_for_ssa_def(&entry->dest.def, state); assert(reg != NULL); /* We're switching from the nir_def to the nir_src in the dest * union so we need to use nir_instr_init_src() here. */ assert(nir_def_is_unused(&entry->dest.def)); entry->dest_is_reg = true; nir_instr_init_src(&pcopy->instr, &entry->dest.reg, reg); } nir_foreach_parallel_copy_entry(entry, pcopy) { assert(!entry->src_is_reg); nir_def *reg = reg_for_ssa_def(entry->src.ssa, state); if (reg == NULL) continue; entry->src_is_reg = true; nir_src_rewrite(&entry->src, reg); } break; } default: state->builder.cursor = nir_after_instr(instr); nir_foreach_def(instr, rewrite_ssa_def, state); state->builder.cursor = nir_before_instr(instr); nir_foreach_src(instr, rewrite_src, state); } } } } /* Resolves a single parallel copy operation into a sequence of movs * * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for * Correctness, Code Quality, and Efficiency" by Boissinot et al. * However, I never got the algorithm to work as written, so this version * is slightly modified. * * The algorithm works by playing this little shell game with the values. * We start by recording where every source value is and which source value * each destination value should receive. We then grab any copy whose * destination is "empty", i.e. not used as a source, and do the following: * - Find where its source value currently lives * - Emit the move instruction * - Set the location of the source value to the destination * - Mark the location containing the source value * - Mark the destination as no longer needing to be copied * * When we run out of "empty" destinations, we have a cycle and so we * create a temporary register, copy to that register, and mark the value * we copied as living in that temporary. Now, the cycle is broken, so we * can continue with the above steps. */ struct copy_value { bool is_reg; nir_def *ssa; }; static bool copy_values_equal(struct copy_value a, struct copy_value b) { return a.is_reg == b.is_reg && a.ssa == b.ssa; } static bool copy_value_is_divergent(struct copy_value v) { if (!v.is_reg) return v.ssa->divergent; nir_intrinsic_instr *decl = nir_reg_get_decl(v.ssa); return nir_intrinsic_divergent(decl); } static void copy_values(nir_builder *b, struct copy_value dest, struct copy_value src) { nir_def *val = src.is_reg ? nir_load_reg(b, src.ssa) : src.ssa; assert(!copy_value_is_divergent(src) || copy_value_is_divergent(dest)); assert(dest.is_reg); nir_store_reg(b, val, dest.ssa); } static void resolve_parallel_copy(nir_parallel_copy_instr *pcopy, struct from_ssa_state *state) { unsigned num_copies = 0; nir_foreach_parallel_copy_entry(entry, pcopy) { /* Sources may be SSA but destinations are always registers */ assert(entry->dest_is_reg); if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa) continue; num_copies++; } if (num_copies == 0) { /* Hooray, we don't need any copies! */ nir_instr_remove(&pcopy->instr); exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node); return; } /* The register/source corresponding to the given index */ NIR_VLA_ZERO(struct copy_value, values, num_copies * 2); /* The current location of a given piece of data. We will use -1 for "null" */ NIR_VLA_FILL(int, loc, num_copies * 2, -1); /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */ NIR_VLA_FILL(int, pred, num_copies * 2, -1); /* The destinations we have yet to properly fill */ NIR_VLA(int, to_do, num_copies * 2); int to_do_idx = -1; state->builder.cursor = nir_before_instr(&pcopy->instr); /* Now we set everything up: * - All values get assigned a temporary index * - Current locations are set from sources * - Predecessors are recorded from sources and destinations */ int num_vals = 0; nir_foreach_parallel_copy_entry(entry, pcopy) { /* Sources may be SSA but destinations are always registers */ if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa) continue; struct copy_value src_value = { .is_reg = entry->src_is_reg, .ssa = entry->src.ssa, }; int src_idx = -1; for (int i = 0; i < num_vals; ++i) { if (copy_values_equal(values[i], src_value)) src_idx = i; } if (src_idx < 