/* * Copyright © 2013 Intel Corporation * SPDX-License-Identifier: MIT */ #include "brw_eu.h" #include "intel_nir.h" #include "brw_nir.h" #include "brw_fs.h" #include "brw_fs_builder.h" #include "brw_private.h" #include "dev/intel_debug.h" using namespace brw; /** * Return the number of patches to accumulate before a MULTI_PATCH mode thread is * launched. In cases with a large number of input control points and a large * amount of VS outputs, the VS URB space needed to store an entire 8 patches * worth of data can be prohibitive, so it can be beneficial to launch threads * early. * * See the 3DSTATE_HS::Patch Count Threshold documentation for the recommended * values. Note that 0 means to "disable" early dispatch, meaning to wait for * a full 8 patches as normal. */ static int get_patch_count_threshold(int input_control_points) { if (input_control_points <= 4) return 0; else if (input_control_points <= 6) return 5; else if (input_control_points <= 8) return 4; else if (input_control_points <= 10) return 3; else if (input_control_points <= 14) return 2; /* Return patch count 1 for PATCHLIST_15 - PATCHLIST_32 */ return 1; } static void brw_set_tcs_invocation_id(fs_visitor &s) { const struct intel_device_info *devinfo = s.devinfo; struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(s.prog_data); struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base; const fs_builder bld = fs_builder(&s).at_end(); const unsigned instance_id_mask = (devinfo->verx10 >= 125) ? INTEL_MASK(7, 0) : (devinfo->ver >= 11) ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17); const unsigned instance_id_shift = (devinfo->verx10 >= 125) ? 0 : (devinfo->ver >= 11) ? 16 : 17; /* Get instance number from g0.2 bits: * * 7:0 on DG2+ * * 22:16 on gfx11+ * * 23:17 otherwise */ brw_reg t = bld.AND(brw_reg(retype(brw_vec1_grf(0, 2), BRW_TYPE_UD)), brw_imm_ud(instance_id_mask)); if (vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH) { /* gl_InvocationID is just the thread number */ s.invocation_id = bld.SHR(t, brw_imm_ud(instance_id_shift)); return; } assert(vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH); brw_reg channels_uw = bld.vgrf(BRW_TYPE_UW); brw_reg channels_ud = bld.vgrf(BRW_TYPE_UD); bld.MOV(channels_uw, brw_reg(brw_imm_uv(0x76543210))); bld.MOV(channels_ud, channels_uw); if (tcs_prog_data->instances == 1) { s.invocation_id = channels_ud; } else { /* instance_id = 8 * t + <76543210> */ s.invocation_id = bld.ADD(bld.SHR(t, brw_imm_ud(instance_id_shift - 3)), channels_ud); } } static void brw_emit_tcs_thread_end(fs_visitor &s) { /* Try and tag the last URB write with EOT instead of emitting a whole * separate write just to finish the thread. There isn't guaranteed to * be one, so this may not succeed. */ if (s.mark_last_urb_write_with_eot()) return; const fs_builder bld = fs_builder(&s).at_end(); /* Emit a URB write to end the thread. On Broadwell, we use this to write * zero to the "TR DS Cache Disable" bit (we haven't implemented a fancy * algorithm to set it optimally). On other platforms, we simply write * zero to a reserved/MBZ patch header DWord which has no consequence. */ brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = s.tcs_payload().patch_urb_output; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(WRITEMASK_X << 16); srcs[URB_LOGICAL_SRC_DATA] = brw_imm_ud(0); srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(1); fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); inst->eot = true; } static void brw_assign_tcs_urb_setup(fs_visitor &s) { assert(s.stage == MESA_SHADER_TESS_CTRL); /* Rewrite all ATTR file references to HW_REGs. */ foreach_block_and_inst(block, fs_inst, inst, s.cfg) { s.convert_attr_sources_to_hw_regs(inst); } } static bool run_tcs(fs_visitor &s) { assert(s.stage == MESA_SHADER_TESS_CTRL); struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(s.prog_data); const fs_builder bld = fs_builder(&s).at_end(); assert(vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH || vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH); s.payload_ = new tcs_thread_payload(s); /* Initialize gl_InvocationID */ brw_set_tcs_invocation_id(s); const bool fix_dispatch_mask = vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH && (s.nir->info.tess.tcs_vertices_out % 8) != 0; /* Fix the disptach mask */ if (fix_dispatch_mask) { bld.CMP(bld.null_reg_ud(), s.invocation_id, brw_imm_ud(s.nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L); bld.IF(BRW_PREDICATE_NORMAL); } nir_to_brw(&s); if (fix_dispatch_mask) { bld.emit(BRW_OPCODE_ENDIF); } brw_emit_tcs_thread_end(s); if (s.failed) return