/* * Copyright © 2010 - 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef BRW_COMPILER_H #define BRW_COMPILER_H #include #include "c11/threads.h" #include "dev/intel_device_info.h" #include "isl/isl.h" #include "util/macros.h" #include "util/mesa-sha1.h" #include "util/enum_operators.h" #include "util/ralloc.h" #include "util/u_math.h" #include "util/u_printf.h" #include "brw_isa_info.h" #include "intel_shader_enums.h" #ifdef __cplusplus extern "C" { #endif struct ra_regs; struct nir_shader; struct shader_info; struct nir_shader_compiler_options; typedef struct nir_shader nir_shader; #define REG_CLASS_COUNT 20 struct brw_compiler { const struct intel_device_info *devinfo; /* This lock must be taken if the compiler is to be modified in any way, * including adding something to the ralloc child list. */ mtx_t mutex; struct brw_isa_info isa; struct { struct ra_regs *regs; /** * Array of the ra classes for the unaligned contiguous register * block sizes used, indexed by register size. */ struct ra_class *classes[REG_CLASS_COUNT]; } fs_reg_set; void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4); void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4); bool use_tcs_multi_patch; struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES]; /** * Apply workarounds for SIN and COS output range problems. * This can negatively impact performance. */ bool precise_trig; /** * Whether indirect UBO loads should use the sampler or go through the * data/constant cache. For the sampler, UBO surface states have to be set * up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the * constant or data cache, UBOs must use VK_FORMAT_RAW. */ bool indirect_ubos_use_sampler; /** * Gfx12.5+ has a bit in the SEND instruction extending the bindless * surface offset range from 20 to 26 bits, effectively giving us 4Gb of * bindless surface descriptors instead of 64Mb previously. */ bool extended_bindless_surface_offset; /** * Gfx11+ has a bit in the dword 3 of the sampler message header that * indicates whether the sampler handle is relative to the dynamic state * base address (0) or the bindless sampler base address (1). The driver * can select this. */ bool use_bindless_sampler_offset; /** * Should DPAS instructions be lowered? * * This will be set for all platforms before Gfx12.5. It may also be set * platforms that support DPAS for testing purposes. */ bool lower_dpas; /** * Calling the ra_allocate function after each register spill can take * several minutes. This option speeds up shader compilation by spilling * more registers after the ra_allocate failure. Required for * Cyberpunk 2077, which uses a watchdog thread to terminate the process * in case the render thread hasn't responded within 2 minutes. */ int spilling_rate; struct nir_shader *clc_shader; struct { unsigned mue_header_packing; bool mue_compaction; } mesh; }; #define brw_shader_debug_log(compiler, data, fmt, ... ) do { \ static unsigned id = 0; \ compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__); \ } while (0) #define brw_shader_perf_log(compiler, data, fmt, ... ) do { \ static unsigned id = 0; \ compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__); \ } while (0) /** * We use a constant subgroup size of 32. It really only needs to be a * maximum and, since we do SIMD32 for compute shaders in some cases, it * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a * subgroup size of 32 but will act as if 16 or 24 of those channels are * disabled. */ #define BRW_SUBGROUP_SIZE 32 static inline bool brw_shader_stage_is_bindless(gl_shader_stage stage) { return stage >= MESA_SHADER_RAYGEN && stage <= MESA_SHADER_CALLABLE; } static inline bool brw_shader_stage_requires_bindless_resources(gl_shader_stage stage) { return brw_shader_stage_is_bindless(stage) || gl_shader_stage_is_mesh(stage); } /** * Program key structures. * * When drawing, we look for the currently bound shaders in the program * cache. This is essentially a hash table lookup, and these are the keys. * * Sometimes OpenGL features specified as state need to be simulated via * shader code, due to a mismatch between the API and the hardware. This * is often referred to as "non-orthagonal state" or "NOS". We store NOS * in the program key so it's considered when searching for a program. If * we haven't seen a particular combination before, we have to recompile a * new specialized version. * * Shader compilation should not look up state in gl_context directly, but * instead use the copy in the program key. This guarantees recompiles will * happen correctly. * * @{ */ #define BRW_MAX_SAMPLERS 32 /* Provide explicit padding for each member, to ensure that the compiler * initializes every bit in the shader cache keys. The keys will be compared * with memcmp. */ PRAGMA_DIAGNOSTIC_PUSH PRAGMA_DIAGNOSTIC_ERROR(-Wpadded) enum brw_robustness_flags { BRW_ROBUSTNESS_UBO = BITFIELD_BIT(0), BRW_ROBUSTNESS_SSBO = BITFIELD_BIT(1), }; struct brw_base_prog_key { unsigned program_string_id; enum brw_robustness_flags robust_flags:2; unsigned padding:22; /** * Apply workarounds for SIN and COS input range problems. * This limits input range for SIN and COS to [-2p : 2p] to * avoid precision issues. */ bool limit_trig_input_range; }; /** * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user * input vertex attributes. In Vulkan, we expose up to 28 user vertex input * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0. */ #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28) /** The program key for Vertex Shaders. */ struct brw_vs_prog_key { struct brw_base_prog_key base; }; /** The program key for Tessellation Control Shaders. */ struct brw_tcs_prog_key { struct brw_base_prog_key base; /** A bitfield of per-vertex outputs written. */ uint64_t outputs_written; enum tess_primitive_mode _tes_primitive_mode; /** Number of input vertices, 0 means dynamic */ unsigned input_vertices; /** A bitfield of per-patch outputs written. */ uint32_t patch_outputs_written; uint32_t padding; }; #define BRW_MAX_TCS_INPUT_VERTICES (32) static inline uint32_t brw_tcs_prog_key_input_vertices(const struct brw_tcs_prog_key *key) { return key->input_vertices != 0 ? key->input_vertices : BRW_MAX_TCS_INPUT_VERTICES; } /** The program key for Tessellation Evaluation Shaders. */ struct brw_tes_prog_key { struct brw_base_prog_key base; /** A bitfield of per-vertex inputs read. */ uint64_t inputs_read; /** A bitfield of per-patch inputs read. */ uint32_t patch_inputs_read; uint32_t padding; }; /** The program key for Geometry Shaders. */ struct brw_gs_prog_key { struct brw_base_prog_key base; }; struct brw_task_prog_key { struct brw_base_prog_key base; }; struct brw_mesh_prog_key { struct brw_base_prog_key base; bool compact_mue:1; unsigned padding:31; }; enum brw_sometimes { BRW_NEVER = 0, BRW_SOMETIMES, BRW_ALWAYS }; static inline enum brw_sometimes brw_sometimes_invert(enum brw_sometimes x) { return (enum brw_sometimes)((int)BRW_ALWAYS - (int)x); } /** The program key for Fragment/Pixel Shaders. */ struct brw_wm_prog_key { struct brw_base_prog_key base; uint64_t input_slots_valid; uint8_t color_outputs_valid; /* Some collection of BRW_WM_IZ_* */ bool flat_shade:1; unsigned nr_color_regions:5; bool alpha_test_replicate_alpha:1; enum brw_sometimes alpha_to_coverage:2; bool clamp_fragment_color:1; bool force_dual_color_blend:1; /** Whether or inputs are interpolated at sample rate by default * * This corresponds to the sample shading API bit in Vulkan or OpenGL which * controls how inputs with no interpolation qualifier are interpolated. * This is distinct from the way that using gl_SampleID or similar requires * us to run per-sample. Even when running per-sample due to gl_SampleID, * we may still interpolate unqualified inputs at the pixel center. */ enum brw_sometimes persample_interp:2; /* Whether or not we are running on a multisampled framebuffer */ enum brw_sometimes multisample_fbo:2; /* Whether the preceding shader stage is mesh */ enum brw_sometimes mesh_input:2; bool coherent_fb_fetch:1; bool ignore_sample_mask_out:1; bool coarse_pixel:1; bool null_push_constant_tbimr_workaround:1; uint64_t padding:35; }; struct brw_cs_prog_key { struct brw_base_prog_key base; }; struct brw_bs_prog_key { struct brw_base_prog_key base; /* Represents enum enum brw_rt_ray_flags values given at pipeline creation * to be combined with ray_flags handed to the traceRayEXT() calls by the * shader. */ uint32_t pipeline_ray_flags; }; /* brw_any_prog_key is any of the keys that map to an API stage */ union brw_any_prog_key { struct brw_base_prog_key base; struct brw_vs_prog_key vs; struct brw_tcs_prog_key tcs; struct brw_tes_prog_key tes; struct brw_gs_prog_key gs; struct brw_wm_prog_key wm; struct brw_cs_prog_key cs; struct brw_bs_prog_key bs; struct brw_task_prog_key task; struct brw_mesh_prog_key mesh; }; PRAGMA_DIAGNOSTIC_POP /** Max number of render targets in a shader */ #define BRW_MAX_DRAW_BUFFERS 8 struct brw_ubo_range { uint16_t block; /* In units of 32-byte registers */ uint8_t start; uint8_t length; }; /* We reserve the first 2^16 values for builtins */ #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0) enum brw_param_builtin { BRW_PARAM_BUILTIN_ZERO, BRW_PARAM_BUILTIN_CLIP_PLANE_0_X, BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_0_W, BRW_PARAM_BUILTIN_CLIP_PLANE_1_X, BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_1_W, BRW_PARAM_BUILTIN_CLIP_PLANE_2_X, BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_2_W, BRW_PARAM_BUILTIN_CLIP_PLANE_3_X, BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_3_W, BRW_PARAM_BUILTIN_CLIP_PLANE_4_X, BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_4_W, BRW_PARAM_BUILTIN_CLIP_PLANE_5_X, BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_5_W, BRW_PARAM_BUILTIN_CLIP_PLANE_6_X, BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_6_W, BRW_PARAM_BUILTIN_CLIP_PLANE_7_X, BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_7_W, BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X, BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y, BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z, BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W, BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X, BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y, BRW_PARAM_BUILTIN_PATCH_VERTICES_IN, BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X, BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y, BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z, BRW_PARAM_BUILTIN_SUBGROUP_ID, BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X, BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y, BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z, BRW_PARAM_BUILTIN_WORK_DIM, }; #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \ (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp)) #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \ ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \ (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W) #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \ (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2) #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \ (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3) #define BRW_MAX_EMBEDDED_SAMPLERS (4096) enum brw_shader_reloc_id { BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW, BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH, BRW_SHADER_RELOC_SHADER_START_OFFSET, BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW, BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH, BRW_SHADER_RELOC_DESCRIPTORS_ADDR_HIGH, BRW_SHADER_RELOC_DESCRIPTORS_BUFFER_ADDR_HIGH, BRW_SHADER_RELOC_EMBEDDED_SAMPLER_HANDLE, BRW_SHADER_RELOC_LAST_EMBEDDED_SAMPLER_HANDLE = BRW_SHADER_RELOC_EMBEDDED_SAMPLER_HANDLE + BRW_MAX_EMBEDDED_SAMPLERS - 1, BRW_SHADER_RELOC_PRINTF_BUFFER_ADDR_LOW, BRW_SHADER_RELOC_PRINTF_BUFFER_ADDR_HIGH, BRW_SHADER_RELOC_PRINTF_BASE_IDENTIFIER, }; enum brw_shader_reloc_type { /** An arbitrary 32-bit value */ BRW_SHADER_RELOC_TYPE_U32, /** A MOV instruction with an immediate source */ BRW_SHADER_RELOC_TYPE_MOV_IMM, }; /** Represents a code relocation * * Relocatable constants are immediates in the code which we want to be able * to replace post-compile with the actual value. */ struct brw_shader_reloc { /** The 32-bit ID of the relocatable constant */ uint32_t id; /** Type of this relocation */ enum brw_shader_reloc_type type; /** The offset in the shader to the relocated value * * For MOV_IMM relocs, this is an offset to the MOV instruction. This * allows us to do some sanity checking while we update the value. */ uint32_t offset; /** Value to be added to the relocated value before it is written */ uint32_t delta; }; /** A value to write to a relocation */ struct brw_shader_reloc_value { /** The 32-bit ID of the relocatable constant */ uint32_t id; /** The value with which to replace the relocated immediate */ uint32_t value; }; struct brw_stage_prog_data { struct brw_ubo_range ubo_ranges[4]; unsigned nr_params; /**< number of float params/constants */ gl_shader_stage stage; /* zero_push_reg is a bitfield which indicates what push registers (if any) * should be zeroed by SW at the start of the shader. The corresponding * push_reg_mask_param specifies the param index (in 32-bit units) where * the actual runtime 64-bit mask will be pushed. The shader will zero * push reg i if * * reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i) * * If this field is set, brw_compiler::compact_params must be false. */ uint64_t zero_push_reg; unsigned push_reg_mask_param; unsigned curb_read_length; unsigned total_scratch; unsigned total_shared; unsigned program_size; unsigned const_data_size; unsigned const_data_offset; unsigned num_relocs; const struct brw_shader_reloc *relocs; /** Does this program pull from any UBO or other constant buffers? */ bool has_ubo_pull; /** How many ray queries objects in this shader. */ unsigned ray_queries; /** * Register where the thread expects to find input data from the URB * (typically uniforms, followed by vertex or fragment attributes). */ unsigned dispatch_grf_start_reg; bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */ /* 32-bit identifiers for all push/pull parameters. These can be anything * the driver wishes them to be; the core of the back-end compiler simply * re-arranges them. The one restriction is that the bottom 2^16 values * are reserved for builtins defined in the brw_param_builtin enum defined * above. */ uint32_t *param; /* Whether shader uses atomic operations. */ bool uses_atomic_load_store; /* Printf descriptions contained by the shader */ uint32_t printf_info_count; u_printf_info *printf_info; }; static inline uint32_t * brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data, unsigned nr_new_params) { unsigned old_nr_params = prog_data->nr_params; prog_data->nr_params += nr_new_params; prog_data->param = reralloc(ralloc_parent(prog_data->param), prog_data->param, uint32_t, prog_data->nr_params); return prog_data->param + old_nr_params; } void brw_stage_prog_data_add_printf(struct brw_stage_prog_data *prog_data, void *mem_ctx, const u_printf_info *print); enum brw_barycentric_mode { BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0, BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1, BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2, BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3, BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4, BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5, BRW_BARYCENTRIC_MODE_COUNT = 6 }; #define BRW_BARYCENTRIC_PERSPECTIVE_BITS \ ((1 << BRW_BARYCENTRIC_PERSPECTIVE_PIXEL) | \ (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID) | \ (1 << BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE)) #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \ ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \ (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \ (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE)) enum brw_pixel_shader_computed_depth_mode { BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */ BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */ BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */ BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */ }; /* Data about a particular attempt to compile a program. Note that * there can be many of these, each in a different GL state * corresponding to a different brw_wm_prog_key struct, with different * compiled programs. */ struct brw_wm_prog_data { struct brw_stage_prog_data base; unsigned num_per_primitive_inputs; unsigned num_varying_inputs; uint8_t dispatch_grf_start_reg_16; uint8_t dispatch_grf_start_reg_32; uint32_t prog_offset_16; uint32_t prog_offset_32; uint8_t computed_depth_mode; /** * Number of polygons handled in parallel by the multi-polygon PS * kernel. */ uint8_t max_polygons; /** * Dispatch width of the multi-polygon PS kernel, or 0 if no * multi-polygon kernel was built. */ uint8_t dispatch_multi; bool computed_stencil; bool early_fragment_tests; bool post_depth_coverage; bool inner_coverage; bool dispatch_8; bool dispatch_16; bool dispatch_32; bool dual_src_blend; bool uses_pos_offset; bool uses_omask; bool uses_kill; bool uses_src_depth; bool uses_src_w; bool uses_depth_w_coefficients; bool uses_pc_bary_coefficients; bool uses_npc_bary_coefficients; bool uses_sample_offsets; bool uses_sample_mask; bool uses_vmask; bool