/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file elk_fs.cpp * * This file drives the GLSL IR -> LIR translation, contains the * optimizations on the LIR, and drives the generation of native code * from the LIR. */ #include "elk_eu.h" #include "elk_fs.h" #include "elk_fs_builder.h" #include "elk_fs_live_variables.h" #include "elk_nir.h" #include "elk_vec4_gs_visitor.h" #include "elk_cfg.h" #include "elk_dead_control_flow.h" #include "elk_private.h" #include "../intel_nir.h" #include "shader_enums.h" #include "dev/intel_debug.h" #include "dev/intel_wa.h" #include "compiler/glsl_types.h" #include "compiler/nir/nir_builder.h" #include "util/u_math.h" #include using namespace elk; static unsigned get_lowered_simd_width(const elk_fs_visitor *shader, const elk_fs_inst *inst); void elk_fs_inst::init(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst, const elk_fs_reg *src, unsigned sources) { memset((void*)this, 0, sizeof(*this)); this->src = new elk_fs_reg[MAX2(sources, 3)]; for (unsigned i = 0; i < sources; i++) this->src[i] = src[i]; this->opcode = opcode; this->dst = dst; this->sources = sources; this->exec_size = exec_size; this->base_mrf = -1; assert(dst.file != IMM && dst.file != UNIFORM); assert(this->exec_size != 0); this->conditional_mod = ELK_CONDITIONAL_NONE; /* This will be the case for almost all instructions. */ switch (dst.file) { case VGRF: case ARF: case FIXED_GRF: case MRF: case ATTR: this->size_written = dst.component_size(exec_size); break; case BAD_FILE: this->size_written = 0; break; case IMM: case UNIFORM: unreachable("Invalid destination register file"); } this->writes_accumulator = false; } elk_fs_inst::elk_fs_inst() { init(ELK_OPCODE_NOP, 8, dst, NULL, 0); } elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size) { init(opcode, exec_size, reg_undef, NULL, 0); } elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst) { init(opcode, exec_size, dst, NULL, 0); } elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst, const elk_fs_reg &src0) { const elk_fs_reg src[1] = { src0 }; init(opcode, exec_size, dst, src, 1); } elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst, const elk_fs_reg &src0, const elk_fs_reg &src1) { const elk_fs_reg src[2] = { src0, src1 }; init(opcode, exec_size, dst, src, 2); } elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst, const elk_fs_reg &src0, const elk_fs_reg &src1, const elk_fs_reg &src2) { const elk_fs_reg src[3] = { src0, src1, src2 }; init(opcode, exec_size, dst, src, 3); } elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_width, const elk_fs_reg &dst, const elk_fs_reg src[], unsigned sources) { init(opcode, exec_width, dst, src, sources); } elk_fs_inst::elk_fs_inst(const elk_fs_inst &that) { memcpy((void*)this, &that, sizeof(that)); this->src = new elk_fs_reg[MAX2(that.sources, 3)]; for (unsigned i = 0; i < that.sources; i++) this->src[i] = that.src[i]; } elk_fs_inst::~elk_fs_inst() { delete[] this->src; } void elk_fs_inst::resize_sources(uint8_t num_sources) { if (this->sources != num_sources) { elk_fs_reg *src = new elk_fs_reg[MAX2(num_sources, 3)]; for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i) src[i] = this->src[i]; delete[] this->src; this->src = src; this->sources = num_sources; } } void elk_fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld, const elk_fs_reg &dst, const elk_fs_reg &surface, const elk_fs_reg &surface_handle, const elk_fs_reg &varying_offset, uint32_t const_offset, uint8_t alignment, unsigned components) { assert(components <= 4); /* We have our constant surface use a pitch of 4 bytes, so our index can * be any component of a vector, and then we load 4 contiguous * components starting from that. TODO: Support loading fewer than 4. */ elk_fs_reg total_offset = vgrf(glsl_uint_type()); bld.ADD(total_offset, varying_offset, elk_imm_ud(const_offset)); /* The pull load message will load a vec4 (16 bytes). If we are loading * a double this means we are only loading 2 elements worth of data. * We also want to use a 32-bit data type for the dst of the load operation * so other parts of the driver don't get confused about the size of the * result. */ elk_fs_reg vec4_result = bld.vgrf(ELK_REGISTER_TYPE_F, 4); elk_fs_reg srcs[PULL_VARYING_CONSTANT_SRCS]; srcs[PULL_VARYING_CONSTANT_SRC_SURFACE] = surface; srcs[PULL_VARYING_CONSTANT_SRC_SURFACE_HANDLE] = surface_handle; srcs[PULL_VARYING_CONSTANT_SRC_OFFSET] = total_offset; srcs[PULL_VARYING_CONSTANT_SRC_ALIGNMENT] = elk_imm_ud(alignment); elk_fs_inst *inst = bld.emit(ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL, vec4_result, srcs, PULL_VARYING_CONSTANT_SRCS); inst->size_written = 4 * vec4_result.component_size(inst->exec_size); elk_shuffle_from_32bit_read(bld, dst, vec4_result, 0, components); } /** * A helper for MOV generation for fixing up broken hardware SEND dependency * handling. */ void elk_fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf) { /* The caller always wants uncompressed to emit the minimal extra * dependencies, and to avoid having to deal with aligning its regs to 2. */ const fs_builder ubld = bld.annotate("send dependency resolve") .quarter(0); ubld.MOV(ubld.null_reg_f(), elk_fs_reg(VGRF, grf, ELK_REGISTER_TYPE_F)); } bool elk_fs_inst::is_send_from_grf() const { switch (opcode) { case ELK_SHADER_OPCODE_SEND: case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE: case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: case ELK_SHADER_OPCODE_INTERLOCK: case ELK_SHADER_OPCODE_MEMORY_FENCE: case ELK_SHADER_OPCODE_BARRIER: return true; case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: return src[1].file == VGRF; case ELK_FS_OPCODE_FB_WRITE: return src[0].file == VGRF; default: return false; } } bool elk_fs_inst::is_control_source(unsigned arg) const { switch (opcode) { case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: case ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4: return arg == 0; case ELK_SHADER_OPCODE_BROADCAST: case ELK_SHADER_OPCODE_SHUFFLE: case ELK_SHADER_OPCODE_QUAD_SWIZZLE: case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE: case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: return arg == 1; case ELK_SHADER_OPCODE_MOV_INDIRECT: case ELK_SHADER_OPCODE_CLUSTER_BROADCAST: case ELK_SHADER_OPCODE_TEX: case ELK_FS_OPCODE_TXB: case ELK_SHADER_OPCODE_TXD: case ELK_SHADER_OPCODE_TXF: case ELK_SHADER_OPCODE_TXF_LZ: case ELK_SHADER_OPCODE_TXF_CMS: case ELK_SHADER_OPCODE_TXF_CMS_W: case ELK_SHADER_OPCODE_TXF_UMS: case ELK_SHADER_OPCODE_TXF_MCS: case ELK_SHADER_OPCODE_TXL: case ELK_SHADER_OPCODE_TXL_LZ: case ELK_SHADER_OPCODE_TXS: case ELK_SHADER_OPCODE_LOD: case ELK_SHADER_OPCODE_TG4: case ELK_SHADER_OPCODE_TG4_OFFSET: case ELK_SHADER_OPCODE_SAMPLEINFO: return arg == 1 || arg == 2; case ELK_SHADER_OPCODE_SEND: return arg == 0; default: return false; } } bool elk_fs_inst::is_payload(unsigned arg) const { switch (opcode) { case ELK_FS_OPCODE_FB_WRITE: case ELK_VEC4_OPCODE_UNTYPED_ATOMIC: case ELK_VEC4_OPCODE_UNTYPED_SURFACE_READ: case ELK_VEC4_OPCODE_UNTYPED_SURFACE_WRITE: case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE: case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: case ELK_SHADER_OPCODE_INTERLOCK: case ELK_SHADER_OPCODE_MEMORY_FENCE: case ELK_SHADER_OPCODE_BARRIER: case ELK_SHADER_OPCODE_TEX: case ELK_FS_OPCODE_TXB: case ELK_SHADER_OPCODE_TXD: case ELK_SHADER_OPCODE_TXF: case ELK_SHADER_OPCODE_TXF_LZ: case ELK_SHADER_OPCODE_TXF_CMS: case ELK_SHADER_OPCODE_TXF_CMS_W: case ELK_SHADER_OPCODE_TXF_UMS: case ELK_SHADER_OPCODE_TXF_MCS: case ELK_SHADER_OPCODE_TXL: case ELK_SHADER_OPCODE_TXL_LZ: case ELK_SHADER_OPCODE_TXS: case ELK_SHADER_OPCODE_LOD: case ELK_SHADER_OPCODE_TG4: case ELK_SHADER_OPCODE_TG4_OFFSET: case ELK_SHADER_OPCODE_SAMPLEINFO: return arg == 0; case ELK_SHADER_OPCODE_SEND: return arg == 1; default: return false; } } /** * Returns true if this instruction's sources and destinations cannot * safely be the same register. * * In most cases, a register can be written over safely by the same * instruction that is its last use. For a single instruction, the * sources are dereferenced before writing of the destination starts * (naturally). * * However, there are a few cases where this can be problematic: * * - Virtual opcodes that translate to multiple instructions in the * code generator: if src == dst and one instruction writes the * destination before a later instruction reads the source, then * src will have been clobbered. * * - SIMD16 compressed instructions with certain regioning (see below). * * The register allocator uses this information to set up conflicts between * GRF sources and the destination. */ bool elk_fs_inst::has_source_and_destination_hazard() const { switch (opcode) { case ELK_FS_OPCODE_PACK_HALF_2x16_SPLIT: /* Multiple partial writes to the destination */ return true; case ELK_SHADER_OPCODE_SHUFFLE: /* This instruction returns an arbitrary channel from the source and * gets split into smaller instructions in the generator. It's possible * that one of the instructions will read from a channel corresponding * to an earlier instruction. */ case ELK_SHADER_OPCODE_SEL_EXEC: /* This is implemented as * * mov(16) g4<1>D 0D { align1 WE_all 1H }; * mov(16) g4<1>D g5<8,8,1>D { align1 1H } * * Because the source is only read in the second instruction, the first * may stomp all over it. */ return true; case ELK_SHADER_OPCODE_QUAD_SWIZZLE: switch (src[1].ud) { case ELK_SWIZZLE_XXXX: case ELK_SWIZZLE_YYYY: case ELK_SWIZZLE_ZZZZ: case ELK_SWIZZLE_WWWW: case ELK_SWIZZLE_XXZZ: case ELK_SWIZZLE_YYWW: case ELK_SWIZZLE_XYXY: case ELK_SWIZZLE_ZWZW: /* These can be implemented as a single Align1 region on all * platforms, so there's never a hazard between source and * destination. C.f. elk_fs_generator::generate_quad_swizzle(). */ return false; default: return !is_uniform(src[0]); } default: /* The SIMD16 compressed instruction * * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F * * is actually decoded in hardware as: * * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F * * Which is safe. However, if we have uniform accesses * happening, we get into trouble: * * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F * * Now our destination for the first instruction overwrote the * second instruction's src0, and we get garbage for those 8 * pixels. There's a similar issue for the pre-gfx6 * pixel_x/pixel_y, which are registers of 16-bit values and thus * would get stomped by the first decode as well. */ if (exec_size == 16) { for (int i = 0; i < sources; i++) { if (src[i].file == VGRF && (src[i].stride == 0 || src[i].type == ELK_REGISTER_TYPE_UW || src[i].type == ELK_REGISTER_TYPE_W || src[i].type == ELK_REGISTER_TYPE_UB || src[i].type == ELK_REGISTER_TYPE_B)) { return true; } } } return false; } } bool elk_fs_inst::can_do_source_mods(const struct intel_device_info *devinfo) const { if (devinfo->ver == 6 && is_math()) return false; if (is_send_from_grf()) return false; return elk_backend_instruction::can_do_source_mods(); } bool elk_fs_inst::can_do_cmod() { if (!elk_backend_instruction::can_do_cmod()) return false; /* The accumulator result appears to get used for the conditional modifier * generation. When negating a UD value, there is a 33rd bit generated for * the sign in the accumulator value, so now you can't check, for example, * equality with a 32-bit value. See piglit fs-op-neg-uvec4. */ for (unsigned i = 0; i < sources; i++) { if (elk_reg_type_is_unsigned_integer(src[i].type) && src[i].negate) return false; } return true; } bool elk_fs_inst::can_change_types() const { return dst.type == src[0].type && !src[0].abs && !src[0].negate && !saturate && src[0].file != ATTR && (opcode == ELK_OPCODE_MOV || (opcode == ELK_OPCODE_SEL && dst.type == src[1].type && predicate != ELK_PREDICATE_NONE && !src[1].abs && !src[1].negate && src[1].file != ATTR)); } void elk_fs_reg::init() { memset((void*)this, 0, sizeof(*this)); type = ELK_REGISTER_TYPE_UD; stride = 1; } /** Generic unset register constructor. */ elk_fs_reg::elk_fs_reg() { init(); this->file = BAD_FILE; } elk_fs_reg::elk_fs_reg(struct ::elk_reg reg) : elk_backend_reg(reg) { this->offset = 0; this->stride = 1; if (this->file == IMM && (this->type != ELK_REGISTER_TYPE_V && this->type != ELK_REGISTER_TYPE_UV && this->type != ELK_REGISTER_TYPE_VF)) { this->stride = 0; } } bool elk_fs_reg::equals(const elk_fs_reg &r) const { return (this->elk_backend_reg::equals(r) && stride == r.stride); } bool elk_fs_reg::negative_equals(const elk_fs_reg &r) const { return (this->elk_backend_reg::negative_equals(r) && stride == r.stride); } bool elk_fs_reg::is_contiguous() const { switch (file) { case ARF: case FIXED_GRF: return hstride == ELK_HORIZONTAL_STRIDE_1 && vstride == width + hstride; case MRF: case VGRF: case ATTR: return stride == 1; case UNIFORM: case IMM: case BAD_FILE: return true; } unreachable("Invalid register file"); } unsigned elk_fs_reg::component_size(unsigned width) const { if (file == ARF || file == FIXED_GRF) { const unsigned w = MIN2(width, 1u << this->width); const unsigned h = width >> this->width; const unsigned vs = vstride ? 1 << (vstride - 1) : 0; const unsigned hs = hstride ? 1 << (hstride - 1) : 0; assert(w > 0); return ((MAX2(1, h) - 1) * vs + (w - 1) * hs + 1) * type_sz(type); } else { return MAX2(width * stride, 1) * type_sz(type); } } void elk_fs_visitor::vfail(const char *format, va_list va) { char *msg; if (failed) return; failed = true; msg = ralloc_vasprintf(mem_ctx, format, va); msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n", dispatch_width, _mesa_shader_stage_to_abbrev(stage), msg); this->fail_msg = msg; if (unlikely(debug_enabled)) { fprintf(stderr, "%s", msg); } } void elk_fs_visitor::fail(const char *format, ...) { va_list va; va_start(va, format); vfail(format, va); va_end(va); } /** * Mark this program as impossible to compile with dispatch width greater * than n. * * During the SIMD8 compile (which happens first), we can detect and flag * things that are unsupported in SIMD16+ mode, so the compiler can skip the * SIMD16+ compile altogether. * * During a compile of dispatch width greater than n (if one happens anyway), * this just calls fail(). */ void elk_fs_visitor::limit_dispatch_width(unsigned n, const char *msg) { if (dispatch_width > n) { fail("%s", msg); } else { max_dispatch_width = MIN2(max_dispatch_width, n); elk_shader_perf_log(compiler, log_data, "Shader dispatch width limited to SIMD%d: %s\n", n, msg); } } /** * Returns true if the instruction has a flag that means it won't * update an entire destination register. * * For example, dead code elimination and live variable analysis want to know * when a write to a variable screens off any preceding values that were in * it. */ bool elk_fs_inst::is_partial_write() const { if (this->predicate && !this->predicate_trivial && this->opcode != ELK_OPCODE_SEL) return true; if (this->dst.offset % REG_SIZE != 0) return true; /* SEND instructions always write whole registers */ if (this->opcode == ELK_SHADER_OPCODE_SEND) return false; /* Special case UNDEF since a lot of places in the backend do things like this : * * fs_builder ubld = bld.exec_all().group(1, 0); * elk_fs_reg tmp = ubld.vgrf(ELK_REGISTER_TYPE_UD); * ubld.UNDEF(tmp); <- partial write, even if the whole register is concerned */ if (this->opcode == ELK_SHADER_OPCODE_UNDEF) { assert(this->dst.is_contiguous()); return this->size_written < 32; } return this->exec_size * type_sz(this->dst.type) < 32 || !this->dst.is_contiguous(); } unsigned elk_fs_inst::components_read(unsigned i) const { /* Return zero if the source is not present. */ if (src[i].file == BAD_FILE) return 0; switch (opcode) { case ELK_FS_OPCODE_LINTERP: if (i == 0) return 2; else return 1; case ELK_FS_OPCODE_PIXEL_X: case ELK_FS_OPCODE_PIXEL_Y: assert(i < 2); if (i == 0) return 2; else return 1; case ELK_FS_OPCODE_FB_WRITE_LOGICAL: assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM); /* First/second FB write color. */ if (i < 2) return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud; else return 1; case ELK_SHADER_OPCODE_TEX_LOGICAL: case ELK_SHADER_OPCODE_TXD_LOGICAL: case ELK_SHADER_OPCODE_TXF_LOGICAL: case ELK_SHADER_OPCODE_TXL_LOGICAL: case ELK_SHADER_OPCODE_TXS_LOGICAL: case ELK_SHADER_OPCODE_IMAGE_SIZE_LOGICAL: case ELK_FS_OPCODE_TXB_LOGICAL: case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL: case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL: case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL: case ELK_SHADER_OPCODE_TXF_UMS_LOGICAL: case ELK_SHADER_OPCODE_TXF_MCS_LOGICAL: case ELK_SHADER_OPCODE_LOD_LOGICAL: case ELK_SHADER_OPCODE_TG4_LOGICAL: case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL: case ELK_SHADER_OPCODE_SAMPLEINFO_LOGICAL: assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM && src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM && src[TEX_LOGICAL_SRC_RESIDENCY].file == IMM); /* Texture coordinates. */ if (i == TEX_LOGICAL_SRC_COORDINATE) return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud; /* Texture derivatives. */ else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) && opcode == ELK_SHADER_OPCODE_TXD_LOGICAL) return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud; /* Texture offset. */ else if (i == TEX_LOGICAL_SRC_TG4_OFFSET) return 2; /* MCS */ else if (i == TEX_LOGICAL_SRC_MCS) { if (opcode == ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL) return 2; else if (opcode == ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL) return 4; else return 1; } else return 1; case ELK_SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: case ELK_SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM); /* Surface coordinates. */ if (i == SURFACE_LOGICAL_SRC_ADDRESS) return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; /* Surface operation source (ignored for