0) { src_idx = num_vals++; values[src_idx] = src_value; } assert(entry->dest_is_reg); struct copy_value dest_value = { .is_reg = true, .ssa = entry->dest.reg.ssa, }; int dest_idx = -1; for (int i = 0; i < num_vals; ++i) { if (copy_values_equal(values[i], dest_value)) { /* Each destination of a parallel copy instruction should be * unique. A destination may get used as a source, so we still * have to walk the list. However, the predecessor should not, * at this point, be set yet, so we should have -1 here. */ assert(pred[i] == -1); dest_idx = i; } } if (dest_idx < 0) { dest_idx = num_vals++; values[dest_idx] = dest_value; } loc[src_idx] = src_idx; pred[dest_idx] = src_idx; to_do[++to_do_idx] = dest_idx; } /* Currently empty destinations we can go ahead and fill */ NIR_VLA(int, ready, num_copies * 2); int ready_idx = -1; /* Mark the ones that are ready for copying. We know an index is a * destination if it has a predecessor and it's ready for copying if * it's not marked as containing data. */ for (int i = 0; i < num_vals; i++) { if (pred[i] != -1 && loc[i] == -1) ready[++ready_idx] = i; } while (1) { while (ready_idx >= 0) { int b = ready[ready_idx--]; int a = pred[b]; copy_values(&state->builder, values[b], values[loc[a]]); /* b has been filled, mark it as not needing to be copied */ pred[b] = -1; /* The next bit only applies if the source and destination have the * same divergence. If they differ (it must be convergent -> * divergent), then we can't guarantee we won't need the convergent * version of it again. */ if (copy_value_is_divergent(values[a]) == copy_value_is_divergent(values[b])) { /* If a needs to be filled... */ if (pred[a] != -1) { /* If any other copies want a they can find it at b */ loc[a] = b; /* It's ready for copying now */ ready[++ready_idx] = a; } } } assert(ready_idx < 0); if (to_do_idx < 0) break; int b = to_do[to_do_idx--]; if (pred[b] == -1) continue; /* If we got here, then we don't have any more trivial copies that we * can do. We have to break a cycle, so we create a new temporary * register for that purpose. Normally, if going out of SSA after * register allocation, you would want to avoid creating temporary * registers. However, we are going out of SSA before register * allocation, so we would rather not create extra register * dependencies for the backend to deal with. If it wants, the * backend can coalesce the (possibly multiple) temporaries. * * We can also get here in the case where there is no cycle but our * source value is convergent, is also used as a destination by another * element of the parallel copy, and all the destinations of the * parallel copy which copy from it are divergent. In this case, the * above loop cannot detect that the value has moved due to all the * divergent destinations and we'll end up emitting a copy to a * temporary which never gets used. We can avoid this with additional * tracking or we can just trust the back-end to dead-code the unused * temporary (which is trivial). */ assert(num_vals < num_copies * 2); nir_def *reg; if (values[b].is_reg) { nir_intrinsic_instr *decl = nir_reg_get_decl(values[b].ssa); uint8_t num_components = nir_intrinsic_num_components(decl); uint8_t bit_size = nir_intrinsic_bit_size(decl); reg = nir_decl_reg(&state->builder, num_components, bit_size, 0); } else { reg = decl_reg_for_ssa_def(&state->builder, values[b].ssa); } set_reg_divergent(reg, copy_value_is_divergent(values[b])); values[num_vals] = (struct copy_value){ .is_reg = true, .ssa = reg, }; copy_values(&state->builder, values[num_vals], values[b]); loc[b] = num_vals; ready[++ready_idx] = b; num_vals++; } nir_instr_remove(&pcopy->instr); exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node); } /* Resolves the parallel copies in a block. Each block can have at most * two: One at the beginning, right after all the phi noces, and one at * the end (or right before the final jump if it exists). */ static bool resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state) { /* At this point, we have removed all of the phi nodes. If a parallel * copy existed right after the phi