has_side_effects; bool pulls_bary; bool contains_flat_varying; bool contains_noperspective_varying; /** True if the shader wants sample shading * * This corresponds to whether or not a gl_SampleId, gl_SamplePosition, or * a sample-qualified input are used in the shader. It is independent of * GL_MIN_SAMPLE_SHADING_VALUE in GL or minSampleShading in Vulkan. */ bool sample_shading; /** Min sample shading value * * Not used by the compiler, but useful for restore from the cache. The * driver is expected to write the value it wants. */ float min_sample_shading; /** Should this shader be dispatched per-sample */ enum brw_sometimes persample_dispatch; /** * Shader is ran at the coarse pixel shading dispatch rate (3DSTATE_CPS). */ enum brw_sometimes coarse_pixel_dispatch; /** * Shader writes the SampleMask and this is AND-ed with the API's * SampleMask to generate a new coverage mask. */ enum brw_sometimes alpha_to_coverage; unsigned msaa_flags_param; /** * Mask of which interpolation modes are required by the fragment shader. * Those interpolations are delivered as part of the thread payload. Used * in hardware setup on gfx6+. */ uint32_t barycentric_interp_modes; /** * Whether nonperspective interpolation modes are used by the * barycentric_interp_modes or fragment shader through interpolator messages. */ bool uses_nonperspective_interp_modes; /** * Mask of which FS inputs are marked flat by the shader source. This is * needed for setting up 3DSTATE_SF/SBE. */ uint32_t flat_inputs; /** * The FS inputs */ uint64_t inputs; /** * Map from gl_varying_slot to the position within the FS setup data * payload where the varying's attribute vertex deltas should be delivered. * For varying slots that are not used by the FS, the value is -1. */ int urb_setup[VARYING_SLOT_MAX]; int urb_setup_channel[VARYING_SLOT_MAX]; /** * Cache structure into the urb_setup array above that contains the * attribute numbers of active varyings out of urb_setup. * The actual count is stored in urb_setup_attribs_count. */ uint8_t urb_setup_attribs[VARYING_SLOT_MAX]; uint8_t urb_setup_attribs_count; }; #ifdef GFX_VERx10 #if GFX_VERx10 >= 200 /** Returns the SIMD width corresponding to a given KSP index * * The "Variable Pixel Dispatch" table in the PRM (which can be found, for * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to * kernel start pointer (KSP) indices that is based on what dispatch widths * are enabled. This function provides, effectively, the reverse mapping. * * If the given KSP is enabled, a SIMD width of 8, 16, or 32 is * returned. Note that for a multipolygon dispatch kernel 8 is always * returned, since multipolygon kernels use the "_8" fields from * brw_wm_prog_data regardless of their SIMD width. If the KSP is * invalid, 0 is returned. */ static inline unsigned brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool enabled, unsigned width_sel) { assert(ksp_idx < 2); return !enabled ? 0 : width_sel ? 32 : 16; } #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \ (ksp_idx == 0 && (wm_state).Kernel0MaximumPolysperThread ? 8 : \ ksp_idx == 0 ? brw_fs_simd_width_for_ksp(ksp_idx, (wm_state).Kernel0Enable, \ (wm_state).Kernel0SIMDWidth): \ brw_fs_simd_width_for_ksp(ksp_idx, (wm_state).Kernel1Enable, \ (wm_state).Kernel1SIMDWidth)) #else /** Returns the SIMD width corresponding to a given KSP index * * The "Variable Pixel Dispatch" table in the PRM (which can be found, for * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to * kernel start pointer (KSP) indices that is based on what dispatch widths * are enabled. This function provides, effectively, the reverse mapping. * * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned. */ static inline unsigned brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled, bool simd16_enabled, bool simd32_enabled) { /* This function strictly ignores contiguous dispatch */ switch (ksp_idx) { case 0: return simd8_enabled ? 8 : (simd16_enabled && !simd32_enabled) ? 16 : (simd32_enabled && !simd16_enabled) ? 32 : 0; case 1: return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0; case 2: return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0; default: unreachable("Invalid KSP index"); } } #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \ brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \ (wm_state)._16PixelDispatchEnable, \ (wm_state)._32PixelDispatchEnable) #endif #endif #define brw_wm_state_has_ksp(wm_state, ksp_idx) \ (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0) static inline uint32_t _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data, unsigned simd_width) { switch (simd_width) { case 8: return 0; case 16: return prog_data->prog_offset_16; case 32: return prog_data->prog_offset_32; default: return 0; } } #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \ _brw_wm_prog_data_prog_offset(prog_data, \ brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx)) static inline uint8_t _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data, unsigned simd_width) { switch (simd_width) { case 8: return prog_data->base.dispatch_grf_start_reg; case 16: return prog_data->dispatch_grf_start_reg_16; case 32: return prog_data->dispatch_grf_start_reg_32; default: return 0; } } #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \ _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \ brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx)) static inline bool brw_wm_prog_data_is_persample(const struct brw_wm_prog_data *prog_data, enum intel_msaa_flags pushed_msaa_flags) { if (pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC) { if (!