reads). */ else if (i == SURFACE_LOGICAL_SRC_DATA) return 0; else return 1; case ELK_SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: case ELK_SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); /* Surface coordinates. */ if (i == SURFACE_LOGICAL_SRC_ADDRESS) return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; /* Surface operation source. */ else if (i == SURFACE_LOGICAL_SRC_DATA) return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud; else return 1; case ELK_SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL: case ELK_SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL: case ELK_SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL: assert(src[A64_LOGICAL_ARG].file == IMM); return 1; case ELK_SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL: assert(src[A64_LOGICAL_ARG].file == IMM); if (i == A64_LOGICAL_SRC) { /* data to write */ const unsigned comps = src[A64_LOGICAL_ARG].ud / exec_size; assert(comps > 0); return comps; } else { return 1; } case ELK_SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL: assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); return 1; case ELK_SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL: assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); if (i == SURFACE_LOGICAL_SRC_DATA) { const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size; assert(comps > 0); return comps; } else { return 1; } case ELK_SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL: assert(src[A64_LOGICAL_ARG].file == IMM); return i == A64_LOGICAL_SRC ? src[A64_LOGICAL_ARG].ud : 1; case ELK_SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL: assert(src[A64_LOGICAL_ARG].file == IMM); return i == A64_LOGICAL_SRC ? lsc_op_num_data_values(src[A64_LOGICAL_ARG].ud) : 1; case ELK_SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: case ELK_SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL: /* Scattered logical opcodes use the following params: * src[0] Surface coordinates * src[1] Surface operation source (ignored for reads) * src[2] Surface * src[3] IMM with always 1 dimension. * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32 */ assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1; case ELK_SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: case ELK_SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL: assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); return 1; case ELK_SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: case ELK_SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: { assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud; /* Surface coordinates. */ if (i == SURFACE_LOGICAL_SRC_ADDRESS) return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; /* Surface operation source. */ else if (i == SURFACE_LOGICAL_SRC_DATA) return lsc_op_num_data_values(op); else return 1; } case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: return (i == 0 ? 2 : 1); case ELK_SHADER_OPCODE_URB_WRITE_LOGICAL: assert(src[URB_LOGICAL_SRC_COMPONENTS].file == IMM); if (i == URB_LOGICAL_SRC_DATA) return src[URB_LOGICAL_SRC_COMPONENTS].ud; else return 1; default: return 1; } } unsigned elk_fs_inst::size_read(int arg) const { switch (opcode) { case ELK_SHADER_OPCODE_SEND: if (arg == 1) { return mlen * REG_SIZE; } break; case ELK_FS_OPCODE_FB_WRITE: case ELK_FS_OPCODE_REP_FB_WRITE: if (arg == 0) { if (base_mrf >= 0) return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE; else return mlen * REG_SIZE; } break; case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE: case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: if (arg == 0) return mlen * REG_SIZE; break; case ELK_FS_OPCODE_SET_SAMPLE_ID: if (arg == 1) return 1; break; case ELK_FS_OPCODE_LINTERP: if (arg == 1) return 16; break; case ELK_SHADER_OPCODE_LOAD_PAYLOAD: if (arg < this->header_size) return retype(src[arg], ELK_REGISTER_TYPE_UD).component_size(8); break; case ELK_CS_OPCODE_CS_TERMINATE: case ELK_SHADER_OPCODE_BARRIER: return REG_SIZE; case ELK_SHADER_OPCODE_MOV_INDIRECT: if (arg == 0) { assert(src[2].file == IMM); return src[2].ud; } break; case ELK_SHADER_OPCODE_TEX: case ELK_FS_OPCODE_TXB: case ELK_SHADER_OPCODE_TXD: case ELK_SHADER_OPCODE_TXF: case ELK_SHADER_OPCODE_TXF_LZ: case ELK_SHADER_OPCODE_TXF_CMS: case ELK_SHADER_OPCODE_TXF_CMS_W: case ELK_SHADER_OPCODE_TXF_UMS: case ELK_SHADER_OPCODE_TXF_MCS: case ELK_SHADER_OPCODE_TXL: case ELK_SHADER_OPCODE_TXL_LZ: case ELK_SHADER_OPCODE_TXS: case ELK_SHADER_OPCODE_LOD: case ELK_SHADER_OPCODE_TG4: case ELK_SHADER_OPCODE_TG4_OFFSET: case ELK_SHADER_OPCODE_SAMPLEINFO: if (arg == 0 && src[0].file == VGRF) return mlen * REG_SIZE; break; default: break; } switch (src[arg].file) { case UNIFORM: case IMM: return components_read(arg) * type_sz(src[arg].type); case BAD_FILE: case ARF: case FIXED_GRF: case VGRF: case ATTR: return components_read(arg) * src[arg].component_size(exec_size); case MRF: unreachable("MRF registers are not allowed as sources"); } return 0; } namespace { unsigned predicate_width(const intel_device_info *devinfo, elk_predicate predicate) { switch (predicate) { case ELK_PREDICATE_NONE: return 1; case ELK_PREDICATE_NORMAL: return 1; case ELK_PREDICATE_ALIGN1_ANY2H: return 2; case ELK_PREDICATE_ALIGN1_ALL2H: return 2; case ELK_PREDICATE_ALIGN1_ANY4H: return 4; case ELK_PREDICATE_ALIGN1_ALL4H: return 4; case ELK_PREDICATE_ALIGN1_ANY8H: return 8; case ELK_PREDICATE_ALIGN1_ALL8H: return 8; case ELK_PREDICATE_ALIGN1_ANY16H: return 16; case ELK_PREDICATE_ALIGN1_ALL16H: return 16; case ELK_PREDICATE_ALIGN1_ANY32H: return 32; case ELK_PREDICATE_ALIGN1_ALL32H: return 32; default: unreachable("Unsupported predicate"); } } /* Return the subset of flag registers that an instruction could * potentially read or write based on the execution controls and flag * subregister number of the instruction. */ unsigned flag_mask(const elk_fs_inst *inst, unsigned width) { assert(util_is_power_of_two_nonzero(width)); const unsigned start = (inst->flag_subreg * 16 + inst->group) & ~(width - 1); const unsigned end = start + ALIGN(inst->exec_size, width); return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1); } unsigned bit_mask(unsigned n) { return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1); } unsigned flag_mask(const elk_fs_reg &r, unsigned sz) { if (r.file == ARF) { const unsigned start = (r.nr - ELK_ARF_FLAG) * 4 + r.subnr; const unsigned end = start + sz; return bit_mask(end) & ~bit_mask(start); } else { return 0; } } } unsigned elk_fs_inst::flags_read(const intel_device_info *devinfo) const { if (predicate == ELK_PREDICATE_ALIGN1_ANYV || predicate == ELK_PREDICATE_ALIGN1_ALLV) { /* The vertical predication modes combine corresponding bits from * f0.0 and f1.0 on Gfx7+, and f0.0 and f0.1 on older hardware. */ const unsigned shift = devinfo->ver >= 7 ? 4 : 2; return flag_mask(this, 1) << shift | flag_mask(this, 1); } else if (predicate) { return flag_mask(this, predicate_width(devinfo, predicate)); } else { unsigned mask = 0; for (int i = 0; i < sources; i++) { mask |= flag_mask(src[i], size_read(i)); } return mask; } } unsigned elk_fs_inst::flags_written(const intel_device_info *devinfo) const { /* On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented * using a separate cmpn and sel instruction. This lowering occurs in * fs_vistor::lower_minmax which is called very, very late. */ if ((conditional_mod && ((opcode != ELK_OPCODE_SEL || devinfo->ver <= 5) && opcode != ELK_OPCODE_CSEL && opcode != ELK_OPCODE_IF && opcode != ELK_OPCODE_WHILE)) || opcode == ELK_FS_OPCODE_FB_WRITE) { return flag_mask(this, 1); } else if (opcode == ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL || opcode == ELK_SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL || opcode == ELK_FS_OPCODE_LOAD_LIVE_CHANNELS) { return flag_mask(this, 32); } else { return flag_mask(dst, size_written); } } /** * Returns how many MRFs an FS opcode will write over. * * Note that this is not the 0 or 1 implied writes in an actual gen * instruction -- the FS opcodes often generate MOVs in addition. */ unsigned elk_fs_inst::implied_mrf_writes() const { if (mlen == 0) return 0; if (base_mrf == -1) return 0; switch (opcode) { case ELK_SHADER_OPCODE_RCP: case ELK_SHADER_OPCODE_RSQ: case ELK_SHADER_OPCODE_SQRT: case ELK_SHADER_OPCODE_EXP2: case ELK_SHADER_OPCODE_LOG2: case ELK_SHADER_OPCODE_SIN: case ELK_SHADER_OPCODE_COS: return 1 * exec_size / 8; case ELK_SHADER_OPCODE_POW: case ELK_SHADER_OPCODE_INT_QUOTIENT: case ELK_SHADER_OPCODE_INT_REMAINDER: return 2 * exec_size / 8; case ELK_SHADER_OPCODE_TEX: case ELK_FS_OPCODE_TXB: case ELK_SHADER_OPCODE_TXD: case ELK_SHADER_OPCODE_TXF: case ELK_SHADER_OPCODE_TXF_CMS: case ELK_SHADER_OPCODE_TXF_MCS: case ELK_SHADER_OPCODE_TG4: case ELK_SHADER_OPCODE_TG4_OFFSET: case ELK_SHADER_OPCODE_TXL: case ELK_SHADER_OPCODE_TXS: case ELK_SHADER_OPCODE_LOD: case ELK_SHADER_OPCODE_SAMPLEINFO: return 1; case ELK_FS_OPCODE_FB_WRITE: case ELK_FS_OPCODE_REP_FB_WRITE: return src[0].file == BAD_FILE ? 0 : 2; case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: case ELK_SHADER_OPCODE_GFX4_SCRATCH_READ: return 1; case ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4: return mlen; case ELK_SHADER_OPCODE_GFX4_SCRATCH_WRITE: return mlen; default: unreachable("not reached"); } } bool elk_fs_inst::has_sampler_residency() const { switch (opcode) { case ELK_SHADER_OPCODE_TEX_LOGICAL: case ELK_FS_OPCODE_TXB_LOGICAL: case ELK_SHADER_OPCODE_TXL_LOGICAL: case ELK_SHADER_OPCODE_TXD_LOGICAL: case ELK_SHADER_OPCODE_TXF_LOGICAL: case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL: case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL: case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL: case ELK_SHADER_OPCODE_TXS_LOGICAL: case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL: case ELK_SHADER_OPCODE_TG4_LOGICAL: assert(src[TEX_LOGICAL_SRC_RESIDENCY].file == IMM); return src[TEX_LOGICAL_SRC_RESIDENCY].ud != 0; default: return false; } } elk_fs_reg elk_fs_visitor::vgrf(const glsl_type *const type) { int reg_width = dispatch_width / 8; return elk_fs_reg(VGRF, alloc.allocate(glsl_count_dword_slots(type, false) * reg_width), elk_type_for_base_type(type)); } elk_fs_reg::elk_fs_reg(enum elk_reg_file file, unsigned nr) { init(); this->file = file; this->nr = nr; this->type = ELK_REGISTER_TYPE_F; this->stride = (file == UNIFORM ? 0 : 1); } elk_fs_reg::elk_fs_reg(enum elk_reg_file file, unsigned nr, enum elk_reg_type type) { init(); this->file = file; this->nr = nr; this->type = type; this->stride = (file == UNIFORM ? 0 : 1); } /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch. * This brings in those uniform definitions */ void elk_fs_visitor::import_uniforms(elk_fs_visitor *v) { this->push_constant_loc = v->push_constant_loc; this->uniforms = v->uniforms; } enum elk_barycentric_mode elk_barycentric_mode(nir_intrinsic_instr *intr) { const glsl_interp_mode mode = (enum glsl_interp_mode) nir_intrinsic_interp_mode(intr); /* Barycentric modes don't make sense for flat inputs. */ assert(mode != INTERP_MODE_FLAT); unsigned bary; switch (intr->intrinsic) { case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_at_offset: bary = ELK_BARYCENTRIC_PERSPECTIVE_PIXEL; break; case nir_intrinsic_load_barycentric_centroid: bary = ELK_BARYCENTRIC_PERSPECTIVE_CENTROID; break; case nir_intrinsic_load_barycentric_sample: case nir_intrinsic_load_barycentric_at_sample: bary = ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE; break; default: unreachable("invalid intrinsic"); } if (mode == INTERP_MODE_NOPERSPECTIVE) bary += 3; return (enum elk_barycentric_mode) bary; } /** * Turn one of the two CENTROID barycentric modes into PIXEL mode. */ static enum elk_barycentric_mode centroid_to_pixel(enum elk_barycentric_mode bary) { assert(bary == ELK_BARYCENTRIC_PERSPECTIVE_CENTROID || bary == ELK_BARYCENTRIC_NONPERSPECTIVE_CENTROID); return (enum elk_barycentric_mode) ((unsigned) bary - 1); } /** * Walk backwards from the end of the program looking for a URB write that * isn't in control flow, and mark it with EOT. * * Return true if successful or false if a separate EOT write is needed. */ bool elk_fs_visitor::mark_last_urb_write_with_eot() { foreach_in_list_reverse(elk_fs_inst, prev, &this->instructions) { if (prev->opcode == ELK_SHADER_OPCODE_URB_WRITE_LOGICAL) { prev->eot = true; /* Delete now dead instructions. */ foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) { if (dead == prev) break; dead->remove(); } return true; } else if (prev->is_control_flow() || prev->has_side_effects()) { break; } } return false; } void elk_fs_visitor::emit_gs_thread_end() { assert(stage == MESA_SHADER_GEOMETRY); struct elk_gs_prog_data *gs_prog_data = elk_gs_prog_data(prog_data); if (gs_compile->control_data_header_size_bits > 0) { emit_gs_control_data_bits(this->final_gs_vertex_count); } const fs_builder abld = fs_builder(this).at_end().annotate("thread end"); elk_fs_inst *inst; if (gs_prog_data->static_vertex_count != -1) { /* Try and tag the last URB write with EOT instead of emitting a whole * separate write just to finish the thread. */ if (mark_last_urb_write_with_eot()) return; elk_fs_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = gs_payload().urb_handles; srcs[URB_LOGICAL_SRC_COMPONENTS] = elk_imm_ud(0); inst = abld.emit(ELK_SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); } else { elk_fs_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = gs_payload().urb_handles; srcs[URB_LOGICAL_SRC_DATA] = this->final_gs_vertex_count; srcs[URB_LOGICAL_SRC_COMPONENTS] = elk_imm_ud(1); inst = abld.emit(ELK_SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); } inst->eot = true; inst->offset = 0; } void elk_fs_visitor::assign_curb_setup() { unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8); unsigned ubo_push_length = 0; unsigned ubo_push_start[4]; for (int i = 0; i < 4; i++) { ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length); ubo_push_length += stage_prog_data->ubo_ranges[i].length; } prog_data->curb_read_length = uniform_push_length + ubo_push_length; uint64_t used = 0; /* Map the offsets in the UNIFORM file to fixed HW regs. */ foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { for (unsigned int i = 0; i < inst->sources; i++) { if (inst->src[i].file == UNIFORM) { int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4; int constant_nr; if (inst->src[i].nr >= UBO_START) { /* constant_nr is in 32-bit units, the rest are in bytes */ constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] + inst->src[i].offset / 4; } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) { constant_nr = push_constant_loc[uniform_nr]; } else { /* Section 5.11 of the OpenGL 4.1 spec says: * "Out-of-bounds reads return undefined values, which include * values from other variables of the active program or zero." * Just return the first push constant. */ constant_nr = 0; } assert(constant_nr / 8 < 64); used |= BITFIELD64_BIT(constant_nr / 8); struct elk_reg elk_reg = elk_vec1_grf(payload().num_regs + constant_nr / 8, constant_nr % 8); elk_reg.abs = inst->src[i].abs; elk_reg.negate = inst->src[i].negate; assert(inst->src[i].stride == 0); inst->src[i] = byte_offset( retype(elk_reg, inst->src[i].type), inst->src[i].offset % 4); } } } uint64_t want_zero = used & stage_prog_data->zero_push_reg; if (want_zero) { fs_builder ubld = fs_builder(this, 8).exec_all().at( cfg->first_block(), cfg->first_block()->start()); /* push_reg_mask_param is in 32-bit units */ unsigned mask_param = stage_prog_data->push_reg_mask_param; struct elk_reg mask = elk_vec1_grf(payload().num_regs + mask_param / 8, mask_param % 8); elk_fs_reg b32; for (unsigned i = 0; i < 64; i++) { if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) { elk_fs_reg shifted = ubld.vgrf(ELK_REGISTER_TYPE_W, 2); ubld.SHL(horiz_offset(shifted, 8), byte_offset(retype(mask, ELK_REGISTER_TYPE_W), i / 8), elk_imm_v(0x01234567)); ubld.SHL(shifted, horiz_offset(shifted, 8), elk_imm_w(8)); fs_builder ubld16 = ubld.group(16, 0); b32 = ubld16.vgrf(ELK_REGISTER_TYPE_D); ubld16.group(16, 0).ASR(b32, shifted, elk_imm_w(15)); } if (want_zero & BITFIELD64_BIT(i)) { assert(i < prog_data->curb_read_length); struct elk_reg push_reg = retype(elk_vec8_grf(payload().num_regs + i, 0), ELK_REGISTER_TYPE_D); ubld.AND(push_reg, push_reg, component(b32, i % 16)); } } invalidate_analysis(DEPENDENCY_INSTRUCTIONS); } /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */ this->first_non_payload_grf = payload().num_regs + prog_data->curb_read_length; } /* * Build up an array of indices into the urb_setup array that * references the active entries of the urb_setup array. * Used to accelerate walking the active entries of the urb_setup array * on each upload. */ void elk_compute_urb_setup_index(struct elk_wm_prog_data *wm_prog_data) { /* Make sure uint8_t is sufficient */ STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff); uint8_t index = 0; for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) { if (wm_prog_data->urb_setup[attr] >= 0) { wm_prog_data->urb_setup_attribs[index++] = attr; } } wm_prog_data->urb_setup_attribs_count = index; } static void calculate_urb_setup(const struct intel_device_info *devinfo, const struct elk_wm_prog_key *key, struct elk_wm_prog_data *prog_data, const nir_shader *nir) { memset(prog_data->urb_setup, -1, sizeof(prog_data->urb_setup)); memset(prog_data->urb_setup_channel, 0, sizeof(prog_data->urb_setup_channel)); int urb_next = 0; /* in vec4s */ const uint64_t inputs_read = nir->info.inputs_read & ~nir->info.per_primitive_inputs; /* Figure out where each of the incoming setup attributes lands. */ if (devinfo->ver >= 6) { assert(!nir->info.per_primitive_inputs); uint64_t vue_header_bits = VARYING_BIT_PSIZ | VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT; uint64_t unique_fs_attrs = inputs_read & ELK_FS_VARYING_INPUT_MASK; /* VUE