nodes in this block, it is now the * first instruction. */ nir_instr *first_instr = nir_block_first_instr(block); if (first_instr == NULL) return true; /* Empty, nothing to do. */ /* There can be load_reg in the way of the copies... don't be clever. */ nir_foreach_instr_safe(instr, block) { if (instr->type == nir_instr_type_parallel_copy) { nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr); resolve_parallel_copy(pcopy, state); } } return true; } static bool nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only) { nir_shader *shader = impl->function->shader; struct from_ssa_state state; state.builder = nir_builder_create(impl); state.dead_ctx = ralloc_context(NULL); state.phi_webs_only = phi_webs_only; state.merge_node_table = _mesa_pointer_hash_table_create(NULL); state.progress = false; exec_list_make_empty(&state.dead_instrs); nir_foreach_block(block, impl) { add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx); } nir_foreach_block(block, impl) { isolate_phi_nodes_block(shader, block, state.dead_ctx); } /* Mark metadata as dirty before we ask for liveness analysis */ nir_metadata_preserve(impl, nir_metadata_control_flow); nir_metadata_require(impl, nir_metadata_instr_index | nir_metadata_live_defs | nir_metadata_dominance); nir_foreach_block(block, impl) { coalesce_phi_nodes_block(block, &state); } nir_foreach_block(block, impl) { aggressive_coalesce_block(block, &state); } resolve_registers_impl(impl, &state); nir_foreach_block(block, impl) { resolve_parallel_copies_block(block, &state); } nir_metadata_preserve(impl, nir_metadata_control_flow); /* Clean up dead instructions and the hash tables */ nir_instr_free_list(&state.dead_instrs); _mesa_hash_table_destroy(state.merge_node_table, NULL); ralloc_free(state.dead_ctx); return state.progress; } bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only) { bool progress = false; nir_foreach_function_impl(impl, shader) { progress |= nir_convert_from_ssa_impl(impl, phi_webs_only); } return progress; } static void place_phi_read(nir_builder *b, nir_def *reg, nir_def *def, nir_block *block, struct set *visited_blocks) { /* Search already visited blocks to avoid back edges in tree */ if (_mesa_set_search(visited_blocks, block) == NULL) { /* Try to go up the single-successor tree */ bool all_single_successors = true; set_foreach(block->predecessors, entry) { nir_block *pred = (nir_block *)entry->key; if (pred->successors[0] && pred->successors[1]) { all_single_successors = false; break; } } if (all_single_successors) { /* All predecessors of this block have exactly one successor and it * is this block so they must eventually lead here without * intersecting each other. Place the reads in the predecessors * instead of this block. */ _mesa_set_add(visited_blocks, block); set_foreach(block->predecessors, entry) { place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks); } return; } } b->cursor = nir_after_block_before_jump(block); nir_store_reg(b, def, reg); } /** Lower all of the phi nodes in a block to movs to and from a register * * This provides a very quick-and-dirty out-of-SSA pass that you can run on a * single block to convert all of its phis to a register and some movs. * The code that is generated, while not optimal for actual codegen in a * back-end, is easy to generate, correct, and will turn into the same set of * phis after you call regs_to_ssa and do some copy propagation. For each phi * node we do the following: * * 1. For each phi instruction in the block, create a new nir_register * * 2. Insert movs at the top of the destination block for each phi and * rewrite all uses of the phi to use the mov. * * 3. For each phi source, insert movs in the predecessor block from the phi * source to the register associated with the phi. * * Correctness is guaranteed by the fact that we create a new register for * each phi and emit movs on both sides of the control-flow edge. Because all * the phis have SSA destinations (we assert this) and there is a separate * temporary for each phi, all movs inserted in any particular block have * unique destinations so