(pushed_msaa_flags & INTEL_MSAA_FLAG_MULTISAMPLE_FBO)) return false; if (prog_data->sample_shading) assert(pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH); if (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH) assert(prog_data->persample_dispatch != BRW_NEVER); else assert(prog_data->persample_dispatch != BRW_ALWAYS); return (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH) != 0; } assert(prog_data->persample_dispatch == BRW_ALWAYS || prog_data->persample_dispatch == BRW_NEVER); return prog_data->persample_dispatch; } static inline uint32_t wm_prog_data_barycentric_modes(const struct brw_wm_prog_data *prog_data, enum intel_msaa_flags pushed_msaa_flags) { uint32_t modes = prog_data->barycentric_interp_modes; /* In the non dynamic case, we can just return the computed modes from * compilation time. */ if (!(pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC)) return modes; if (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_INTERP) { assert(prog_data->persample_dispatch == BRW_ALWAYS || (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH)); /* Making dynamic per-sample interpolation work is a bit tricky. The * hardware will hang if SAMPLE is requested but per-sample dispatch is * not enabled. This means we can't preemptively add SAMPLE to the * barycentrics bitfield. Instead, we have to add it late and only * on-demand. Annoyingly, changing the number of barycentrics requested * changes the whole PS shader payload so we very much don't want to do * that. Instead, if the dynamic per-sample interpolation flag is set, * we check to see if SAMPLE was requested and, if not, replace the * highest barycentric bit in the [non]perspective grouping (CENTROID, * if it exists, else PIXEL) with SAMPLE. The shader will stomp all the * barycentrics in the shader with SAMPLE so it really doesn't matter * which one we replace. The important thing is that we keep the number * of barycentrics in each [non]perspective grouping the same. */ if ((modes & BRW_BARYCENTRIC_PERSPECTIVE_BITS) && !(modes & BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE))) { int sample_mode = util_last_bit(modes & BRW_BARYCENTRIC_PERSPECTIVE_BITS) - 1; assert(modes & BITFIELD_BIT(sample_mode)); modes &= ~BITFIELD_BIT(sample_mode); modes |= BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE); } if ((modes & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) && !(modes & BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))) { int sample_mode = util_last_bit(modes & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) - 1; assert(modes & BITFIELD_BIT(sample_mode)); modes &= ~BITFIELD_BIT(sample_mode); modes |= BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE); } } else { /* If we're not using per-sample interpolation, we need to disable the * per-sample bits. * * SKL PRMs, Volume 2a: Command Reference: Instructions, * 3DSTATE_WM:Barycentric Interpolation Mode: * "MSDISPMODE_PERSAMPLE is required in order to select Perspective * Sample or Non-perspective Sample barycentric coordinates." */ uint32_t sample_bits = (BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE) | BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE)); uint32_t requested_sample = modes & sample_bits; modes &= ~sample_bits; /* * If the shader requested some sample modes and we have to disable * them, make sure we add back the pixel variant back to not mess up the * thread payload. * * Why does this works out? Because of the ordering in the thread payload : * * R7:10 Perspective Centroid Barycentric * R11:14 Perspective Sample Barycentric * R15:18 Linear Pixel Location Barycentric * * In the backend when persample dispatch is dynamic, we always select * the sample barycentric and turn off the pixel location (even if * requested through intrinsics). That way when we dynamically select * pixel or sample dispatch, the barycentric always match, since the * pixel location barycentric register offset will align with the sample * barycentric. */ if (requested_sample) { if (requested_sample & BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE)) modes |= BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_PIXEL); if (requested_sample & BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE)) modes |= BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL); } } return modes; } static inline bool brw_wm_prog_data_is_coarse(const struct brw_wm_prog_data *prog_data, enum intel_msaa_flags pushed_msaa_flags) { if (pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC) { if (pushed_msaa_flags & INTEL_MSAA_FLAG_COARSE_RT_WRITES) assert(prog_data->coarse_pixel_dispatch != BRW_NEVER); else assert(prog_data->coarse_pixel_dispatch != BRW_ALWAYS); return pushed_msaa_flags & INTEL_MSAA_FLAG_COARSE_RT_WRITES; } assert(prog_data->coarse_pixel_dispatch == BRW_ALWAYS || prog_data->coarse_pixel_dispatch == BRW_NEVER); return prog_data->coarse_pixel_dispatch; } struct brw_push_const_block { unsigned dwords; /* Dword count, not reg aligned */ unsigned regs; unsigned size; /* Bytes, register aligned */ }; struct brw_cs_prog_data { struct brw_stage_prog_data base; unsigned local_size[3]; /* Program offsets for the 8/16/32 SIMD variants. Multiple variants are * kept when using variable group size, and the right one can only be * decided at dispatch time. */ unsigned prog_offset[3]; /* Bitmask indicating which program offsets are valid. */ unsigned prog_mask; /* Bitmask indicating which programs have spilled. */ unsigned prog_spilled; bool uses_barrier; bool uses_num_work_groups; bool uses_inline_data; bool uses_btd_stack_ids; bool uses_systolic; uint8_t generate_local_id; enum intel_compute_walk_order walk_order; struct { struct brw_push_const_block cross_thread; struct brw_push_const_block per_thread; } push; }; static inline uint32_t brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data, unsigned dispatch_width) { assert(dispatch_width == 8 || dispatch_width == 16 || dispatch_width == 32); const unsigned index = dispatch_width / 