header fields all live in the same URB slot, so we pass them * as a single FS input attribute. We want to only count them once. */ if (inputs_read & vue_header_bits) { unique_fs_attrs &= ~vue_header_bits; unique_fs_attrs |= VARYING_BIT_PSIZ; } if (util_bitcount64(unique_fs_attrs) <= 16) { /* The SF/SBE pipeline stage can do arbitrary rearrangement of the * first 16 varying inputs, so we can put them wherever we want. * Just put them in order. * * This is useful because it means that (a) inputs not used by the * fragment shader won't take up valuable register space, and (b) we * won't have to recompile the fragment shader if it gets paired with * a different vertex (or geometry) shader. * * VUE header fields share the same FS input attribute. */ if (inputs_read & vue_header_bits) { if (inputs_read & VARYING_BIT_PSIZ) prog_data->urb_setup[VARYING_SLOT_PSIZ] = urb_next; if (inputs_read & VARYING_BIT_LAYER) prog_data->urb_setup[VARYING_SLOT_LAYER] = urb_next; if (inputs_read & VARYING_BIT_VIEWPORT) prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = urb_next; urb_next++; } for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { if (inputs_read & ELK_FS_VARYING_INPUT_MASK & ~vue_header_bits & BITFIELD64_BIT(i)) { prog_data->urb_setup[i] = urb_next++; } } } else { /* We have enough input varyings that the SF/SBE pipeline stage can't * arbitrarily rearrange them to suit our whim; we have to put them * in an order that matches the output of the previous pipeline stage * (geometry or vertex shader). */ /* Re-compute the VUE map here in the case that the one coming from * geometry has more than one position slot (used for Primitive * Replication). */ struct intel_vue_map prev_stage_vue_map; elk_compute_vue_map(devinfo, &prev_stage_vue_map, key->input_slots_valid, nir->info.separate_shader, 1); int first_slot = elk_compute_first_urb_slot_required(inputs_read, &prev_stage_vue_map); assert(prev_stage_vue_map.num_slots <= first_slot + 32); for (int slot = first_slot; slot < prev_stage_vue_map.num_slots; slot++) { int varying = prev_stage_vue_map.slot_to_varying[slot]; if (varying != ELK_VARYING_SLOT_PAD && (inputs_read & ELK_FS_VARYING_INPUT_MASK & BITFIELD64_BIT(varying))) { prog_data->urb_setup[varying] = slot - first_slot; } } urb_next = prev_stage_vue_map.num_slots - first_slot; } } else { /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */ for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { /* Point size is packed into the header, not as a general attribute */ if (i == VARYING_SLOT_PSIZ) continue; if (key->input_slots_valid & BITFIELD64_BIT(i)) { /* The back color slot is skipped when the front color is * also written to. In addition, some slots can be * written in the vertex shader and not read in the * fragment shader. So the register number must always be * incremented, mapped or not. */ if (_mesa_varying_slot_in_fs((gl_varying_slot) i)) prog_data->urb_setup[i] = urb_next; urb_next++; } } /* * It's a FS only attribute, and we did interpolation for this attribute * in SF thread. So, count it here, too. * * See compile_sf_prog() for more info. */ if (inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC)) prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++; } prog_data->num_varying_inputs = urb_next - prog_data->num_per_primitive_inputs; prog_data->inputs = inputs_read; elk_compute_urb_setup_index(prog_data); } void elk_fs_visitor::assign_urb_setup() { assert(stage == MESA_SHADER_FRAGMENT); struct elk_wm_prog_data *prog_data = elk_wm_prog_data(this->prog_data); int urb_start = payload().num_regs + prog_data->base.curb_read_length; /* Offset all the urb_setup[] index by the actual position of the * setup regs, now that the location of the constants has been chosen. */ foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file == ATTR) { /* ATTR elk_fs_reg::nr in the FS is in units of logical scalar * inputs each of which consumes 16B on Gfx4-Gfx12. In * single polygon mode this leads to the following layout * of the vertex setup plane parameters in the ATTR * register file: * * elk_fs_reg::nr Input Comp0 Comp1 Comp2 Comp3 * 0 Attr0.x a1-a0 a2-a0 N/A a0 * 1 Attr0.y a1-a0 a2-a0 N/A a0 * 2 Attr0.z a1-a0 a2-a0 N/A a0 * 3 Attr0.w a1-a0 a2-a0 N/A a0 * 4 Attr1.x a1-a0 a2-a0 N/A a0 * ... */ const unsigned param_width = 1; /* Size of a single scalar component of a plane parameter * in bytes. */ const unsigned chan_sz = 4; struct elk_reg reg; /* Calculate the base register on the thread payload of * either the block of vertex setup data or the block of * per-primitive constant data depending on whether we're * accessing a primitive or vertex input. Also calculate * the index of the input within that block. */ const bool per_prim = inst->src[i].nr < prog_data->num_per_primitive_inputs; const unsigned base = urb_start + (per_prim ? 0 : ALIGN(prog_data->num_per_primitive_inputs / 2, reg_unit(devinfo))); const unsigned idx = per_prim ? inst->src[i].nr : inst->src[i].nr - prog_data->num_per_primitive_inputs; /* Translate the offset within the param_width-wide * representation described above into an offset and a * grf, which contains the plane parameters for the first * polygon processed by the thread. * * Earlier platforms and per-primitive block pack 2 logical * input components per 32B register. */ const unsigned grf = base + idx / 2; assert(inst->src[i].offset / param_width < REG_SIZE / 2); const unsigned delta = (idx % 2) * (REG_SIZE / 2) + inst->src[i].offset / (param_width * chan_sz) * chan_sz + inst->src[i].offset % chan_sz; reg = byte_offset(retype(elk_vec8_grf(grf, 0), inst->src[i].type), delta); const unsigned width = inst->src[i].stride == 0 ? 1 : MIN2(inst->exec_size, 8); reg = stride(reg, width * inst->src[i].stride, width, inst->src[i].stride); reg.abs = inst->src[i].abs; reg.negate = inst->src[i].negate; inst->src[i] = reg; } } } /* Each attribute is 4 setup channels, each of which is half a reg, * but they may be replicated multiple times for multipolygon * dispatch. */ this->first_non_payload_grf += prog_data->num_varying_inputs * 2; /* Unlike regular attributes, per-primitive attributes have all 4 channels * in the same slot, so each GRF can store two slots. */ assert(prog_data->num_per_primitive_inputs % 2 == 0); this->first_non_payload_grf += prog_data->num_per_primitive_inputs / 2; } void elk_fs_visitor::convert_attr_sources_to_hw_regs(elk_fs_inst *inst) { for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file == ATTR) { assert(inst->src[i].nr == 0); int grf = payload().num_regs + prog_data->curb_read_length + inst->src[i].offset / REG_SIZE; /* As explained at elk_reg_from_fs_reg, From the Haswell PRM: * * VertStride must be used to cross GRF register boundaries. This * rule implies that elements within a 'Width' cannot cross GRF * boundaries. * * So, for registers that are large enough, we have to split the exec * size in two and trust the compression state to sort it out. */ unsigned total_size = inst->exec_size * inst->src[i].stride * type_sz(inst->src[i].type); assert(total_size <= 2 * REG_SIZE); const unsigned exec_size = (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2; unsigned width = inst->src[i].stride == 0 ? 1 : exec_size; struct elk_reg reg = stride(byte_offset(retype(elk_vec8_grf(grf, 0), inst->src[i].type), inst->src[i].offset % REG_SIZE), exec_size * inst->src[i].stride, width, inst->src[i].stride); reg.abs = inst->src[i].abs; reg.negate = inst->src[i].negate; inst->src[i] = reg; } } } void elk_fs_visitor::assign_vs_urb_setup() { struct elk_vs_prog_data *vs_prog_data = elk_vs_prog_data(prog_data); assert(stage == MESA_SHADER_VERTEX); /* Each attribute is 4 regs. */ this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots; assert(vs_prog_data->base.urb_read_length <= 15); /* Rewrite all ATTR file references to the hw grf that they land in. */ foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { convert_attr_sources_to_hw_regs(inst); } } void elk_fs_visitor::assign_tcs_urb_setup() { assert(stage == MESA_SHADER_TESS_CTRL); /* Rewrite all ATTR file references to HW_REGs. */ foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { convert_attr_sources_to_hw_regs(inst); } } void elk_fs_visitor::assign_tes_urb_setup() { assert(stage == MESA_SHADER_TESS_EVAL); struct elk_vue_prog_data *vue_prog_data = elk_vue_prog_data(prog_data); first_non_payload_grf += 8 * vue_prog_data->urb_read_length; /* Rewrite all ATTR file references to HW_REGs. */ foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { convert_attr_sources_to_hw_regs(inst); } } void elk_fs_visitor::assign_gs_urb_setup() { assert(stage == MESA_SHADER_GEOMETRY); struct elk_vue_prog_data *vue_prog_data = elk_vue_prog_data(prog_data); first_non_payload_grf += 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in; foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { /* Rewrite all ATTR file references to GRFs. */ convert_attr_sources_to_hw_regs(inst); } } /** * Split large virtual GRFs into separate components if we can. * * This pass aggressively splits VGRFs into as small a chunks as possible, * down to single registers if it can. If no VGRFs can be split, we return * false so this pass can safely be used inside an optimization loop. We * want to split, because virtual GRFs are what we register allocate and * spill (due to contiguousness requirements for some instructions), and * they're what we naturally generate in the codegen process, but most * virtual GRFs don't actually need to be contiguous sets of GRFs. If we * split, we'll end up with reduced live intervals and better dead code * elimination and coalescing. */ bool elk_fs_visitor::split_virtual_grfs() { /* Compact the register file so we eliminate dead vgrfs. This * only defines split points for live registers, so if we have * too large dead registers they will hit assertions later. */ compact_virtual_grfs(); unsigned num_vars = this->alloc.count; /* Count the total number of registers */ unsigned reg_count = 0; unsigned vgrf_to_reg[num_vars]; for (unsigned i = 0; i < num_vars; i++) { vgrf_to_reg[i] = reg_count; reg_count += alloc.sizes[i]; } /* An array of "split points". For each register slot, this indicates * if this slot can be separated from the previous slot. Every time an * instruction uses multiple elements of a register (as a source or * destination), we mark the used slots as inseparable. Then we go * through and split the registers into the smallest pieces we can. */ bool *split_points = new bool[reg_count]; memset(split_points, 0, reg_count * sizeof(*split_points)); /* Mark all used registers as fully splittable */ foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { if (inst->dst.file == VGRF) { unsigned reg = vgrf_to_reg[inst->dst.nr]; for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++) split_points[reg + j] = true; } for (unsigned i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF) { unsigned reg = vgrf_to_reg[inst->src[i].nr]; for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++) split_points[reg + j] = true; } } } foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { /* We fix up undef instructions later */ if (inst->opcode == ELK_SHADER_OPCODE_UNDEF) { assert(inst->dst.file == VGRF); continue; } if (inst->dst.file == VGRF) { unsigned reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE; for (unsigned j = 1; j < regs_written(inst); j++) split_points[reg + j] = false; } for (unsigned i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF) { unsigned reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE; for (unsigned j = 1; j < regs_read(inst, i); j++) split_points[reg + j] = false; } } } /* Bitset of which registers have been split */ bool *vgrf_has_split = new bool[num_vars]; memset(vgrf_has_split, 0, num_vars * sizeof(*vgrf_has_split)); unsigned *new_virtual_grf = new unsigned[reg_count]; unsigned *new_reg_offset = new unsigned[reg_count]; unsigned reg = 0; bool has_splits = false; for (unsigned i = 0; i < num_vars; i++) { /* The first one should always be 0 as a quick sanity check. */ assert(split_points[reg] == false); /* j = 0 case */ new_reg_offset[reg] = 0; reg++; unsigned offset = 1; /* j > 0 case */ for (unsigned j = 1; j < alloc.sizes[i]; j++) { /* If this is a split point, reset the offset to 0 and allocate a * new virtual GRF for the previous offset many registers */ if (split_points[reg]) { has_splits = true; vgrf_has_split[i] = true; assert(offset <= MAX_VGRF_SIZE(devinfo)); unsigned grf = alloc.allocate(offset); for (unsigned k = reg - offset; k < reg; k++) new_virtual_grf[k] = grf; offset = 0; } new_reg_offset[reg] = offset; offset++; reg++; } /* The last one gets the original register number */ assert(offset <= MAX_VGRF_SIZE(devinfo)); alloc.sizes[i] = offset; for (unsigned k = reg - offset; k < reg; k++) new_virtual_grf[k] = i; } assert(reg == reg_count); bool progress; if (!has_splits) { progress = false; goto cleanup; } foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { if (inst->opcode == ELK_SHADER_OPCODE_UNDEF) { assert(inst->dst.file == VGRF); if (vgrf_has_split[inst->dst.nr]) { const fs_builder ibld(this, block, inst); assert(inst->size_written % REG_SIZE == 0); unsigned reg_offset = inst->dst.offset / REG_SIZE; unsigned size_written = 0; while (size_written < inst->size_written) { reg = vgrf_to_reg[inst->dst.nr] + reg_offset + size_written / REG_SIZE; elk_fs_inst *undef = ibld.UNDEF( byte_offset(elk_fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type), new_reg_offset[reg] * REG_SIZE)); undef->size_written = MIN2(inst->size_written - size_written, undef->size_written); assert(undef->size_written % REG_SIZE == 0); size_written += undef->size_written; } inst->remove(block); } else { reg = vgrf_to_reg[inst->dst.nr]; assert(new_reg_offset[reg] == 0); assert(new_virtual_grf[reg] == inst->dst.nr); } continue; } if (inst->dst.file == VGRF) { reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE; if (vgrf_has_split[inst->dst.nr]) { inst->dst.nr = new_virtual_grf[reg]; inst->dst.offset = new_reg_offset[reg] * REG_SIZE + inst->dst.offset % REG_SIZE; assert(new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]); } else { assert(new_reg_offset[reg] == inst->dst.offset / REG_SIZE); assert(new_virtual_grf[reg] == inst->dst.nr); } } for (unsigned i = 0; i < inst->sources; i++) { if (inst->src[i].file != VGRF) continue; reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE; if (vgrf_has_split[inst->src[i].nr]) { inst->src[i].nr = new_virtual_grf[reg]; inst->src[i].offset = new_reg_offset[reg] * REG_SIZE + inst->src[i].offset % REG_SIZE; assert(new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]); } else { assert(new_reg_offset[reg] == inst->src[i].offset / REG_SIZE); assert(new_virtual_grf[reg] == inst->src[i].nr); } } } invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES); progress = true; cleanup: delete[] split_points; delete[] vgrf_has_split; delete[] new_virtual_grf; delete[] new_reg_offset; return progress; } /** * Remove unused virtual GRFs and compact the vgrf_* arrays. * * During code generation, we create tons of temporary variables, many of * which get immediately killed and are never used again. Yet, in later * optimization and analysis passes, such as compute_live_intervals, we need * to loop over all the virtual GRFs. Compacting them can save a lot of * overhead. */ bool elk_fs_visitor::compact_virtual_grfs() { bool progress = false; int *remap_table = new int[this->alloc.count]; memset(remap_table, -1, this->alloc.count * sizeof(int)); /* Mark which virtual GRFs are used. */ foreach_block_and_inst(block, const elk_fs_inst, inst, cfg) { if (inst->dst.file == VGRF) remap_table[inst->dst.nr] = 0; for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF) remap_table[inst->src[i].nr] = 0; } } /* Compact the GRF arrays. */ int new_index = 0; for (unsigned i = 0; i < this->alloc.count; i++) { if (remap_table[i] == -1) { /* We just found an unused register. This means that we are * actually going to compact something. */ progress = true; } else { remap_table[i] = new_index; alloc.sizes[new_index] = alloc.sizes[i]; invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES); ++new_index; } } this->alloc.count = new_index; /* Patch all the instructions to use the newly renumbered registers */ foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { if (inst->dst.file == VGRF) inst->dst.nr = remap_table[inst->dst.nr]; for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF) inst->src[i].nr = remap_table[inst->src[i].nr]; } } /* Patch all the references to delta_xy, since they're used in register * allocation. If they're unused, switch them to BAD_FILE so we don't * think some random VGRF is delta_xy. */ for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) { if (delta_xy[i].file == VGRF) { if (remap_table[delta_xy[i].nr] != -1) { delta_xy[i].nr = remap_table[delta_xy[i].nr]; } else { delta_xy[i].file = BAD_FILE; } } } delete[] remap_table; return progress; } int elk_get_subgroup_id_param_index(const intel_device_info *devinfo, const elk_stage_prog_data *prog_data) { if (prog_data->nr_params == 0) return -1; /* The local thread id is always the last parameter in the list */ uint32_t last_param = prog_data->param[prog_data->nr_params - 1]; if (last_param == ELK_PARAM_BUILTIN_SUBGROUP_ID) return prog_data->nr_params - 1; return -1; } /** * Assign UNIFORM file registers to either push constants or pull constants. * * We allow a fragment shader to have more than the specified minimum * maximum number of fragment shader uniform components (64). If * there are too many of these, they'd fill up all of register space. * So, this will push some of them out to the pull constant buffer and * update the program to load them. */ void elk_fs_visitor::assign_constant_locations() { /* Only the first compile gets to decide on locations. */ if (push_constant_loc) return; push_constant_loc = ralloc_array(mem_ctx, int, uniforms); for (unsigned u = 0; u < uniforms; u++) push_constant_loc[u] = u; /* Now that we know how many regular uniforms we'll push, reduce the * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits. */ /* For gen4/5: * Only allow 16 registers (128 uniform components) as push constants. * * If changing this value, note the limitation about total_regs in * elk_curbe.c/crocus_state.c */ const unsigned max_push_length = compiler->devinfo->ver < 6 ? 