false; brw_calculate_cfg(s); brw_fs_optimize(s); s.assign_curb_setup(); brw_assign_tcs_urb_setup(s); brw_fs_lower_3src_null_dest(s); brw_fs_workaround_memory_fence_before_eot(s); brw_fs_workaround_emit_dummy_mov_instruction(s); brw_allocate_registers(s, true /* allow_spilling */); return !s.failed; } extern "C" const unsigned * brw_compile_tcs(const struct brw_compiler *compiler, struct brw_compile_tcs_params *params) { const struct intel_device_info *devinfo = compiler->devinfo; nir_shader *nir = params->base.nir; const struct brw_tcs_prog_key *key = params->key; struct brw_tcs_prog_data *prog_data = params->prog_data; struct brw_vue_prog_data *vue_prog_data = &prog_data->base; const bool debug_enabled = brw_should_print_shader(nir, DEBUG_TCS); vue_prog_data->base.stage = MESA_SHADER_TESS_CTRL; prog_data->base.base.ray_queries = nir->info.ray_queries; prog_data->base.base.total_scratch = 0; nir->info.outputs_written = key->outputs_written; nir->info.patch_outputs_written = key->patch_outputs_written; struct intel_vue_map input_vue_map; brw_compute_vue_map(devinfo, &input_vue_map, nir->info.inputs_read, nir->info.separate_shader, 1); brw_compute_tess_vue_map(&vue_prog_data->vue_map, nir->info.outputs_written, nir->info.patch_outputs_written); brw_nir_apply_key(nir, compiler, &key->base, brw_geometry_stage_dispatch_width(compiler->devinfo)); brw_nir_lower_vue_inputs(nir, &input_vue_map); brw_nir_lower_tcs_outputs(nir, &vue_prog_data->vue_map, key->_tes_primitive_mode); if (key->input_vertices > 0) intel_nir_lower_patch_vertices_in(nir, key->input_vertices); brw_postprocess_nir(nir, compiler, debug_enabled, key->base.robust_flags); bool has_primitive_id = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID); prog_data->patch_count_threshold = get_patch_count_threshold(key->input_vertices); if (compiler->use_tcs_multi_patch) { vue_prog_data->dispatch_mode = INTEL_DISPATCH_MODE_TCS_MULTI_PATCH; prog_data->instances = nir->info.tess.tcs_vertices_out; prog_data->include_primitive_id = has_primitive_id; } else { unsigned verts_per_thread = 8; vue_prog_data->dispatch_mode = INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH; prog_data->instances = DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, verts_per_thread); } /* Compute URB entry size. The maximum allowed URB entry size is 32k. * That divides up as follows: * * 32 bytes for the patch header (tessellation factors) * 480 bytes for per-patch varyings (a varying component is 4 bytes and * gl_MaxTessPatchComponents = 120) * 16384 bytes for per-vertex varyings (a varying component is 4 bytes, * gl_MaxPatchVertices = 32 and * gl_MaxTessControlOutputComponents = 128) * * 15808 bytes left for varying packing overhead */ const int num_per_patch_slots = vue_prog_data->vue_map.num_per_patch_slots; const int num_per_vertex_slots = vue_prog_data->vue_map.num_per_vertex_slots; unsigned output_size_bytes = 0; /* Note that the patch header is counted in num_per_patch_slots. */ output_size_bytes += num_per_patch_slots * 16; output_size_bytes += nir->info.tess.tcs_vertices_out * num_per_vertex_slots * 16; assert(output_size_bytes >= 1); if (output_size_bytes > GFX7_MAX_HS_URB_ENTRY_SIZE_BYTES) return NULL; /* URB entry sizes are stored as a multiple of 64 bytes. */ vue_prog_data->urb_entry_size = ALIGN(output_size_bytes, 64) / 64; /* HS does not use the usual payload pushing from URB to GRFs, * because we don't have enough registers for a full-size payload, and * the hardware is broken on Haswell anyway. */ vue_prog_data->urb_read_length = 0; if (unlikely(debug_enabled)) { fprintf(stderr, "TCS Input "); brw_print_vue_map(stderr, &input_vue_map, MESA_SHADER_TESS_CTRL); fprintf(stderr, "TCS Output "); brw_print_vue_map(stderr, &vue_prog_data->vue_map, MESA_SHADER_TESS_CTRL); } const unsigned dispatch_width = devinfo->ver >= 20 ? 16 : 8; fs_visitor v(compiler, ¶ms->base, &key->base, &prog_data->base.base, nir, dispatch_width, params->base.stats != NULL, debug_enabled); if (!run_tcs(v)) { params->base.error_str = ralloc_strdup(params->base.mem_ctx, v.fail_msg); return NULL; } assert(v.payload().num_regs % reg_unit(devinfo) == 0); prog_data->base.base.dispatch_grf_start_reg = v.payload().num_regs / reg_unit(devinfo); fs_generator g(compiler, ¶ms->base, &prog_data->base.base, MESA_SHADER_TESS_CTRL); if (unlikely(debug_enabled)) { g.enable_debug(ralloc_asprintf(params->base.mem_ctx, "%s tessellation control shader %s", nir->info.label ? nir->info.label : "unnamed", nir->info.name)); } g.generate_code(v.cfg, dispatch_width, v.shader_stats, v.performance_analysis.require(), params->base.stats); g.add_const_data(nir->constant_data, nir->constant_data_size); return g.get_assembly(); }