the order of operations does not matter. * * The one intelligent thing this pass does is that it places the moves from * the phi sources as high up the predecessor tree as possible instead of in * the exact predecessor. This means that, in particular, it will crawl into * the deepest nesting of any if-ladders. In order to ensure that doing so is * safe, it stops as soon as one of the predecessors has multiple successors. */ bool nir_lower_phis_to_regs_block(nir_block *block) { nir_builder b = nir_builder_create(nir_cf_node_get_function(&block->cf_node)); struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); bool progress = false; nir_foreach_phi_safe(phi, block) { nir_def *reg = decl_reg_for_ssa_def(&b, &phi->def); set_reg_divergent(reg, phi->def.divergent); b.cursor = nir_after_instr(&phi->instr); nir_def_rewrite_uses(&phi->def, nir_load_reg(&b, reg)); nir_foreach_phi_src(src, phi) { _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block); place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks); _mesa_set_clear(visited_blocks, NULL); } nir_instr_remove(&phi->instr); progress = true; } _mesa_set_destroy(visited_blocks, NULL); return progress; } struct ssa_def_to_reg_state { nir_function_impl *impl; bool progress; }; static bool def_replace_with_reg_state(nir_def *def, void *void_state) { struct ssa_def_to_reg_state *state = void_state; state->progress |= def_replace_with_reg(def, state->impl); return true; } static bool ssa_def_is_local_to_block(nir_def *def, UNUSED void *state) { nir_block *block = def->parent_instr->block; nir_foreach_use_including_if(use_src, def) { if (nir_src_is_if(use_src) || nir_src_parent_instr(use_src)->block != block || nir_src_parent_instr(use_src)->type == nir_instr_type_phi) { return false; } } return true; } static bool instr_is_load_new_reg(nir_instr *instr, unsigned old_num_ssa) { if (instr->type != nir_instr_type_intrinsic) return false; nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr); if (load->intrinsic != nir_intrinsic_load_reg) return false; nir_def *reg = load->src[0].ssa; return reg->index >= old_num_ssa; } /** Lower all of the SSA defs in a block to registers * * This performs the very simple operation of blindly replacing all of the SSA * defs in the given block with registers. If not used carefully, this may * result in phi nodes with register sources which is technically invalid. * Fortunately, the register-based into-SSA pass handles them anyway. */ bool nir_lower_ssa_defs_to_regs_block(nir_block *block) { nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); nir_builder b = nir_builder_create(impl); struct ssa_def_to_reg_state state = { .impl = impl, .progress = false, }; /* Save off the current number of SSA defs so we can detect which regs * we've added vs. regs that were already there. */ const unsigned num_ssa = impl->ssa_alloc; nir_foreach_instr_safe(instr, block) { if (instr->type == nir_instr_type_undef) { /* Undefs are just a read of something never written. */ nir_undef_instr *undef = nir_instr_as_undef(instr); nir_def *reg = decl_reg_for_ssa_def(&b, &undef->def); nir_rewrite_uses_to_load_reg(&b, &undef->def, reg); } else if (instr->type == nir_instr_type_load_const) { nir_load_const_instr *load = nir_instr_as_load_const(instr); nir_def *reg = decl_reg_for_ssa_def(&b, &load->def); nir_rewrite_uses_to_load_reg(&b, &load->def, reg); b.cursor = nir_after_instr(instr); nir_store_reg(&b, &load->def, reg); } else if (instr_is_load_new_reg(instr, num_ssa)) { /* Calls to nir_rewrite_uses_to_load_reg() may place new load_reg * intrinsics in this block with new SSA destinations. To avoid * infinite recursion, we don't want to lower any newly placed * load_reg instructions to yet anoter load/store_reg. */ } else if (nir_foreach_def(instr, ssa_def_is_local_to_block, NULL)) { /* If the SSA def produced by this instruction is only in the block * in which it is defined and is not used by ifs or phis, then we * don't have a reason to convert it to a register. */ } else { nir_foreach_def(instr, def_replace_with_reg_state, &state); } } return state.progress; }