16 : 64; unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8); for (int i = 0; i < 4; i++) { struct elk_ubo_range *range = &prog_data->ubo_ranges[i]; if (push_length + range->length > max_push_length) range->length = max_push_length - push_length; push_length += range->length; } assert(push_length <= max_push_length); } bool elk_fs_visitor::get_pull_locs(const elk_fs_reg &src, unsigned *out_surf_index, unsigned *out_pull_index) { assert(src.file == UNIFORM); if (src.nr < UBO_START) return false; const struct elk_ubo_range *range = &prog_data->ubo_ranges[src.nr - UBO_START]; /* If this access is in our (reduced) range, use the push data. */ if (src.offset / 32 < range->length) return false; *out_surf_index = range->block; *out_pull_index = (32 * range->start + src.offset) / 4; prog_data->has_ubo_pull = true; return true; } /** * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs. */ bool elk_fs_visitor::lower_constant_loads() { unsigned index, pull_index; bool progress = false; foreach_block_and_inst_safe (block, elk_fs_inst, inst, cfg) { /* Set up the annotation tracking for new generated instructions. */ const fs_builder ibld(this, block, inst); for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file != UNIFORM) continue; /* We'll handle this case later */ if (inst->opcode == ELK_SHADER_OPCODE_MOV_INDIRECT && i == 0) continue; if (!get_pull_locs(inst->src[i], &index, &pull_index)) continue; assert(inst->src[i].stride == 0); const unsigned block_sz = 64; /* Fetch one cacheline at a time. */ const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0); const elk_fs_reg dst = ubld.vgrf(ELK_REGISTER_TYPE_UD); const unsigned base = pull_index * 4; elk_fs_reg srcs[PULL_UNIFORM_CONSTANT_SRCS]; srcs[PULL_UNIFORM_CONSTANT_SRC_SURFACE] = elk_imm_ud(index); srcs[PULL_UNIFORM_CONSTANT_SRC_OFFSET] = elk_imm_ud(base & ~(block_sz - 1)); srcs[PULL_UNIFORM_CONSTANT_SRC_SIZE] = elk_imm_ud(block_sz); ubld.emit(ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, dst, srcs, PULL_UNIFORM_CONSTANT_SRCS); /* Rewrite the instruction to use the temporary VGRF. */ inst->src[i].file = VGRF; inst->src[i].nr = dst.nr; inst->src[i].offset = (base & (block_sz - 1)) + inst->src[i].offset % 4; progress = true; } if (inst->opcode == ELK_SHADER_OPCODE_MOV_INDIRECT && inst->src[0].file == UNIFORM) { if (!get_pull_locs(inst->src[0], &index, &pull_index)) continue; VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst, elk_imm_ud(index), elk_fs_reg() /* surface_handle */, inst->src[1], pull_index * 4, 4, 1); inst->remove(block); progress = true; } } invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; } static uint64_t src_as_uint(const elk_fs_reg &src) { assert(src.file == IMM); switch (src.type) { case ELK_REGISTER_TYPE_W: return (uint64_t)(int16_t)(src.ud & 0xffff); case ELK_REGISTER_TYPE_UW: return (uint64_t)(uint16_t)(src.ud & 0xffff); case ELK_REGISTER_TYPE_D: return (uint64_t)src.d; case ELK_REGISTER_TYPE_UD: return (uint64_t)src.ud; case ELK_REGISTER_TYPE_Q: return src.d64; case ELK_REGISTER_TYPE_UQ: return src.u64; default: unreachable("Invalid integer type."); } } static elk_fs_reg elk_imm_for_type(uint64_t value, enum elk_reg_type type) { switch (type) { case ELK_REGISTER_TYPE_W: return elk_imm_w(value); case ELK_REGISTER_TYPE_UW: return elk_imm_uw(value); case ELK_REGISTER_TYPE_D: return elk_imm_d(value); case ELK_REGISTER_TYPE_UD: return elk_imm_ud(value); case ELK_REGISTER_TYPE_Q: return elk_imm_d(value); case ELK_REGISTER_TYPE_UQ: return elk_imm_uq(value); default: unreachable("Invalid integer type."); } } bool elk_fs_visitor::opt_algebraic() { bool progress = false; foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { switch (inst->opcode) { case ELK_OPCODE_MOV: if (!devinfo->has_64bit_float && inst->dst.type == ELK_REGISTER_TYPE_DF) { assert(inst->dst.type == inst->src[0].type); assert(!inst->saturate); assert(!inst->src[0].abs); assert(!inst->src[0].negate); const elk::fs_builder ibld(this, block, inst); if (!inst->is_partial_write()) ibld.emit_undef_for_dst(inst); ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_F, 1), subscript(inst->src[0], ELK_REGISTER_TYPE_F, 1)); ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_F, 0), subscript(inst->src[0], ELK_REGISTER_TYPE_F, 0)); inst->remove(block); progress = true; } if (!devinfo->has_64bit_int && (inst->dst.type == ELK_REGISTER_TYPE_UQ || inst->dst.type == ELK_REGISTER_TYPE_Q)) { assert(inst->dst.type == inst->src[0].type); assert(!inst->saturate); assert(!inst->src[0].abs); assert(!inst->src[0].negate); const elk::fs_builder ibld(this, block, inst); if (!inst->is_partial_write()) ibld.emit_undef_for_dst(inst); ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 1), subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 1)); ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 0), subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0)); inst->remove(block); progress = true; } if ((inst->conditional_mod == ELK_CONDITIONAL_Z || inst->conditional_mod == ELK_CONDITIONAL_NZ) && inst->dst.is_null() && (inst->src[0].abs || inst->src[0].negate)) { inst->src[0].abs = false; inst->src[0].negate = false; progress = true; break; } if (inst->src[0].file != IMM) break; if (inst->saturate) { /* Full mixed-type saturates don't happen. However, we can end up * with things like: * * mov.sat(8) g21<1>DF -1F * * Other mixed-size-but-same-base-type cases may also be possible. */ if (inst->dst.type != inst->src[0].type && inst->dst.type != ELK_REGISTER_TYPE_DF && inst->src[0].type != ELK_REGISTER_TYPE_F) assert(!"unimplemented: saturate mixed types"); if (elk_saturate_immediate(inst->src[0].type, &inst->src[0].as_elk_reg())) { inst->saturate = false; progress = true; } } break; case ELK_OPCODE_MUL: if (inst->src[1].file != IMM) continue; if (elk_reg_type_is_floating_point(inst->src[1].type)) break; /* From the BDW PRM, Vol 2a, "mul - Multiply": * * "When multiplying integer datatypes, if src0 is DW and src1 * is W, irrespective of the destination datatype, the * accumulator maintains full 48-bit precision." * ... * "When multiplying integer data types, if one of the sources * is a DW, the resulting full precision data is stored in * the accumulator." * * There are also similar notes in earlier PRMs. * * The MOV instruction can copy the bits of the source, but it * does not clear the higher bits of the accumulator. So, because * we might use the full accumulator in the MUL/MACH macro, we * shouldn't replace such MULs with MOVs. */ if ((elk_reg_type_to_size(inst->src[0].type) == 4 || elk_reg_type_to_size(inst->src[1].type) == 4) && (inst->dst.is_accumulator() || inst->writes_accumulator_implicitly(devinfo))) break; /* a * 1.0 = a */ if (inst->src[1].is_one()) { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[1] = reg_undef; progress = true; break; } /* a * -1.0 = -a */ if (inst->src[1].is_negative_one()) { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[0].negate = !inst->src[0].negate; inst->src[1] = reg_undef; progress = true; break; } break; case ELK_OPCODE_ADD: if (inst->src[1].file != IMM) continue; if (elk_reg_type_is_integer(inst->src[1].type) && inst->src[1].is_zero()) { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[1] = reg_undef; progress = true; break; } if (inst->src[0].file == IMM) { assert(inst->src[0].type == ELK_REGISTER_TYPE_F); inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[0].f += inst->src[1].f; inst->src[1] = reg_undef; progress = true; break; } break; case ELK_OPCODE_AND: if (inst->src[0].file == IMM && inst->src[1].file == IMM) { const uint64_t src0 = src_as_uint(inst->src[0]); const uint64_t src1 = src_as_uint(inst->src[1]); inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[0] = elk_imm_for_type(src0 & src1, inst->dst.type); inst->src[1] = reg_undef; progress = true; break; } break; case ELK_OPCODE_OR: if (inst->src[0].file == IMM && inst->src[1].file == IMM) { const uint64_t src0 = src_as_uint(inst->src[0]); const uint64_t src1 = src_as_uint(inst->src[1]); inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[0] = elk_imm_for_type(src0 | src1, inst->dst.type); inst->src[1] = reg_undef; progress = true; break; } if (inst->src[0].equals(inst->src[1]) || inst->src[1].is_zero()) { /* On Gfx8+, the OR instruction can have a source modifier that * performs logical not on the operand. Cases of 'OR r0, ~r1, 0' * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV. */ if (inst->src[0].negate) { inst->opcode = ELK_OPCODE_NOT; inst->sources = 1; inst->src[0].negate = false; } else { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; } inst->src[1] = reg_undef; progress = true; break; } break; case ELK_OPCODE_CMP: if ((inst->conditional_mod == ELK_CONDITIONAL_Z || inst->conditional_mod == ELK_CONDITIONAL_NZ) && inst->src[1].is_zero() && (inst->src[0].abs || inst->src[0].negate)) { inst->src[0].abs = false; inst->src[0].negate = false; progress = true; break; } break; case ELK_OPCODE_SEL: if (!devinfo->has_64bit_float && !devinfo->has_64bit_int && (inst->dst.type == ELK_REGISTER_TYPE_DF || inst->dst.type == ELK_REGISTER_TYPE_UQ || inst->dst.type == ELK_REGISTER_TYPE_Q)) { assert(inst->dst.type == inst->src[0].type); assert(!inst->saturate); assert(!inst->src[0].abs && !inst->src[0].negate); assert(!inst->src[1].abs && !inst->src[1].negate); const elk::fs_builder ibld(this, block, inst); if (!inst->is_partial_write()) ibld.emit_undef_for_dst(inst); set_predicate(inst->predicate, ibld.SEL(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 0), subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0), subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 0))); set_predicate(inst->predicate, ibld.SEL(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 1), subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 1), subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 1))); inst->remove(block); progress = true; } if (inst->src[0].equals(inst->src[1])) { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[1] = reg_undef; inst->predicate = ELK_PREDICATE_NONE; inst->predicate_inverse = false; progress = true; } else if (inst->saturate && inst->src[1].file == IMM) { switch (inst->conditional_mod) { case ELK_CONDITIONAL_LE: case ELK_CONDITIONAL_L: switch (inst->src[1].type) { case ELK_REGISTER_TYPE_F: if (inst->src[1].f >= 1.0f) { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[1] = reg_undef; inst->conditional_mod = ELK_CONDITIONAL_NONE; progress = true; } break; default: break; } break; case ELK_CONDITIONAL_GE: case ELK_CONDITIONAL_G: switch (inst->src[1].type) { case ELK_REGISTER_TYPE_F: if (inst->src[1].f <= 0.0f) { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->src[1] = reg_undef; inst->conditional_mod = ELK_CONDITIONAL_NONE; progress = true; } break; default: break; } default: break; } } break; case ELK_OPCODE_MAD: if (inst->src[0].type != ELK_REGISTER_TYPE_F || inst->src[1].type != ELK_REGISTER_TYPE_F || inst->src[2].type != ELK_REGISTER_TYPE_F) break; if (inst->src[1].is_one()) { inst->opcode = ELK_OPCODE_ADD; inst->sources = 2; inst->src[1] = inst->src[2]; inst->src[2] = reg_undef; progress = true; } else if (inst->src[2].is_one()) { inst->opcode = ELK_OPCODE_ADD; inst->sources = 2; inst->src[2] = reg_undef; progress = true; } break; case ELK_OPCODE_SHL: if (inst->src[0].file == IMM && inst->src[1].file == IMM) { /* It's not currently possible to generate this, and this constant * folding does not handle it. */ assert(!inst->saturate); elk_fs_reg result; switch (type_sz(inst->src[0].type)) { case 2: result = elk_imm_uw(0x0ffff & (inst->src[0].ud << (inst->src[1].ud & 0x1f))); break; case 4: result = elk_imm_ud(inst->src[0].ud << (inst->src[1].ud & 0x1f)); break; case 8: result = elk_imm_uq(inst->src[0].u64 << (inst->src[1].ud & 0x3f)); break; default: /* Just in case a future platform re-enables B or UB types. */ unreachable("Invalid source size."); } inst->opcode = ELK_OPCODE_MOV; inst->src[0] = retype(result, inst->dst.type); inst->src[1] = reg_undef; inst->sources = 1; progress = true; } break; case ELK_SHADER_OPCODE_BROADCAST: if (is_uniform(inst->src[0])) { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; inst->force_writemask_all = true; progress = true; } else if (inst->src[1].file == IMM) { inst->opcode = ELK_OPCODE_MOV; /* It's possible that the selected component will be too large and * overflow the register. This can happen if someone does a * readInvocation() from GLSL or SPIR-V and provides an OOB * invocationIndex. If this happens and we some how manage * to constant fold it in and get here, then component() may cause * us to start reading outside of the VGRF which will lead to an * assert later. Instead, just let it wrap around if it goes over * exec_size. */ const unsigned comp = inst->src[1].ud & (inst->exec_size - 1); inst->src[0] = component(inst->src[0], comp); inst->sources = 1; inst->force_writemask_all = true; progress = true; } break; case ELK_SHADER_OPCODE_SHUFFLE: if (is_uniform(inst->src[0])) { inst->opcode = ELK_OPCODE_MOV; inst->sources = 1; progress = true; } else if (inst->src[1].file == IMM) { inst->opcode = ELK_OPCODE_MOV; inst->src[0] = component(inst->src[0], inst->src[1].ud); inst->sources = 1; progress = true; } break; default: break; } /* Ensure that the correct source has the immediate value. 2-source * instructions must have the immediate in src[1]. On Gfx12 and later, * some 3-source instructions can have the immediate in src[0] or * src[2]. It's complicated, so don't mess with 3-source instructions * here. */ if (progress && inst->sources == 2 && inst->is_commutative()) { if (inst->src[0].file == IMM) { elk_fs_reg tmp = inst->src[1]; inst->src[1] = inst->src[0]; inst->src[0] = tmp; } } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW | DEPENDENCY_INSTRUCTION_DETAIL); return progress; } static unsigned load_payload_sources_read_for_size(elk_fs_inst *lp, unsigned size_read) { assert(lp->opcode == ELK_SHADER_OPCODE_LOAD_PAYLOAD); assert(size_read >= lp->header_size * REG_SIZE); unsigned i; unsigned size = lp->header_size * REG_SIZE; for (i = lp->header_size; size < size_read && i < lp->sources; i++) size += lp->exec_size * type_sz(lp->src[i].type); /* Size read must cover exactly a subset of sources. */ assert(size == size_read); return i; } /** * Optimize sample messages that have constant zero values for the trailing * parameters. We can just reduce the message length for these * instructions instead of reserving a register for it. Trailing parameters * that aren't sent default to zero anyway. This will cause the dead code * eliminator to remove the MOV instruction that would otherwise be emitted to * set up the zero value. */ bool elk_fs_visitor::opt_zero_samples() { /* Implementation supports only SENDs, so applicable to Gfx7+ only. */ assert(devinfo->ver >= 7); bool progress = false; foreach_block_and_inst(block, elk_fs_inst, send, cfg) { if (send->opcode != ELK_SHADER_OPCODE_SEND || send->sfid != ELK_SFID_SAMPLER) continue; /* Wa_14012688258: * * Don't trim zeros at the end of payload for sample operations * in cube and cube arrays. */ if (send->keep_payload_trailing_zeros) continue; elk_fs_inst *lp = (elk_fs_inst *) send->prev; if (lp->is_head_sentinel() || lp->opcode != ELK_SHADER_OPCODE_LOAD_PAYLOAD) continue; /* How much of the payload are actually read by this SEND. */ const unsigned params = load_payload_sources_read_for_size(lp, send->mlen * REG_SIZE); /* We don't want to remove the message header or the first parameter. * Removing the first parameter is not allowed, see the Haswell PRM * volume 7, page 149: * * "Parameter 0 is required except for the sampleinfo message, which * has no parameter 0" */ const unsigned first_param_idx = lp->header_size; unsigned zero_size = 0; for (unsigned i = params - 1; i > first_param_idx; i--) { if (lp->src[i].file != BAD_FILE && !lp->src[i].is_zero()) break; zero_size += lp->exec_size * type_sz(lp->src[i].type) * lp->dst.stride; } const unsigned zero_len = zero_size / (reg_unit(devinfo) * REG_SIZE); if (zero_len > 0) { send->mlen -= zero_len; progress = true; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL); return progress; } /** * Remove redundant or useless halts. * * For example, we can eliminate halts in the following sequence: * * halt (redundant with the next halt) * halt (useless; jumps to the next instruction) * halt-target */ bool elk_fs_visitor::opt_redundant_halt() { bool progress = false; unsigned halt_count = 0; elk_fs_inst *halt_target = NULL; elk_bblock_t *halt_target_block = NULL; foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { if (inst->opcode == ELK_OPCODE_HALT) halt_count++; if (inst->opcode == ELK_SHADER_OPCODE_HALT_TARGET) { halt_target = inst; halt_target_block = block; break; } } if (!halt_target) { assert(halt_count == 0); return false; } /* Delete any HALTs immediately before the halt target. */ for (elk_fs_inst *prev = (elk_fs_inst *) halt_target->prev; !prev->is_head_sentinel() && prev->opcode == ELK_OPCODE_HALT; prev = (elk_fs_inst *) halt_target->prev) { prev->remove(halt_target_block); halt_count--; progress = true; } if (halt_count == 0) { halt_target->remove(halt_target_block); progress = true; } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; } /** * Compute a bitmask with GRF granularity with a bit set for each GRF starting * from \p r.offset which