16; assert(prog_data->prog_mask & (1 << index)); return prog_data->prog_offset[index]; } struct brw_bs_prog_data { struct brw_stage_prog_data base; /** SIMD size of the root shader */ uint8_t simd_size; /** Maximum stack size of all shaders */ uint32_t max_stack_size; /** Offset into the shader where the resume SBT is located */ uint32_t resume_sbt_offset; /** Number of resume shaders */ uint32_t num_resume_shaders; }; /** * Enum representing the i965-specific vertex results that don't correspond * exactly to any element of gl_varying_slot. The values of this enum are * assigned such that they don't conflict with gl_varying_slot. */ typedef enum { BRW_VARYING_SLOT_PAD = VARYING_SLOT_MAX, BRW_VARYING_SLOT_COUNT } brw_varying_slot; /** * Bitmask indicating which fragment shader inputs represent varyings (and * hence have to be delivered to the fragment shader by the SF/SBE stage). */ #define BRW_FS_VARYING_INPUT_MASK \ (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \ ~VARYING_BIT_POS & ~VARYING_BIT_FACE) void brw_print_vue_map(FILE *fp, const struct intel_vue_map *vue_map, gl_shader_stage stage); /** * Convert a VUE slot number into a byte offset within the VUE. */ static inline unsigned brw_vue_slot_to_offset(unsigned slot) { return 16*slot; } /** * Convert a vertex output (brw_varying_slot) into a byte offset within the * VUE. */ static inline unsigned brw_varying_to_offset(const struct intel_vue_map *vue_map, unsigned varying) { return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]); } void brw_compute_vue_map(const struct intel_device_info *devinfo, struct intel_vue_map *vue_map, uint64_t slots_valid, bool separate_shader, uint32_t pos_slots); void brw_compute_tess_vue_map(struct intel_vue_map *const vue_map, uint64_t slots_valid, uint32_t is_patch); struct brw_vue_prog_data { struct brw_stage_prog_data base; struct intel_vue_map vue_map; /** Should the hardware deliver input VUE handles for URB pull loads? */ bool include_vue_handles; unsigned urb_read_length; unsigned total_grf; uint32_t clip_distance_mask; uint32_t cull_distance_mask; /* Used for calculating urb partitions. In the VS, this is the size of the * URB entry used for both input and output to the thread. In the GS, this * is the size of the URB entry used for output. */ unsigned urb_entry_size; enum intel_shader_dispatch_mode dispatch_mode; }; struct brw_vs_prog_data { struct brw_vue_prog_data base; uint64_t inputs_read; uint64_t double_inputs_read; unsigned nr_attribute_slots; bool uses_vertexid; bool uses_instanceid; bool uses_is_indexed_draw; bool uses_firstvertex; bool uses_baseinstance; bool uses_drawid; }; struct brw_tcs_prog_data { struct brw_vue_prog_data base; /** Should the non-SINGLE_PATCH payload provide primitive ID? */ bool include_primitive_id; /** Number vertices in output patch */ int instances; /** Track patch count threshold */ int patch_count_threshold; }; struct brw_tes_prog_data { struct brw_vue_prog_data base; enum intel_tess_partitioning partitioning; enum intel_tess_output_topology output_topology; enum intel_tess_domain domain; bool include_primitive_id; }; struct brw_gs_prog_data { struct brw_vue_prog_data base; unsigned vertices_in; /** * Size of an output vertex, measured in HWORDS (32 bytes). */ unsigned output_vertex_size_hwords; unsigned output_topology; /** * Size of the control data (cut bits or StreamID bits), in hwords (32 * bytes). 0 if there is no control data. */ unsigned control_data_header_size_hwords; /** * Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID * if the control data is StreamID bits, or * GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits). * Ignored if control_data_header_size is 0. */ unsigned control_data_format; bool include_primitive_id; /** * The number of vertices emitted, if constant - otherwise -1. */ int static_vertex_count; int invocations; }; struct brw_tue_map { uint32_t size_dw; uint32_t per_task_data_start_dw; }; struct brw_mue_map { int32_t start_dw[VARYING_SLOT_MAX]; uint32_t len_dw[VARYING_SLOT_MAX]; uint32_t per_primitive_indices_dw; uint32_t size_dw; uint32_t max_primitives; uint32_t per_primitive_start_dw; uint32_t per_primitive_header_size_dw; uint32_t per_primitive_data_size_dw; uint32_t per_primitive_pitch_dw; bool user_data_in_primitive_header; uint32_t max_vertices; uint32_t per_vertex_start_dw; uint32_t per_vertex_header_size_dw; uint32_t per_vertex_data_size_dw; uint32_t per_vertex_pitch_dw; bool user_data_in_vertex_header; }; struct brw_task_prog_data { struct brw_cs_prog_data base; struct brw_tue_map map; bool uses_drawid; }; enum brw_mesh_index_format { BRW_INDEX_FORMAT_U32, BRW_INDEX_FORMAT_U888X, }; struct brw_mesh_prog_data { struct brw_cs_prog_data base; struct brw_mue_map map; uint32_t clip_distance_mask; uint32_t cull_distance_mask; uint16_t primitive_type; enum brw_mesh_index_format index_format; bool uses_drawid; bool autostrip_enable; }; /* brw_any_prog_data is prog_data for any stage that maps to an API stage */ union brw_any_prog_data { struct brw_stage_prog_data base; struct brw_vue_prog_data vue; struct brw_vs_prog_data vs; struct brw_tcs_prog_data tcs; struct brw_tes_prog_data tes; struct brw_gs_prog_data gs; struct brw_wm_prog_data wm; struct brw_cs_prog_data cs; struct brw_bs_prog_data bs; struct brw_task_prog_data task; struct brw_mesh_prog_data mesh; }; #define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK) \ static inline struct brw_##STAGE##_prog_data * \ brw_##STAGE##_prog_data(struct brw_stage_prog_data *prog_data) \ { \ if (prog_data) \ assert(CHECK); \ return (struct brw_##STAGE##_prog_data *) prog_data; \ } \ static inline const struct brw_##STAGE##_prog_data * \ brw_##STAGE##_prog_data_const(const struct brw_stage_prog_data *prog_data) \ { \ if (prog_data) \ assert(CHECK); \ return (const struct brw_##STAGE##_prog_data *) prog_data; \ } DEFINE_PROG_DATA_DOWNCAST(vs, prog_data->stage == MESA_SHADER_VERTEX) DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL) DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL) DEFINE_PROG_DATA_DOWNCAST(gs, prog_data->stage == MESA_SHADER_GEOMETRY) DEFINE_PROG_DATA_DOWNCAST(wm, prog_data->stage == MESA_SHADER_FRAGMENT) DEFINE_PROG_DATA_DOWNCAST(cs, gl_shader_stage_uses_workgroup(prog_data->stage)) DEFINE_PROG_DATA_DOWNCAST(bs, brw_shader_stage_is_bindless(prog_data->stage)) DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX || prog_data->stage == MESA_SHADER_TESS_CTRL || prog_data->stage == MESA_SHADER_TESS_EVAL || prog_data->stage == MESA_SHADER_GEOMETRY) DEFINE_PROG_DATA_DOWNCAST(task, prog_data->stage == MESA_SHADER_TASK) DEFINE_PROG_DATA_DOWNCAST(mesh, prog_data->stage == MESA_SHADER_MESH) #undef DEFINE_PROG_DATA_DOWNCAST struct brw_compile_stats { uint32_t dispatch_width; /**< 0 for vec4 */ uint32_t max_polygons; uint32_t max_dispatch_width; uint32_t instructions; uint32_t sends; uint32_t loops; uint32_t cycles; uint32_t spills; uint32_t fills; uint32_t max_live_registers; }; /** @} */ struct brw_compiler * brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo); /** * Returns a compiler configuration for use with disk shader cache * * This value only needs to change for settings that can cause different * program generation between two runs on the same hardware. * * For example, it doesn't need to be different for gen 8 and gen 9 hardware, * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used. */ uint64_t brw_get_compiler_config_value(const struct brw_compiler *compiler); /* Provides a string sha1 hash of all device information fields that could * affect shader compilation. */ void brw_device_sha1(char *hex, const struct intel_device_info *devinfo); /* For callers computing their own UUID or hash. Hashes all device * information fields that could affect shader compilation into the provided * sha1_ctx. */ void brw_device_sha1_update(struct mesa_sha1 *sha1_ctx, const struct intel_device_info *devinfo); unsigned brw_prog_data_size(gl_shader_stage stage); unsigned brw_prog_key_size(gl_shader_stage stage); struct brw_compile_params { void *mem_ctx; nir_shader *nir; struct brw_compile_stats *stats; void *log_data; char *error_str; uint64_t debug_flag; uint32_t source_hash; }; /** * Parameters for compiling a vertex shader. * * Some of these will be modified during the shader compilation. */ struct brw_compile_vs_params { struct brw_compile_params base; const struct brw_vs_prog_key *key; struct brw_vs_prog_data *prog_data; }; /** * Compile a vertex shader. * * Returns the final assembly and updates the parameters structure. */ const unsigned * brw_compile_vs(const struct brw_compiler *compiler, struct brw_compile_vs_params *params); /** * Parameters for compiling a tessellation control shader. * * Some of these will be modified during the shader compilation. */ struct brw_compile_tcs_params { struct brw_compile_params base; const struct brw_tcs_prog_key *key; struct brw_tcs_prog_data *prog_data; }; /** * Compile a tessellation control shader. * * Returns the final assembly and updates the parameters structure. */ const unsigned * brw_compile_tcs(const struct brw_compiler *compiler, struct brw_compile_tcs_params *params); /** * Parameters for compiling a tessellation evaluation shader. * * Some of these will be modified during the shader compilation. */ struct brw_compile_tes_params { struct brw_compile_params base; const struct brw_tes_prog_key *key; struct brw_tes_prog_data *prog_data; const struct intel_vue_map *input_vue_map; }; /** * Compile a tessellation evaluation shader. * * Returns the final assembly and updates the parameters structure. */ const unsigned * brw_compile_tes(const struct brw_compiler *compiler, struct brw_compile_tes_params *params); /** * Parameters for compiling a geometry shader. * * Some of these will be modified during the shader compilation. */ struct brw_compile_gs_params { struct brw_compile_params base; const struct brw_gs_prog_key *key; struct brw_gs_prog_data *prog_data; }; /** * Compile a geometry shader. * * Returns the final assembly and updates the parameters structure. */ const unsigned * brw_compile_gs(const struct brw_compiler *compiler, struct brw_compile_gs_params *params); struct brw_compile_task_params { struct brw_compile_params base; const struct brw_task_prog_key *key; struct brw_task_prog_data *prog_data; }; const unsigned * brw_compile_task(const struct brw_compiler *compiler, struct brw_compile_task_params *params); struct brw_compile_mesh_params { struct brw_compile_params base; const struct brw_mesh_prog_key *key; struct brw_mesh_prog_data *prog_data; const struct brw_tue_map *tue_map; }; const unsigned * brw_compile_mesh(const struct brw_compiler *compiler, struct brw_compile_mesh_params *params); /** * Parameters for compiling a fragment shader. * * Some of these will be modified during the shader compilation. */ struct brw_compile_fs_params { struct brw_compile_params base; const struct brw_wm_prog_key *key; struct brw_wm_prog_data *prog_data; const struct intel_vue_map *vue_map; const struct brw_mue_map *mue_map; bool allow_spilling; bool use_rep_send; uint8_t max_polygons; }; /** * Compile a fragment shader. * * Returns the final assembly and updates the parameters structure. */ const unsigned * brw_compile_fs(const struct brw_compiler *compiler, struct brw_compile_fs_params *params); /** * Parameters for compiling a compute shader. * * Some of these will be modified during the shader compilation. */ struct brw_compile_cs_params { struct brw_compile_params base; const struct brw_cs_prog_key *key; struct brw_cs_prog_data *prog_data; }; /** * Compile a compute shader. * * Returns the final assembly and updates the