overlaps the region starting at \p s.offset and * spanning \p ds bytes. */ static inline unsigned mask_relative_to(const elk_fs_reg &r, const elk_fs_reg &s, unsigned ds) { const int rel_offset = reg_offset(s) - reg_offset(r); const int shift = rel_offset / REG_SIZE; const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE); assert(reg_space(r) == reg_space(s) && shift >= 0 && shift < int(8 * sizeof(unsigned))); return ((1 << n) - 1) << shift; } bool elk_fs_visitor::compute_to_mrf() { bool progress = false; int next_ip = 0; /* No MRFs on Gen >= 7. */ if (devinfo->ver >= 7) return false; const fs_live_variables &live = live_analysis.require(); foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { int ip = next_ip; next_ip++; if (inst->opcode != ELK_OPCODE_MOV || inst->is_partial_write() || inst->dst.file != MRF || inst->src[0].file != VGRF || inst->dst.type != inst->src[0].type || inst->src[0].abs || inst->src[0].negate || !inst->src[0].is_contiguous() || inst->src[0].offset % REG_SIZE != 0) continue; /* Can't compute-to-MRF this GRF if someone else was going to * read it later. */ if (live.vgrf_end[inst->src[0].nr] > ip) continue; /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the * things that computed the value of all GRFs of the source region. The * regs_left bitset keeps track of the registers we haven't yet found a * generating instruction for. */ unsigned regs_left = (1 << regs_read(inst, 0)) - 1; foreach_inst_in_block_reverse_starting_from(elk_fs_inst, scan_inst, inst) { if (regions_overlap(scan_inst->dst, scan_inst->size_written, inst->src[0], inst->size_read(0))) { /* Found the last thing to write our reg we want to turn * into a compute-to-MRF. */ /* If this one instruction didn't populate all the * channels, bail. We might be able to rewrite everything * that writes that reg, but it would require smarter * tracking. */ if (scan_inst->is_partial_write()) break; /* Handling things not fully contained in the source of the copy * would need us to understand coalescing out more than one MOV at * a time. */ if (!region_contained_in(scan_inst->dst, scan_inst->size_written, inst->src[0], inst->size_read(0))) break; /* SEND instructions can't have MRF as a destination. */ if (scan_inst->mlen) break; if (devinfo->ver == 6) { /* gfx6 math instructions must have the destination be * GRF, so no compute-to-MRF for them. */ if (scan_inst->is_math()) { break; } } /* Clear the bits for any registers this instruction overwrites. */ regs_left &= ~mask_relative_to( inst->src[0], scan_inst->dst, scan_inst->size_written); if (!regs_left) break; } /* We don't handle control flow here. Most computation of * values that end up in MRFs are shortly before the MRF * write anyway. */ if (block->start() == scan_inst) break; /* You can't read from an MRF, so if someone else reads our * MRF's source GRF that we wanted to rewrite, that stops us. */ bool interfered = false; for (int i = 0; i < scan_inst->sources; i++) { if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i), inst->src[0], inst->size_read(0))) { interfered = true; } } if (interfered) break; if (regions_overlap(scan_inst->dst, scan_inst->size_written, inst->dst, inst->size_written)) { /* If somebody else writes our MRF here, we can't * compute-to-MRF before that. */ break; } if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 && regions_overlap(elk_fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE, inst->dst, inst->size_written)) { /* Found a SEND instruction, which means that there are * live values in MRFs from base_mrf to base_mrf + * scan_inst->mlen - 1. Don't go pushing our MRF write up * above it. */ break; } } if (regs_left) continue; /* Found all generating instructions of our MRF's source value, so it * should be safe to rewrite them to point to the MRF directly. */ regs_left = (1 << regs_read(inst, 0)) - 1; foreach_inst_in_block_reverse_starting_from(elk_fs_inst, scan_inst, inst) { if (regions_overlap(scan_inst->dst, scan_inst->size_written, inst->src[0], inst->size_read(0))) { /* Clear the bits for any registers this instruction overwrites. */ regs_left &= ~mask_relative_to( inst->src[0], scan_inst->dst, scan_inst->size_written); const unsigned rel_offset = reg_offset(scan_inst->dst) - reg_offset(inst->src[0]); if (inst->dst.nr & ELK_MRF_COMPR4) { /* Apply the same address transformation done by the hardware * for COMPR4 MRF writes. */ assert(rel_offset < 2 * REG_SIZE); scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4; /* Clear the COMPR4 bit if the generating instruction is not * compressed. */ if (scan_inst->size_written < 2 * REG_SIZE) scan_inst->dst.nr &= ~ELK_MRF_COMPR4; } else { /* Calculate the MRF number the result of this instruction is * ultimately written to. */ scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE; } scan_inst->dst.file = MRF; scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE; scan_inst->saturate |= inst->saturate; if (!regs_left) break; } } assert(!regs_left); inst->remove(block); progress = true; } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; } /** * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control * flow. We could probably do better here with some form of divergence * analysis. */ bool elk_fs_visitor::eliminate_find_live_channel() { bool progress = false; unsigned depth = 0; if (!elk_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { /* The optimization below assumes that channel zero is live on thread * dispatch, which may not be the case if the fixed function dispatches * threads sparsely. */ return false; } foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { switch (inst->opcode) { case ELK_OPCODE_IF: case ELK_OPCODE_DO: depth++; break; case ELK_OPCODE_ENDIF: case ELK_OPCODE_WHILE: depth--; break; case ELK_OPCODE_HALT: /* This can potentially make control flow non-uniform until the end * of the program. */ goto out; case ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL: if (depth == 0) { inst->opcode = ELK_OPCODE_MOV; inst->src[0] = elk_imm_ud(0u); inst->sources = 1; inst->force_writemask_all = true; progress = true; } break; default: break; } } out: if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL); return progress; } /** * Once we've generated code, try to convert normal ELK_FS_OPCODE_FB_WRITE * instructions to ELK_FS_OPCODE_REP_FB_WRITE. */ void elk_fs_visitor::emit_repclear_shader() { elk_wm_prog_key *key = (elk_wm_prog_key*) this->key; elk_fs_inst *write = NULL; assert(uniforms == 0); assume(key->nr_color_regions > 0); elk_fs_reg color_output, header; if (devinfo->ver >= 7) { color_output = retype(elk_vec4_grf(127, 0), ELK_REGISTER_TYPE_UD); header = retype(elk_vec8_grf(125, 0), ELK_REGISTER_TYPE_UD); } else { color_output = retype(elk_vec4_reg(MRF, 2, 0), ELK_REGISTER_TYPE_UD); header = retype(elk_vec8_reg(MRF, 0, 0), ELK_REGISTER_TYPE_UD); } /* We pass the clear color as a flat input. Copy it to the output. */ elk_fs_reg color_input = elk_reg(ELK_GENERAL_REGISTER_FILE, 2, 3, 0, 0, ELK_REGISTER_TYPE_UD, ELK_VERTICAL_STRIDE_8, ELK_WIDTH_2, ELK_HORIZONTAL_STRIDE_4, ELK_SWIZZLE_XYZW, WRITEMASK_XYZW); const fs_builder bld = fs_builder(this).at_end(); bld.exec_all().group(4, 0).MOV(color_output, color_input); if (key->nr_color_regions > 1) { /* Copy g0..g1 as the message header */ bld.exec_all().group(16, 0) .MOV(header, retype(elk_vec8_grf(0, 0), ELK_REGISTER_TYPE_UD)); } for (int i = 0; i < key->nr_color_regions; ++i) { if (i > 0) bld.exec_all().group(1, 0).MOV(component(header, 2), elk_imm_ud(i)); if (devinfo->ver >= 7) { write = bld.emit(ELK_SHADER_OPCODE_SEND); write->resize_sources(2); write->sfid = GFX6_SFID_DATAPORT_RENDER_CACHE; write->src[0] = elk_imm_ud(0); write->src[1] = i == 0 ? color_output : header; write->check_tdr = true; write->send_has_side_effects = true; write->desc = elk_fb_write_desc(devinfo, i, ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED, i == key->nr_color_regions - 1, false); } else { write = bld.emit(ELK_FS_OPCODE_REP_FB_WRITE); write->target = i; write->base_mrf = i == 0 ? color_output.nr : header.nr; } /* We can use a headerless message for the first render target */ write->header_size = i == 0 ? 0 : 2; write->mlen = 1 + write->header_size; } write->eot = true; write->last_rt = true; calculate_cfg(); this->first_non_payload_grf = payload().num_regs; } /** * Walks through basic blocks, looking for repeated MRF writes and * removing the later ones. */ bool elk_fs_visitor::remove_duplicate_mrf_writes() { elk_fs_inst *last_mrf_move[ELK_MAX_MRF(devinfo->ver)]; bool progress = false; /* Need to update the MRF tracking for compressed instructions. */ if (dispatch_width >= 16) return false; memset(last_mrf_move, 0, sizeof(last_mrf_move)); foreach_block_and_inst_safe (block, elk_fs_inst, inst, cfg) { if (inst->is_control_flow()) { memset(last_mrf_move, 0, sizeof(last_mrf_move)); } if (inst->opcode == ELK_OPCODE_MOV && inst->dst.file == MRF) { elk_fs_inst *prev_inst = last_mrf_move[inst->dst.nr]; if (prev_inst && prev_inst->opcode == ELK_OPCODE_MOV && inst->dst.equals(prev_inst->dst) && inst->src[0].equals(prev_inst->src[0]) && inst->saturate == prev_inst->saturate && inst->predicate == prev_inst->predicate && inst->conditional_mod == prev_inst->conditional_mod && inst->exec_size == prev_inst->exec_size) { inst->remove(block); progress = true; continue; } } /* Clear out the last-write records for MRFs that were overwritten. */ if (inst->dst.file == MRF) { last_mrf_move[inst->dst.nr] = NULL; } if (inst->mlen > 0 && inst->base_mrf != -1) { /* Found a SEND instruction, which will include two or fewer * implied MRF writes. We could do better here. */ for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) { last_mrf_move[inst->base_mrf + i] = NULL; } } /* Clear out any MRF move records whose sources got overwritten. */ for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) { if (last_mrf_move[i] && regions_overlap(inst->dst, inst->size_written, last_mrf_move[i]->src[0], last_mrf_move[i]->size_read(0))) { last_mrf_move[i] = NULL; } } if (inst->opcode == ELK_OPCODE_MOV && inst->dst.file == MRF && inst->src[0].file != ARF && !inst->is_partial_write()) { last_mrf_move[inst->dst.nr] = inst; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; } /** * Rounding modes for conversion instructions are included for each * conversion, but right now it is a state. So once it is set, * we don't need to call it again for subsequent calls. * * This is useful for vector/matrices conversions, as setting the * mode once is enough for the full vector/matrix */ bool elk_fs_visitor::remove_extra_rounding_modes() { bool progress = false; unsigned execution_mode = this->nir->info.float_controls_execution_mode; elk_rnd_mode base_mode = ELK_RND_MODE_UNSPECIFIED; if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) & execution_mode) base_mode = ELK_RND_MODE_RTNE; if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) & execution_mode) base_mode = ELK_RND_MODE_RTZ; foreach_block (block, cfg) { elk_rnd_mode prev_mode = base_mode; foreach_inst_in_block_safe (elk_fs_inst, inst, block) { if (inst->opcode == ELK_SHADER_OPCODE_RND_MODE) { assert(inst->src[0].file == ELK_IMMEDIATE_VALUE); const elk_rnd_mode mode = (elk_rnd_mode) inst->src[0].d; if (mode == prev_mode) { inst->remove(block); progress = true; } else { prev_mode = mode; } } } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; } static void clear_deps_for_inst_src(elk_fs_inst *inst, bool *deps, int first_grf, int grf_len) { /* Clear the flag for registers that actually got read (as expected). */ for (int i = 0; i < inst->sources; i++) { int grf; if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) { grf = inst->src[i].nr; } else { continue; } if (grf >= first_grf && grf < first_grf + grf_len) { deps[grf - first_grf] = false; if (inst->exec_size == 16) deps[grf - first_grf + 1] = false; } } } /** * Implements this workaround for the original 965: * * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not * check for post destination dependencies on this instruction, software * must ensure that there is no destination hazard for the case of ‘write * followed by a posted write’ shown in the following example. * * 1. mov r3 0 * 2. send r3.xy * 3. mov r2 r3 * * Due to no post-destination dependency check on the ‘send’, the above * code sequence could have two instructions (1 and 2) in flight at the * same time that both consider ‘r3’ as the target of their final writes. */ void elk_fs_visitor::insert_gfx4_pre_send_dependency_workarounds(elk_bblock_t *block, elk_fs_inst *inst) { int write_len = regs_written(inst); int first_write_grf = inst->dst.nr; bool needs_dep[ELK_MAX_MRF(devinfo->ver)]; assert(write_len < (int)sizeof(needs_dep) - 1); memset(needs_dep, false, sizeof(needs_dep)); memset(needs_dep, true, write_len); clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len); /* Walk backwards looking for writes to registers we're writing which * aren't read since being written. If we hit the start of the program, * we assume that there are no outstanding dependencies on entry to the * program. */ foreach_inst_in_block_reverse_starting_from(elk_fs_inst, scan_inst, inst) { /* If we hit control flow, assume that there *are* outstanding * dependencies, and force their cleanup before our instruction. */ if (block->start() == scan_inst && block->num != 0) { for (int i = 0; i < write_len; i++) { if (needs_dep[i]) DEP_RESOLVE_MOV(fs_builder(this, block, inst), first_write_grf + i); } return; } /* We insert our reads as late as possible on the assumption that any * instruction but a MOV that might have left us an outstanding * dependency has more latency than a MOV. */ if (scan_inst->dst.file == VGRF) { for (unsigned i = 0; i < regs_written(scan_inst); i++) { int reg = scan_inst->dst.nr + i; if (reg >= first_write_grf && reg < first_write_grf + write_len && needs_dep[reg - first_write_grf]) { DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg); needs_dep[reg - first_write_grf] = false; if (scan_inst->exec_size == 16) needs_dep[reg - first_write_grf + 1] = false; } } } /* Clear the flag for registers that actually got read (as expected). */ clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len); /* Continue the loop only if we haven't resolved all the dependencies */ int i; for (i = 0; i < write_len; i++) { if (needs_dep[i]) break; } if (i == write_len) return; } } /** * Implements this workaround for the original 965: * * "[DevBW, DevCL] Errata: A destination register from a send can not be * used as a destination register until after it has been sourced by an * instruction with a different destination register. */ void elk_fs_visitor::insert_gfx4_post_send_dependency_workarounds(elk_bblock_t *block, elk_fs_inst *inst) { int write_len = regs_written(inst); unsigned first_write_grf = inst->dst.nr; bool needs_dep[ELK_MAX_MRF(devinfo->ver)]; assert(write_len < (int)sizeof(needs_dep) - 1); memset(needs_dep, false, sizeof(needs_dep)); memset(needs_dep, true, write_len); /* Walk forwards looking for writes to registers we're writing which aren't * read before being written. */ foreach_inst_in_block_starting_from(elk_fs_inst, scan_inst, inst) { /* If we hit control flow, force resolve all remaining dependencies. */ if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) { for (int i = 0; i < write_len; i++) { if (needs_dep[i]) DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst), first_write_grf + i); } return; } /* Clear the flag for registers that actually got read (as expected). */ clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len); /* We insert our reads as late as possible since they're reading the * result of a SEND, which has massive latency. */ if (scan_inst->dst.file == VGRF && scan_inst->dst.nr >= first_write_grf && scan_inst->dst.nr < first_write_grf + write_len && needs_dep[scan_inst->dst.nr - first_write_grf]) { DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst), scan_inst->dst.nr); needs_dep[scan_inst->dst.nr - first_write_grf] = false; } /* Continue the loop only if we haven't resolved all the dependencies */ int i; for (i = 0; i < write_len; i++) { if (needs_dep[i]) break; } if (i == write_len) return; } } void elk_fs_visitor::insert_gfx4_send_dependency_workarounds() { if (devinfo->ver != 4 || devinfo->platform == INTEL_PLATFORM_G4X) return; bool progress = false; foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { if (inst->mlen != 0 && inst->dst.file == VGRF) { insert_gfx4_pre_send_dependency_workarounds(block, inst); insert_gfx4_post_send_dependency_workarounds(block, inst); progress = true; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS); } bool elk_fs_visitor::lower_load_payload() { bool progress = false; foreach_block_and_inst_safe (block, elk_fs_inst, inst, cfg) { if (inst->opcode != ELK_SHADER_OPCODE_LOAD_PAYLOAD) continue; assert(inst->dst.file == MRF || inst->dst.file == VGRF); assert(inst->saturate == false); elk_fs_reg dst = inst->dst; /* Get rid of COMPR4. We'll add it back in if we need it */ if (dst.file == MRF) dst.nr = dst.nr & ~ELK_MRF_COMPR4; const fs_builder ibld(this, block, inst); const fs_builder ubld = ibld.exec_all(); for (uint8_t i = 0; i < inst->header_size;) { /* Number of header GRFs to initialize at once with a single MOV * instruction. */ const unsigned n = (i + 1 < inst->header_size && inst->src[i].stride == 1 && inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ? 2 : 1; if (inst->src[i].file != BAD_FILE) ubld.group(8 * n, 0).MOV(retype(dst, ELK_REGISTER_TYPE_UD), retype(inst->src[i], ELK_REGISTER_TYPE_UD)); dst = byte_offset(dst, n * REG_SIZE); i += n; } if (inst->dst.file == MRF && (inst->dst.nr & ELK_MRF_COMPR4) && inst->exec_size > 8) { /* In this case, the payload portion of the LOAD_PAYLOAD isn't * a straightforward copy. Instead, the result of the * LOAD_PAYLOAD is treated as interleaved and the first four * non-header sources are unpacked as: * * m + 0: r0 * m + 1: g0 * m + 2: b0 * m + 3: a0 * m + 4: r1 * m + 5: g1 * m + 6: b1 * m + 7: a1 * * This is used for gen <= 5 fb writes. */ assert(inst->exec_size == 16); assert(inst->header_size + 4 <= inst->sources); for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) { if (inst->src[i].file != BAD_FILE) { if (devinfo->has_compr4) { elk_fs_reg compr4_dst = retype(dst, inst->src[i].type); compr4_dst.nr |= ELK_MRF_COMPR4; ibld.MOV(compr4_dst, inst->src[i]); } else { /* Platform doesn't have COMPR4. We have to fake it */ elk_fs_reg mov_dst = retype(dst, inst->src[i].type); ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0)); mov_dst.nr += 4; ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1)); } } dst.nr++; } /* The loop above only ever incremented us through the first set * of 4 registers. However, thanks to the magic of COMPR4, we * actually wrote to the first 8 registers, so we need to take * that into account now. */ dst.nr += 4; /* The COMPR4 code took care of the first 4 sources. We'll let * the regular path handle any remaining sources. Yes, we are * modifying the instruction but we're about to delete it so * this really doesn't hurt anything. */ inst->header_size += 4; } for (uint8_t i = inst->header_size; i < inst->sources; i++) { dst.type = inst->src[i].type; if (inst->src[i].file != BAD_FILE) { ibld.MOV(dst, inst->src[i]); } dst = offset(dst, ibld, 1); } inst->remove(block); progress = true; } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; } /** * Factor an unsigned 32-bit integer. * * Attempts to factor \c x into two values that are at most 0xFFFF. If no * such factorization is possible, either because the value is too large or is * prime, both \c result_a and \c result_b will be zero. */ static void factor_uint32(uint32_t x, unsigned *result_a, unsigned *result_b) { /* This is necessary to prevent various opportunities for division by zero * below. */ assert(x > 0xffff); /* This represents the actual expected constraints on the input. Namely, * both the upper and lower words should be > 1. */ assert(x >= 0x00020002); *result_a = 0; *result_b = 0; /* The value is too large to factor with the constraints. */ if (x > (0xffffu * 0xffffu)) return; /* A non-prime number will have the form p*q*d where p is some prime * number, q > 1, and 1 <= d <= q. To meet the constraints of this * function, (p*d) < 0x10000. This implies d <= floor(0xffff / p). * Furthermore, since q < 0x10000, d >= floor(x / (0xffff * p)). Finally, * floor(x / (0xffff * p)) <= d <= floor(0xffff / p). * * The observation is finding the largest possible value of p reduces the * possible range of d. After selecting p, all values of d in this range * are tested until a factorization is found. The size of the range of * possible values of d sets an upper bound on the run time of the * function. */ static const uint16_t primes[256] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, /* 32 */ 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, /* 64 */ 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, /* 96 */ 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, /* 128 */ 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, /* 160 */ 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, /* 192 */ 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, /* 224 */ 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, /* 256 */ }; unsigned p; unsigned x_div_p; for (int i = ARRAY_SIZE(primes) - 1; i >= 0; i--) { p = primes[i]; x_div_p = x / p; if ((x_div_p * p) == x) break; } /* A prime factor was not found. */ if (x_div_p * p != x) return; /* Terminate early if d=1 is a solution. */ if (x_div_p < 0x10000) { *result_a = x_div_p; *result_b = p; return; } /* Pick the maximum possible value for 'd'. It's important that the loop * below execute while d <= max_d because max_d is a valid value. Having * the wrong loop bound would cause 1627*1367*47 (0x063b0c83) to be * incorrectly reported as not being factorable. The problem would occur * with any value that is a factor of two primes in the table and one prime * not in the table. */ const unsigned max_d = 0xffff / p; /* Pick an initial value of 'd' that (combined with rejecting too large * values above) guarantees that 'q' will always be small enough. * DIV_ROUND_UP is used to prevent 'd' from being zero. */ for (unsigned d = DIV_ROUND_UP(x_div_p, 0xffff); d <= max_d; d++) { unsigned q = x_div_p / d; if ((q * d) == x_div_p) { assert(p * d * q == x); assert((p * d) < 0x10000); *result_a = q; *result_b = p * d; break; } /* Since every value of 'd' is tried, as soon as 'd' is larger * than 'q', we're just re-testing combinations that have * already been tested. */ if (d > q) break; } } void elk_fs_visitor::lower_mul_dword_inst(elk_fs_inst *inst, elk_bblock_t *block) { const fs_builder ibld(this, block, inst); /* It is correct to use inst->src[1].d in both end of the comparison. * Using .ud in the UINT16_MAX comparison would cause any negative value to * fail the check. */ if (inst->src[1].file == IMM && (inst->src[1].d >= INT16_MIN && inst->src[1].d <= UINT16_MAX)) { /* The MUL instruction isn't commutative. On Gen <= 6, only the low * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of * src1 are used. * * If multiplying by an immediate value that fits in 16-bits, do a * single MUL instruction with that value in the proper location. */ const bool ud = (inst->src[1].d >= 0); if (devinfo->ver < 7) { elk_fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type); ibld.MOV(imm, inst->src[1]); ibld.MUL(inst->dst, imm, inst->src[0]); } else { ibld.MUL(inst->dst, inst->src[0], ud ? elk_imm_uw(inst->src[1].ud) : elk_imm_w(inst->src[1].d)); } } else { /* Gen < 8 (and some Gfx8+ low-power parts like Cherryview) cannot * do 32-bit integer multiplication in one instruction, but instead * must do a sequence (which actually calculates a 64-bit result): * * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D * mach(8) null g3<8,8,1>D g4<8,8,1>D * mov(8) g2<1>D acc0<8,8,1>D * * But on Gen > 6, the ability to use second accumulator register * (acc1) for non-float data types was removed, preventing a simple * implementation in SIMD16. A 16-channel result can be calculated by * executing the three instructions twice in SIMD8, once with quarter * control of 1Q for the first eight channels and again with 2Q for * the second eight channels. * * Which accumulator register is implicitly accessed (by AccWrEnable * for instance) is determined by the quarter control. Unfortunately * Ivybridge (and presumably Baytrail) has a hardware bug in which an * implicit accumulator access by an instruction with 2Q will access * acc1 regardless of whether the data type is usable in acc1. * * Specifically, the 2Q mach(8) writes acc1 which does not exist for * integer data types. * * Since we only want the low 32-bits of the result, we can do two * 32-bit x 16-bit multiplies (like the mul and mach are doing), and * adjust the high result and add them (like the mach is doing): * * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW * shl(8) g9<1>D g8<8,8,1>D 16D * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D * * We avoid the shl instruction by realizing that we only want to add * the low 16-bits of the "high" result to the high 16-bits of the * "low" result and using proper regioning on the add: * * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW * * Since it does not use the (single) accumulator register, we can * schedule multi-component multiplications much better. */ bool needs_mov = false; elk_fs_reg orig_dst = inst->dst; /* Get a new VGRF for the "low" 32x16-bit multiplication result if * reusing the original destination is impossible due to hardware * restrictions, source/destination overlap, or it being the null * register. */ elk_fs_reg low = inst->dst; if (orig_dst.is_null() || orig_dst.file == MRF || regions_overlap(inst->dst, inst->size_written, inst->src[0], inst->size_read(0)) || regions_overlap(inst->dst, inst->size_written, inst->src[1], inst->size_read(1)) || inst->dst.stride >= 4) { needs_mov = true; low = elk_fs_reg(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type); } /* Get a new VGRF but keep the same stride as inst->dst */ elk_fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type); high.stride = inst->dst.stride; high.offset = inst->dst.offset % REG_SIZE; bool do_addition = true; if (devinfo->ver >= 7) { if (inst->src[1].abs) lower_src_modifiers(this, block, inst, 1); if (inst->src[1].file == IMM) { unsigned a; unsigned b; /* If the immeditate value can be factored into two values, A and * B, that each fit in 16-bits, the multiplication result can * instead be calculated as (src1 * (A * B)) = ((src1 * A) * B). * This saves an operation (the addition) and a temporary register * (high). * * Skip the optimization if either the high word or the low word * is 0 or 1. In these conditions, at least one of the * multiplications generated by the straightforward method will be * eliminated anyway. */ if (inst->src[1].ud > 0x0001ffff && (inst->src[1].ud & 0xffff) > 1) { factor_uint32(inst->src[1].ud, &a, &b); if (a != 0) { ibld.MUL(low, inst->src[0], elk_imm_uw(a)); ibld.MUL(low, low, elk_imm_uw(b)); do_addition = false; } } if (do_addition) { ibld.MUL(low, inst->src[0], elk_imm_uw(inst->src[1].ud & 0xffff)); ibld.MUL(high, inst->src[0], elk_imm_uw(inst->src[1].ud >> 16)); } } else { ibld.MUL(low, inst->src[0], subscript(inst->src[1], ELK_REGISTER_TYPE_UW, 0)); ibld.MUL(high, inst->src[0], subscript(inst->src[1], ELK_REGISTER_TYPE_UW, 1)); } } else { if (inst->src[0].abs) lower_src_modifiers(this, block, inst, 0); ibld.MUL(low, subscript(inst->src[0], ELK_REGISTER_TYPE_UW, 0), inst->src[1]); ibld.MUL(high, subscript(inst->src[0], ELK_REGISTER_TYPE_UW, 1), inst->src[1]); } if (do_addition) { ibld.ADD(subscript(low, ELK_REGISTER_TYPE_UW, 1), subscript(low, ELK_REGISTER_TYPE_UW, 1), subscript(high, ELK_REGISTER_TYPE_UW, 0)); } if (needs_mov || inst->conditional_mod) set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low)); } } void elk_fs_visitor::lower_mul_qword_inst(elk_fs_inst *inst, elk_bblock_t *block) { const fs_builder ibld(this, block, inst); /* Considering two 64-bit integers ab and cd where each letter ab * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd * only need to provide the YZ part of the result. ------- * BD * Only BD needs to be 64 bits. For AD and BC we only care + AD * about the lower 32 bits (since they are part of the upper + BC * 32 bits of our result). AC is not needed since it starts + AC * on the 65th bit of the result. ------- * WXYZ */ unsigned int q_regs = regs_written(inst); unsigned int d_regs = (q_regs + 1) / 2; elk_fs_reg bd(VGRF, alloc.allocate(q_regs), ELK_REGISTER_TYPE_UQ); elk_fs_reg ad(VGRF, alloc.allocate(d_regs), ELK_REGISTER_TYPE_UD); elk_fs_reg bc(VGRF, alloc.allocate(d_regs), ELK_REGISTER_TYPE_UD); /* Here we need the full 64 bit result for 32b * 32b. */ if (devinfo->has_integer_dword_mul) { ibld.MUL(bd, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0), subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 0)); } else { elk_fs_reg bd_high(VGRF, alloc.allocate(d_regs), ELK_REGISTER_TYPE_UD); elk_fs_reg bd_low(VGRF, alloc.allocate(d_regs), ELK_REGISTER_TYPE_UD); const unsigned acc_width = reg_unit(devinfo) * 8; elk_fs_reg acc = suboffset(retype(elk_acc_reg(inst->exec_size), ELK_REGISTER_TYPE_UD), inst->group % acc_width); elk_fs_inst *mul = ibld.MUL(acc, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0), subscript(inst->src[1], ELK_REGISTER_TYPE_UW, 0)); mul->writes_accumulator = true; ibld.MACH(bd_high, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0), subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 0)); ibld.MOV(bd_low, acc); ibld.UNDEF(bd); ibld.MOV(subscript(bd, ELK_REGISTER_TYPE_UD, 0), bd_low); ibld.MOV(subscript(bd, ELK_REGISTER_TYPE_UD, 1), bd_high); } ibld.MUL(ad, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 1), subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 0)); ibld.MUL(bc, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0), subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 1)); ibld.ADD(ad, ad, bc); ibld.ADD(subscript(bd, ELK_REGISTER_TYPE_UD, 1), subscript(bd, ELK_REGISTER_TYPE_UD, 1), ad); if (devinfo->has_64bit_int) { ibld.MOV(inst->dst, bd); } else { if (!inst->is_partial_write()) ibld.emit_undef_for_dst(inst); ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 0), subscript(bd, ELK_REGISTER_TYPE_UD, 0)); ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 1), subscript(bd, ELK_REGISTER_TYPE_UD, 1)); } } void elk_fs_visitor::lower_mulh_inst(elk_fs_inst *inst, elk_bblock_t *block) { const fs_builder ibld(this, block, inst); /* According to the BDW+ BSpec page for the "Multiply Accumulate * High" instruction: * * "An added preliminary mov is required for source modification on * src1: * mov (8) r3.0<1>:d -r3<8;8,1>:d * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d" */ if (devinfo->ver >= 8 && (inst->src[1].negate || inst->src[1].abs)) lower_src_modifiers(this, block, inst, 1); /* Should have been lowered to 8-wide. */ assert(inst->exec_size <= get_lowered_simd_width(this, inst)); const unsigned acc_width = reg_unit(devinfo) * 8; const elk_fs_reg acc = suboffset(retype(elk_acc_reg(inst->exec_size), inst->dst.type), inst->group % acc_width); elk_fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]); elk_fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]); if (devinfo->ver >= 8) { /* Until Gfx8, integer multiplies read 32-bits from one source, * and 16-bits from the other, and relying on the MACH instruction * to generate the high bits of the result. * * On Gfx8, the multiply instruction does a full 32x32-bit * multiply, but in order to do a 64-bit multiply we can simulate * the previous behavior and then use a MACH instruction. */ assert(mul->src[1].type == ELK_REGISTER_TYPE_D || mul->src[1].type == ELK_REGISTER_TYPE_UD); mul->src[1].type = ELK_REGISTER_TYPE_UW; mul->src[1].stride *= 2; if (mul->src[1].file == IMM) { mul->src[1] = elk_imm_uw(mul->src[1].ud); } } else if (devinfo->verx10 == 70 && inst->group > 0) { /* Among other things the quarter control bits influence which * accumulator register is used by the hardware for instructions * that access the accumulator implicitly (e.g. MACH). A * second-half instruction would normally map to acc1, which * doesn't exist on Gfx7 and up (the hardware does emulate it for * floating-point instructions *only* by taking advantage of the * extra precision of acc0 not normally used for floating point * arithmetic). * * HSW and up are careful enough not to try to access an * accumulator register that doesn't exist, but on earlier Gfx7 * hardware we need to make sure that the quarter control bits are * zero to avoid non-deterministic behaviour and emit an extra MOV * to get the result masked correctly according to the current * channel enables. */ mach->group = 0; mach->force_writemask_all = true; mach->dst = ibld.vgrf(inst->dst.type); ibld.MOV(inst->dst, mach->dst); } } bool elk_fs_visitor::lower_integer_multiplication() { bool progress = false; foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { if (inst->opcode == ELK_OPCODE_MUL) { /* If the instruction is already in a form that does not need lowering, * return early. */ if (devinfo->ver >= 7) { if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4) continue; } else { if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4) continue; } if ((inst->dst.type == ELK_REGISTER_TYPE_Q || inst->dst.type == ELK_REGISTER_TYPE_UQ) && (inst->src[0].type == ELK_REGISTER_TYPE_Q || inst->src[0].type == ELK_REGISTER_TYPE_UQ) && (inst->src[1].type == ELK_REGISTER_TYPE_Q || inst->src[1].type == ELK_REGISTER_TYPE_UQ)) { lower_mul_qword_inst(inst, block); inst->remove(block); progress = true; } else if (!inst->dst.is_accumulator() && (inst->dst.type == ELK_REGISTER_TYPE_D || inst->dst.type == ELK_REGISTER_TYPE_UD) && !devinfo->has_integer_dword_mul) { lower_mul_dword_inst(inst, block); inst->remove(block); progress = true; } } else if (inst->opcode == ELK_SHADER_OPCODE_MULH) { lower_mulh_inst(inst, block); inst->remove(block); progress = true; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); return progress; } bool elk_fs_visitor::lower_minmax() { assert(devinfo->ver < 6); bool progress = false; foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { const fs_builder ibld(this, block, inst); if (inst->opcode == ELK_OPCODE_SEL && inst->predicate == ELK_PREDICATE_NONE) { /* If src1 is an immediate value that is not NaN, then it can't be * NaN. In that case, emit CMP because it is much better for cmod * propagation. Likewise if src1 is not float. Gfx4 and Gfx5 don't * support HF or DF, so it is not necessary to check for those. */ if (inst->src[1].type != ELK_REGISTER_TYPE_F || (inst->src[1].file == IMM && !isnan(inst->src[1].f))) { ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], inst->conditional_mod); } else { ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1], inst->conditional_mod); } inst->predicate = ELK_PREDICATE_NORMAL; inst->conditional_mod = ELK_CONDITIONAL_NONE; progress = true; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; } bool elk_fs_visitor::lower_sub_sat() { bool progress = false; foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { const fs_builder ibld(this, block, inst); if (inst->opcode == ELK_SHADER_OPCODE_USUB_SAT || inst->opcode == ELK_SHADER_OPCODE_ISUB_SAT) { /* The fundamental problem is the hardware performs source negation * at the bit width of the source. If the source is 0x80000000D, the * negation is 0x80000000D. As a result, subtractSaturate(0, * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There * are at least three ways to resolve this: * * 1. Use