parameters structure. */ const unsigned * brw_compile_cs(const struct brw_compiler *compiler, struct brw_compile_cs_params *params); /** * Parameters for compiling a Bindless shader. * * Some of these will be modified during the shader compilation. */ struct brw_compile_bs_params { struct brw_compile_params base; const struct brw_bs_prog_key *key; struct brw_bs_prog_data *prog_data; unsigned num_resume_shaders; struct nir_shader **resume_shaders; }; /** * Compile a Bindless shader. * * Returns the final assembly and updates the parameters structure. */ const unsigned * brw_compile_bs(const struct brw_compiler *compiler, struct brw_compile_bs_params *params); void brw_debug_key_recompile(const struct brw_compiler *c, void *log, gl_shader_stage stage, const struct brw_base_prog_key *old_key, const struct brw_base_prog_key *key); unsigned brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data, unsigned threads); void brw_write_shader_relocs(const struct brw_isa_info *isa, void *program, const struct brw_stage_prog_data *prog_data, struct brw_shader_reloc_value *values, unsigned num_values); /** * Get the dispatch information for a shader to be used with GPGPU_WALKER and * similar instructions. * * If override_local_size is not NULL, it must to point to a 3-element that * will override the value from prog_data->local_size. This is used by * ARB_compute_variable_group_size, where the size is set only at dispatch * time (so prog_data is outdated). */ struct intel_cs_dispatch_info brw_cs_get_dispatch_info(const struct intel_device_info *devinfo, const struct brw_cs_prog_data *prog_data, const unsigned *override_local_size); /** * Return true if the given shader stage is dispatched contiguously by the * relevant fixed function starting from channel 0 of the SIMD thread, which * implies that the dispatch mask of a thread can be assumed to have the form * '2^n - 1' for some n. */ static inline bool brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo, gl_shader_stage stage, unsigned max_polygons, const struct brw_stage_prog_data *prog_data) { /* The code below makes assumptions about the hardware's thread dispatch * behavior that could be proven wrong in future generations -- Make sure * to do a full test run with brw_fs_test_dispatch_packing() hooked up to * the NIR front-end before changing this assertion. It can be temporarily * enabled by setting the macro below to true. */ #define ENABLE_FS_TEST_DISPATCH_PACKING false assert(devinfo->ver <= 20); switch (stage) { case MESA_SHADER_FRAGMENT: { /* The PSD discards subspans coming in with no lit samples, which in the * per-pixel shading case implies that each subspan will either be fully * lit (due to the VMask being used to allow derivative computations), * or not dispatched at all. In per-sample dispatch mode individual * samples from the same subspan have a fixed relative location within * the SIMD thread, so dispatch of unlit samples cannot be avoided in * general and we should return false. */ const struct brw_wm_prog_data *wm_prog_data = (const struct brw_wm_prog_data *)prog_data; return devinfo->verx10 < 125 && !wm_prog_data->persample_dispatch && wm_prog_data->uses_vmask && max_polygons < 2; } case MESA_SHADER_COMPUTE: /* Compute shaders will be spawned with either a fully enabled dispatch * mask or with whatever bottom/right execution mask was given to the * GPGPU walker command to be used along the workgroup edges -- In both * cases the dispatch mask is required to be tightly packed for our * invocation index calculations to work. */ return true; default: /* Most remaining fixed functions are limited to use a packed dispatch * mask due to the hardware representation of the dispatch mask as a * single counter representing the number of enabled channels. */ return true; } } /** * Computes the first varying slot in the URB produced by the previous stage * that is used in the next stage. We do this by testing the varying slots in * the previous stage's vue map against the inputs read in the next stage. * * Note that: * * - Each URB offset contains two varying slots and we can only skip a * full offset if both slots are unused, so the value we return here is always * rounded down to the closest multiple of two. * * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are * part of the vue header, so if these are read we can't skip anything. */ static inline int brw_compute_first_urb_slot_required(uint64_t inputs_read, const struct intel_vue_map *prev_stage_vue_map) { if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE)) == 0) { for (int i = 0; i < prev_stage_vue_map->num_slots; i++) { int varying = prev_stage_vue_map->slot_to_varying[i]; if (varying != BRW_VARYING_SLOT_PAD && varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0) { return ROUND_DOWN_TO(i, 2); } } } return 0; } /* From InlineData in 3DSTATE_TASK_SHADER_DATA and 3DSTATE_MESH_SHADER_DATA. */ #define BRW_TASK_MESH_INLINE_DATA_SIZE_DW 8 /* InlineData[0-1] is used for Vulkan descriptor. */ #define BRW_TASK_MESH_PUSH_CONSTANTS_START_DW 2 #define BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW \ (BRW_TASK_MESH_INLINE_DATA_SIZE_DW - BRW_TASK_MESH_PUSH_CONSTANTS_START_DW) /** * This enum is used as the base indice of the nir_load_topology_id_intel * intrinsic. This is used to return different values based on some aspect of * the topology of the device. */ enum brw_topology_id { /* A value based of the DSS identifier the shader is currently running on. * Be mindful that the DSS ID can be higher than the total number of DSS on * the device. This is because of the fusing that can occur on different * parts. */ BRW_TOPOLOGY_ID_DSS, /* A value composed of EU ID, thread ID & SIMD lane ID. */ BRW_TOPOLOGY_ID_EU_THREAD_SIMD, }; #ifdef __cplusplus } /* extern "C" */ #endif #endif /* BRW_COMPILER_H */