the accumulator for the negated source. The accumulator is * 33 bits, so our source 0x80000000 is sign-extended to * 0x1800000000. The negation of which is 0x080000000. This * doesn't help for 64-bit integers (which are already bigger than * 33 bits). There are also only 8 accumulators, so SIMD16 or * SIMD32 instructions would have to be split into multiple SIMD8 * instructions. * * 2. Use slightly different math. For any n-bit value x, we know (x * >> 1) != -(x >> 1). We can use this fact to only do * subtractions involving (x >> 1). subtractSaturate(a, b) == * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)). * * 3. For unsigned sources, it is sufficient to replace the * subtractSaturate with (a > b) ? a - b : 0. * * It may also be possible to use the SUBB instruction. This * implicitly writes the accumulator, so it could only be used in the * same situations as #1 above. It is further limited by only * allowing UD sources. */ if (inst->exec_size == 8 && inst->src[0].type != ELK_REGISTER_TYPE_Q && inst->src[0].type != ELK_REGISTER_TYPE_UQ) { elk_fs_reg acc(ARF, ELK_ARF_ACCUMULATOR, inst->src[1].type); ibld.MOV(acc, inst->src[1]); elk_fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]); add->saturate = true; add->src[0].negate = true; } else if (inst->opcode == ELK_SHADER_OPCODE_ISUB_SAT) { /* tmp = src1 >> 1; * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp)); */ elk_fs_reg tmp1 = ibld.vgrf(inst->src[0].type); elk_fs_reg tmp2 = ibld.vgrf(inst->src[0].type); elk_fs_reg tmp3 = ibld.vgrf(inst->src[0].type); elk_fs_inst *add; ibld.SHR(tmp1, inst->src[1], elk_imm_d(1)); add = ibld.ADD(tmp2, inst->src[1], tmp1); add->src[1].negate = true; add = ibld.ADD(tmp3, inst->src[0], tmp1); add->src[1].negate = true; add->saturate = true; add = ibld.ADD(inst->dst, tmp3, tmp2); add->src[1].negate = true; add->saturate = true; } else { /* a > b ? a - b : 0 */ ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], ELK_CONDITIONAL_G); elk_fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]); add->src[1].negate = !add->src[1].negate; ibld.SEL(inst->dst, inst->dst, elk_imm_ud(0)) ->predicate = ELK_PREDICATE_NORMAL; } inst->remove(block); progress = true; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); return progress; } /** * Get the mask of SIMD channels enabled during dispatch and not yet disabled * by discard. Due to the layout of the sample mask in the fragment shader * thread payload, \p bld is required to have a dispatch_width() not greater * than 16 for fragment shaders. */ elk_fs_reg elk_sample_mask_reg(const fs_builder &bld) { const elk_fs_visitor &s = *bld.shader; if (s.stage != MESA_SHADER_FRAGMENT) { return elk_imm_ud(0xffffffff); } else if (elk_wm_prog_data(s.stage_prog_data)->uses_kill) { assert(bld.dispatch_width() <= 16); return elk_flag_subreg(sample_mask_flag_subreg(s) + bld.group() / 16); } else { assert(s.devinfo->ver >= 6 && bld.dispatch_width() <= 16); return retype(elk_vec1_grf((bld.group() >= 16 ? 2 : 1), 7), ELK_REGISTER_TYPE_UW); } } uint32_t elk_fb_write_msg_control(const elk_fs_inst *inst, const struct elk_wm_prog_data *prog_data) { uint32_t mctl; if (inst->opcode == ELK_FS_OPCODE_REP_FB_WRITE) { assert(inst->group == 0 && inst->exec_size == 16); mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED; } else if (prog_data->dual_src_blend) { assert(inst->exec_size == 8); if (inst->group % 16 == 0) mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01; else if (inst->group % 16 == 8) mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23; else unreachable("Invalid dual-source FB write instruction group"); } else { assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16)); if (inst->exec_size == 16) mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE; else if (inst->exec_size == 8) mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01; else unreachable("Invalid FB write execution size"); } return mctl; } /** * Predicate the specified instruction on the sample mask. */ void elk_emit_predicate_on_sample_mask(const fs_builder &bld, elk_fs_inst *inst) { assert(bld.shader->stage == MESA_SHADER_FRAGMENT && bld.group() == inst->group && bld.dispatch_width() == inst->exec_size); const elk_fs_visitor &s = *bld.shader; const elk_fs_reg sample_mask = elk_sample_mask_reg(bld); const unsigned subreg = sample_mask_flag_subreg(s); if (elk_wm_prog_data(s.stage_prog_data)->uses_kill) { assert(sample_mask.file == ARF && sample_mask.nr == elk_flag_subreg(subreg).nr && sample_mask.subnr == elk_flag_subreg( subreg + inst->group / 16).subnr); } else { bld.group(1, 0).exec_all() .MOV(elk_flag_subreg(subreg + inst->group / 16), sample_mask); } if (inst->predicate) { assert(inst->predicate == ELK_PREDICATE_NORMAL); assert(!inst->predicate_inverse); assert(inst->flag_subreg == 0); /* Combine the sample mask with the existing predicate by using a * vertical predication mode. */ inst->predicate = ELK_PREDICATE_ALIGN1_ALLV; } else { inst->flag_subreg = subreg; inst->predicate = ELK_PREDICATE_NORMAL; inst->predicate_inverse = false; } } static bool is_mixed_float_with_fp32_dst(const elk_fs_inst *inst) { /* This opcode sometimes uses :W type on the source even if the operand is * a :HF, because in gfx7 there is no support for :HF, and thus it uses :W. */ if (inst->opcode == ELK_OPCODE_F16TO32) return true; if (inst->dst.type != ELK_REGISTER_TYPE_F) return false; for (int i = 0; i < inst->sources; i++) { if (inst->src[i].type == ELK_REGISTER_TYPE_HF) return true; } return false; } static bool is_mixed_float_with_packed_fp16_dst(const elk_fs_inst *inst) { /* This opcode sometimes uses :W type on the destination even if the * destination is a :HF, because in gfx7 there is no support for :HF, and * thus it uses :W. */ if (inst->opcode == ELK_OPCODE_F32TO16 && inst->dst.stride == 1) return true; if (inst->dst.type != ELK_REGISTER_TYPE_HF || inst->dst.stride != 1) return false; for (int i = 0; i < inst->sources; i++) { if (inst->src[i].type == ELK_REGISTER_TYPE_F) return true; } return false; } /** * Get the closest allowed SIMD width for instruction \p inst accounting for * some common regioning and execution control restrictions that apply to FPU * instructions. These restrictions don't necessarily have any relevance to * instructions not executed by the FPU pipeline like extended math, control * flow or send message instructions. * * For virtual opcodes it's really up to the instruction -- In some cases * (e.g. where a virtual instruction unrolls into a simple sequence of FPU * instructions) it may simplify virtual instruction lowering if we can * enforce FPU-like regioning restrictions already on the virtual instruction, * in other cases (e.g. virtual send-like instructions) this may be * excessively restrictive. */ static unsigned get_fpu_lowered_simd_width(const elk_fs_visitor *shader, const elk_fs_inst *inst) { const struct elk_compiler *compiler = shader->compiler; const struct intel_device_info *devinfo = compiler->devinfo; /* Maximum execution size representable in the instruction controls. */ unsigned max_width = MIN2(32, inst->exec_size); /* According to the PRMs: * "A. In Direct Addressing mode, a source cannot span more than 2 * adjacent GRF registers. * B. A destination cannot span more than 2 adjacent GRF registers." * * Look for the source or destination with the largest register region * which is the one that is going to limit the overall execution size of * the instruction due to this rule. */ unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE); for (unsigned i = 0; i < inst->sources; i++) reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE)); /* Calculate the maximum execution size of the instruction based on the * factor by which it goes over the hardware limit of 2 GRFs. */ const unsigned max_reg_count = 2 * reg_unit(devinfo); if (reg_count > max_reg_count) max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, max_reg_count)); /* According to the IVB PRMs: * "When destination spans two registers, the source MUST span two * registers. The exception to the above rule: * * - When source is scalar, the source registers are not incremented. * - When source is packed integer Word and destination is packed * integer DWord, the source register is not incremented but the * source sub register is incremented." * * The hardware specs from Gfx4 to Gfx7.5 mention similar regioning * restrictions. The code below intentionally doesn't check whether the * destination type is integer because empirically the hardware doesn't * seem to care what the actual type is as long as it's dword-aligned. * * HSW PRMs also add a note to the second exception: * "When lower 8 channels are disabled, the sub register of source1 * operand is not incremented. If the lower 8 channels are expected * to be disabled, say by predication, the instruction must be split * into pair of simd8 operations." * * We can't reliably know if the channels won't be disabled due to, * for example, IMASK. So, play it safe and disallow packed-word exception * for src1. */ if (devinfo->ver < 8) { for (unsigned i = 0; i < inst->sources; i++) { /* IVB implements DF scalars as <0;2,1> regions. */ const bool is_scalar_exception = is_uniform(inst->src[i]) && (devinfo->platform == INTEL_PLATFORM_HSW || type_sz(inst->src[i].type) != 8); const bool is_packed_word_exception = i != 1 && type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 && type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1; /* We check size_read(i) against size_written instead of REG_SIZE * because we want to properly handle SIMD32. In SIMD32, you can end * up with writes to 4 registers and a source that reads 2 registers * and we may still need to lower all the way to SIMD8 in that case. */ if (inst->size_written > REG_SIZE && inst->size_read(i) != 0 && inst->size_read(i) < inst->size_written && !is_scalar_exception && !is_packed_word_exception) { const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE); max_width = MIN2(max_width, inst->exec_size / reg_count); } } } if (devinfo->ver < 6) { /* From the G45 PRM, Volume 4 Page 361: * * "Operand Alignment Rule: With the exceptions listed below, a * source/destination operand in general should be aligned to even * 256-bit physical register with a region size equal to two 256-bit * physical registers." * * Normally we enforce this by allocating virtual registers to the * even-aligned class. But we need to handle payload registers. */ for (unsigned i = 0; i < inst->sources; i++) { if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) && inst->size_read(i) > REG_SIZE) { max_width = MIN2(max_width, 8); } } } /* From the IVB PRMs: * "When an instruction is SIMD32, the low 16 bits of the execution mask * are applied for both halves of the SIMD32 instruction. If different * execution mask channels are required, split the instruction into two * SIMD16 instructions." * * There is similar text in the HSW PRMs. Gfx4-6 don't even implement * 32-wide control flow support in hardware and will behave similarly. */ if (devinfo->ver < 8 && !inst->force_writemask_all) max_width = MIN2(max_width, 16); /* From the IVB PRMs (applies to HSW too): * "Instructions with condition modifiers must not use SIMD32." * * From the BDW PRMs (applies to later hardware too): * "Ternary instruction with condition modifiers must not use SIMD32." */ if (inst->conditional_mod && (devinfo->ver < 8 || inst->elk_is_3src(compiler))) max_width = MIN2(max_width, 16); /* From the IVB PRMs (applies to other devices that don't have the * intel_device_info::supports_simd16_3src flag set): * "In Align16 access mode, SIMD16 is not allowed for DW operations and * SIMD8 is not allowed for DF operations." */ if (inst->elk_is_3src(compiler) && !devinfo->supports_simd16_3src) max_width = MIN2(max_width, inst->exec_size / reg_count); /* Pre-Gfx8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is * the 8-bit quarter of the execution mask signals specified in the * instruction control fields) for the second compressed half of any * single-precision instruction (for double-precision instructions * it's hardwired to use NibCtrl+1, at least on HSW), which means that * the EU will apply the wrong execution controls for the second * sequential GRF write if the number of channels per GRF is not exactly * eight in single-precision mode (or four in double-float mode). * * In this situation we calculate the maximum size of the split * instructions so they only ever write to a single register. */ if (devinfo->ver < 8 && inst->size_written > REG_SIZE && !inst->force_writemask_all) { const unsigned channels_per_grf = inst->exec_size / DIV_ROUND_UP(inst->size_written, REG_SIZE); const unsigned exec_type_size = get_exec_type_size(inst); assert(exec_type_size); /* The hardware shifts exactly 8 channels per compressed half of the * instruction in single-precision mode and exactly 4 in double-precision. */ if (channels_per_grf != (exec_type_size == 8 ? 4 : 8)) max_width = MIN2(max_width, channels_per_grf); /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT * because HW applies the same channel enable signals to both halves of * the compressed instruction which will be just wrong under * non-uniform control flow. */ if (devinfo->verx10 == 70 && (exec_type_size == 8 || type_sz(inst->dst.type) == 8)) max_width = MIN2(max_width, 4); } /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "No SIMD16 in mixed mode when destination is f32. Instruction * execution size must be no more than 8." * * FIXME: the simulator doesn't seem to complain if we don't do this and * empirical testing with existing CTS tests show that they pass just fine * without implementing this, however, since our interpretation of the PRM * is that conversion MOVs between HF and F are still mixed-float * instructions (and therefore subject to this restriction) we decided to * split them to be safe. Might be useful to do additional investigation to * lift the restriction if we can ensure that it is safe though, since these * conversions are common when half-float types are involved since many * instructions do not support HF types and conversions from/to F are * required. */ if (is_mixed_float_with_fp32_dst(inst)) max_width = MIN2(max_width, 8); /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "No SIMD16 in mixed mode when destination is packed f16 for both * Align1 and Align16." */ if (is_mixed_float_with_packed_fp16_dst(inst)) max_width = MIN2(max_width, 8); /* Only power-of-two execution sizes are representable in the instruction * control fields. */ return 1 << util_logbase2(max_width); } /** * Get the maximum allowed SIMD width for instruction \p inst accounting for * various payload size restrictions that apply to sampler message * instructions. * * This is only intended to provide a maximum theoretical bound for the * execution size of the message based on the number of argument components * alone, which in most cases will determine whether the SIMD8 or SIMD16 * variant of the message can be used, though some messages may have * additional restrictions not accounted for here (e.g. pre-ILK hardware uses * the message length to determine the exact SIMD width and argument count, * which makes a number of sampler message combinations impossible to * represent). * * Note: Platforms with monolithic SIMD16 double the possible SIMD widths * change from (SIMD8, SIMD16) to (SIMD16, SIMD32). */ static unsigned get_sampler_lowered_simd_width(const struct intel_device_info *devinfo, const elk_fs_inst *inst) { /* If we have a min_lod parameter on anything other than a simple sample * message, it will push it over 5 arguments and we have to fall back to * SIMD8. */ if (inst->opcode != ELK_SHADER_OPCODE_TEX && inst->components_read(TEX_LOGICAL_SRC_MIN_LOD)) return 8; /* Calculate the number of coordinate components that have to be present * assuming that additional arguments follow the texel coordinates in the * message payload. On IVB+ there is no need for padding, on ILK-SNB we * need to pad to four or three components depending on the message, * pre-ILK we need to pad to at most three components. */ const unsigned req_coord_components = (devinfo->ver >= 7 || !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 : (devinfo->ver >= 5 && inst->opcode != ELK_SHADER_OPCODE_TXF_LOGICAL && inst->opcode != ELK_SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 : 3; /* Calculate the total number of argument components that need to be passed * to the sampler unit. */ const unsigned num_payload_components = MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE), req_coord_components) + inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) + inst->components_read(TEX_LOGICAL_SRC_LOD) + inst->components_read(TEX_LOGICAL_SRC_LOD2) + inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) + (inst->opcode == ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL ? inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) + inst->components_read(TEX_LOGICAL_SRC_MCS); const unsigned simd_limit = reg_unit(devinfo) * (num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16); /* SIMD16 (SIMD32 on Xe2) messages with more than five arguments exceed the * maximum message size supported by the sampler, regardless of whether a * header is provided or not. */ return MIN2(inst->exec_size, simd_limit); } /** * Get the closest native SIMD width supported by the hardware for instruction * \p inst. The instruction will be left untouched by * elk_fs_visitor::lower_simd_width() if the returned value is equal to the * original execution size. */ static unsigned get_lowered_simd_width(const elk_fs_visitor *shader, const elk_fs_inst *inst) { const struct elk_compiler *compiler = shader->compiler; const struct intel_device_info *devinfo = compiler->devinfo; switch (inst->opcode) { case ELK_OPCODE_MOV: case ELK_OPCODE_SEL: case ELK_OPCODE_NOT: case ELK_OPCODE_AND: case ELK_OPCODE_OR: case ELK_OPCODE_XOR: case ELK_OPCODE_SHR: case ELK_OPCODE_SHL: case ELK_OPCODE_ASR: case ELK_OPCODE_CMPN: case ELK_OPCODE_CSEL: case ELK_OPCODE_F32TO16: case ELK_OPCODE_F16TO32: case ELK_OPCODE_BFREV: case ELK_OPCODE_BFE: case ELK_OPCODE_ADD: case ELK_OPCODE_MUL: case ELK_OPCODE_AVG: case ELK_OPCODE_FRC: case ELK_OPCODE_RNDU: case ELK_OPCODE_RNDD: case ELK_OPCODE_RNDE: case ELK_OPCODE_RNDZ: case ELK_OPCODE_LZD: case ELK_OPCODE_FBH: case ELK_OPCODE_FBL: case ELK_OPCODE_CBIT: case ELK_OPCODE_SAD2: case ELK_OPCODE_MAD: case ELK_OPCODE_LRP: case ELK_FS_OPCODE_PACK: case ELK_SHADER_OPCODE_SEL_EXEC: case ELK_SHADER_OPCODE_CLUSTER_BROADCAST: case ELK_SHADER_OPCODE_MOV_RELOC_IMM: return get_fpu_lowered_simd_width(shader, inst); case ELK_OPCODE_CMP: { /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that * when the destination is a GRF the dependency-clear bit on the flag * register is cleared early. * * Suggested workarounds are to disable coissuing CMP instructions * or to split CMP(16) instructions into two CMP(8) instructions. * * We choose to split into CMP(8) instructions since disabling * coissuing would affect CMP instructions not otherwise affected by * the errata. */ const unsigned max_width = (devinfo->verx10 == 70 && !inst->dst.is_null() ? 8 : ~0); return MIN2(max_width, get_fpu_lowered_simd_width(shader, inst)); } case ELK_OPCODE_BFI1: case ELK_OPCODE_BFI2: /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we * should * "Force BFI instructions to be executed always in SIMD8." */ return MIN2(devinfo->platform == INTEL_PLATFORM_HSW ? 8 : ~0u, get_fpu_lowered_simd_width(shader, inst)); case ELK_OPCODE_IF: assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16); return inst->exec_size; case ELK_SHADER_OPCODE_RCP: case ELK_SHADER_OPCODE_RSQ: case ELK_SHADER_OPCODE_SQRT: case ELK_SHADER_OPCODE_EXP2: case ELK_SHADER_OPCODE_LOG2: case ELK_SHADER_OPCODE_SIN: case ELK_SHADER_OPCODE_COS: { /* Unary extended math instructions are limited to SIMD8 on Gfx4 and * Gfx6. Extended Math Function is limited to SIMD8 with half-float. */ if (devinfo->ver == 6 || devinfo->verx10 == 40) return MIN2(8, inst->exec_size); if (inst->dst.type == ELK_REGISTER_TYPE_HF) return MIN2(8, inst->exec_size); return MIN2(16, inst->exec_size); } case ELK_SHADER_OPCODE_POW: { /* SIMD16 is only allowed on Gfx7+. Extended Math Function is limited * to SIMD8 with half-float */ if (devinfo->ver < 7) return MIN2(8, inst->exec_size); if (inst->dst.type == ELK_REGISTER_TYPE_HF) return MIN2(8, inst->exec_size); return MIN2(16, inst->exec_size); } case ELK_SHADER_OPCODE_USUB_SAT: case ELK_SHADER_OPCODE_ISUB_SAT: return get_fpu_lowered_simd_width(shader, inst); case ELK_SHADER_OPCODE_INT_QUOTIENT: case ELK_SHADER_OPCODE_INT_REMAINDER: /* Integer division is limited to SIMD8 on all generations. */ return MIN2(8, inst->exec_size); case ELK_FS_OPCODE_LINTERP: case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: case ELK_FS_OPCODE_PACK_HALF_2x16_SPLIT: case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE: case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: return MIN2(16, inst->exec_size); case ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL: /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch * message used to implement varying pull constant loads, so expand it * to SIMD16. An alternative with longer message payload length but * shorter return payload would be to use the SIMD8 sampler message that * takes (header, u, v, r) as parameters instead of (header, u). */ return (devinfo->ver == 4 ? 16 : MIN2(16, inst->exec_size)); case ELK_FS_OPCODE_DDX_COARSE: case ELK_FS_OPCODE_DDX_FINE: case ELK_FS_OPCODE_DDY_COARSE: case ELK_FS_OPCODE_DDY_FINE: /* The implementation of this virtual opcode may require emitting * compressed Align16 instructions, which are severely limited on some * generations. * * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register * Region Restrictions): * * "In Align16 access mode, SIMD16 is not allowed for DW operations * and SIMD8 is not allowed for DF operations." * * In this context, "DW operations" means "operations acting on 32-bit * values", so it includes operations on floats. * * Gfx4 has a similar restriction. From the i965 PRM, section 11.5.3 * (Instruction Compression -> Rules and Restrictions): * * "A compressed instruction must be in Align1 access mode. Align16 * mode instructions cannot be compressed." * * Similar text exists in the g45 PRM. * * Empirically, compressed align16 instructions using odd register * numbers don't appear to work on Sandybridge either. */ return (devinfo->ver == 4 || devinfo->ver == 6 || (devinfo->verx10 == 70) ? MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size)); case ELK_SHADER_OPCODE_MULH: /* MULH is lowered to the MUL/MACH sequence using the accumulator, which * is 8-wide on Gfx7+. */ return (devinfo->ver >= 7 ? 8 : get_fpu_lowered_simd_width(shader, inst)); case ELK_FS_OPCODE_FB_WRITE_LOGICAL: /* Gfx6 doesn't support SIMD16 depth writes but we cannot handle them * here. */ assert(devinfo->ver != 6 || inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE || inst->exec_size == 8); /* Dual-source FB writes are unsupported in SIMD16 mode. */ return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ? 8 : MIN2(16, inst->exec_size)); case ELK_SHADER_OPCODE_TEX_LOGICAL: case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL: case ELK_SHADER_OPCODE_TXF_UMS_LOGICAL: case ELK_SHADER_OPCODE_TXF_MCS_LOGICAL: case ELK_SHADER_OPCODE_LOD_LOGICAL: case ELK_SHADER_OPCODE_TG4_LOGICAL: case ELK_SHADER_OPCODE_SAMPLEINFO_LOGICAL: case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL: case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL: return get_sampler_lowered_simd_width(devinfo, inst); /* On gfx12 parameters are fixed to 16-bit values and therefore they all * always fit regardless of the execution size. */ case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL: return MIN2(16, inst->exec_size); case ELK_SHADER_OPCODE_TXD_LOGICAL: /* TXD is unsupported in SIMD16 mode previous to Xe2. SIMD32 is still * unsuppported on Xe2. */ return 8; case ELK_SHADER_OPCODE_TXL_LOGICAL: case ELK_FS_OPCODE_TXB_LOGICAL: /* Only one execution size is representable pre-ILK depending on whether * the shadow reference argument is present. */ if (devinfo->ver == 4) return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8; else return get_sampler_lowered_simd_width(devinfo, inst); case ELK_SHADER_OPCODE_TXF_LOGICAL: case ELK_SHADER_OPCODE_TXS_LOGICAL: /* Gfx4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD * messages. Use SIMD16 instead. */ if (devinfo->ver == 4) return 16; else return get_sampler_lowered_simd_width(devinfo, inst); case ELK_SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: case ELK_SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: case ELK_SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: return 8; case ELK_SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: case ELK_SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: case ELK_SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: case ELK_SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: case ELK_SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: case ELK_SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL: case ELK_SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL: return MIN2(16, inst->exec_size); case ELK_SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL: case ELK_SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL: case ELK_SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL: case ELK_SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL: return devinfo->ver <= 8 ? 8 : MIN2(16, inst->exec_size); case ELK_SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL: case ELK_SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL: case ELK_SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL: assert(inst->exec_size <= 16); return inst->exec_size; case ELK_SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL: return devinfo->has_lsc ? MIN2(16, inst->exec_size) : 8; case ELK_SHADER_OPCODE_URB_READ_LOGICAL: case ELK_SHADER_OPCODE_URB_WRITE_LOGICAL: return MIN2(8, inst->exec_size); case ELK_SHADER_OPCODE_QUAD_SWIZZLE: { const unsigned swiz = inst->src[1].ud; return (is_uniform(inst->src[0]) ? get_fpu_lowered_simd_width(shader, inst) : type_sz(inst->src[0].type) == 4 ? 8 : swiz == ELK_SWIZZLE_XYXY || swiz == ELK_SWIZZLE_ZWZW ? 4 : get_fpu_lowered_simd_width(shader, inst)); } case ELK_SHADER_OPCODE_MOV_INDIRECT: { /* From IVB and HSW PRMs: * * "2.When the destination requires two registers and the sources are * indirect, the sources must use 1x1 regioning mode. * * In case of DF instructions in HSW/IVB, the exec_size is limited by * the EU decompression logic not handling VxH indirect addressing * correctly. */ const unsigned max_size = (devinfo->ver >= 8 ? 2 : 1) * REG_SIZE; /* Prior to Broadwell, we only have 8 address subregisters. */ return MIN3(devinfo->ver >= 8 ? 16 : 8, max_size / (inst->dst.stride * type_sz(inst->dst.type)), inst->exec_size); } case ELK_SHADER_OPCODE_LOAD_PAYLOAD: { const unsigned reg_count = DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE); if (reg_count > 2) { /* Only LOAD_PAYLOAD instructions with per-channel destination region * can be easily lowered (which excludes headers and heterogeneous * types). */ assert(!inst->header_size); for (unsigned i = 0; i < inst->sources; i++) assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) || inst->src[i].file == BAD_FILE); return inst->exec_size / DIV_ROUND_UP(reg_count, 2); } else { return inst->exec_size; } } default: return inst->exec_size; } } /** * Return true if splitting out the group of channels of instruction \p inst * given by lbld.group() requires allocating a temporary for the i-th source * of the lowered instruction. */ static inline bool needs_src_copy(const fs_builder &lbld, const elk_fs_inst *inst, unsigned i) { return !(is_periodic(inst->src[i], lbld.dispatch_width()) || (inst->components_read(i) == 1 && lbld.dispatch_width() <= inst->exec_size)) || (inst->flags_written(lbld.shader->devinfo) & flag_mask(inst->src[i], type_sz(inst->src[i].type))); } /** * Extract the data that would be consumed by the channel group given by * lbld.group() from the i-th source region of instruction \p inst and return * it as result in packed form. */ static elk_fs_reg emit_unzip(const fs_builder &lbld, elk_fs_inst *inst, unsigned i) { assert(lbld.group() >= inst->group); /* Specified channel group from the source region. */ const elk_fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group); if (needs_src_copy(lbld, inst, i)) { /* Builder of the right width to perform the copy avoiding uninitialized * data if the lowered execution size is greater than the original * execution size of the instruction. */ const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(), inst->exec_size), 0); const elk_fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i)); for (unsigned k = 0; k < inst->components_read(i); ++k) cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k)); return tmp; } else if (is_periodic(inst->src[i], lbld.dispatch_width())) { /* The source is invariant for all dispatch_width-wide groups of the * original region. */ return inst->src[i]; } else { /* We can just point the lowered instruction at the right channel group * from the original region. */ return src; } } /** * Return true if splitting out the group of channels of instruction \p inst * given by lbld.group() requires allocating a temporary for the destination * of the lowered instruction and copying the data back to the original * destination region. */ static inline bool needs_dst_copy(const fs_builder &lbld, const elk_fs_inst *inst) { if (inst->dst.is_null()) return false; /* If the instruction writes more than one component we'll have to shuffle * the results of multiple lowered instructions in order to make sure that * they end up arranged correctly in the original destination region. */ if (inst->size_written > inst->dst.component_size(inst->exec_size)) return true; /* If the lowered execution size is larger than the original the result of * the instruction won't fit in the original destination, so we'll have to * allocate a temporary in any case. */ if (lbld.dispatch_width() > inst->exec_size) return true; for (unsigned i = 0; i < inst->sources; i++) { /* If we already made a copy of the source for other reasons there won't * be any overlap with the destination. */ if (needs_src_copy(lbld, inst, i)) continue; /* In order to keep the logic simple we emit a copy whenever the * destination region doesn't exactly match an overlapping source, which * may point at the source and destination not being aligned group by * group which could cause one of the lowered instructions to overwrite * the data read from the same source by other lowered instructions. */ if (regions_overlap(inst->dst, inst->size_written, inst->src[i], inst->size_read(i)) && !inst->dst.equals(inst->src[i])) return true; } return false; } /** * Insert data from a packed temporary into the channel group given by * lbld.group() of the destination region of instruction \p inst and return * the temporary as result. Any copy instructions that are required for * unzipping the previous value (in the case of partial writes) will be * inserted using \p lbld_before and any copy instructions required for * zipping up the destination of \p inst will be inserted using \p lbld_after. */ static elk_fs_reg emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after, elk_fs_inst *inst) { assert(lbld_before.dispatch_width() == lbld_after.dispatch_width()); assert(lbld_before.group() == lbld_after.group()); assert(lbld_after.group() >= inst->group); const struct intel_device_info *devinfo = lbld_before.shader->devinfo; /* Specified channel group from the destination region. */ const elk_fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group); if (!needs_dst_copy(lbld_after, inst)) { /* No need to allocate a temporary for the lowered instruction, just * take the right group of channels from the original region. */ return dst; } /* Deal with the residency data part later */ const unsigned residency_size = inst->has_sampler_residency() ? (reg_unit(devinfo) * REG_SIZE) : 0; const unsigned dst_size = (inst->size_written - residency_size) / inst->dst.component_size(inst->exec_size); const elk_fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size + inst->has_sampler_residency()); if (inst->predicate) { /* Handle predication by copying the original contents of the * destination into the temporary before emitting the lowered * instruction. */ const fs_builder gbld_before = lbld_before.group(MIN2(lbld_before.dispatch_width(), inst->exec_size), 0); for (unsigned k = 0; k < dst_size; ++k) { gbld_before.MOV(offset(tmp, lbld_before, k), offset(dst, inst->exec_size, k)); } } const fs_builder gbld_after = lbld_after.group(MIN2(lbld_after.dispatch_width(), inst->exec_size), 0); for (unsigned k = 0; k < dst_size; ++k) { /* Use a builder of the right width to perform the copy avoiding * uninitialized data if the lowered execution size is greater than the * original execution size of the instruction. */ gbld_after.MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld_after, k)); } if (inst->has_sampler_residency()) { /* Sampler messages with residency need a special attention. In the * first lane of the last component are located the Pixel Null Mask * (bits 0:15) & some upper bits we need to discard (bits 16:31). We * have to build a single 32bit value for the SIMD32 message out of 2 * SIMD16 16 bit values. */ const fs_builder rbld = gbld_after.exec_all().group(1, 0); elk_fs_reg local_res_reg = component( retype(offset(tmp, lbld_before, dst_size), ELK_REGISTER_TYPE_UW), 0); elk_fs_reg final_res_reg = retype(byte_offset(inst->dst, inst->size_written - residency_size + gbld_after.group() / 8), ELK_REGISTER_TYPE_UW); rbld.MOV(final_res_reg, local_res_reg); } return tmp; } bool elk_fs_visitor::lower_simd_width() { bool progress = false; foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { const unsigned lower_width = get_lowered_simd_width(this, inst); if (lower_width != inst->exec_size) { /* Builder matching the original instruction. We may also need to * emit an instruction of width larger than the original, set the * execution size of the builder to the highest of both for now so * we're sure that both cases can be handled. */ const unsigned max_width = MAX2(inst->exec_size, lower_width); const fs_builder bld = fs_builder(this, MAX2(max_width, dispatch_width)).at_end(); const fs_builder ibld = bld.at(block, inst) .exec_all(inst->force_writemask_all) .group(max_width, inst->group / max_width); /* Split the copies in chunks of the execution width of either the * original or the lowered instruction, whichever is lower. */ const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width); const unsigned residency_size = inst->has_sampler_residency() ? (reg_unit(devinfo) * REG_SIZE) : 0; const unsigned dst_size = (inst->size_written - residency_size) / inst->dst.component_size(inst->exec_size); assert(!inst->writes_accumulator && !inst->mlen); /* Inserting the zip, unzip, and duplicated instructions in all of * the right spots is somewhat tricky. All of the unzip and any * instructions from the zip which unzip the destination prior to * writing need to happen before all of the per-group instructions * and the zip instructions need to happen after. In order to sort * this all out, we insert the unzip instructions before \p inst, * insert the per-group instructions after \p inst (i.e. before * inst->next), and insert the zip instructions before the * instruction after \p inst. Since we are inserting instructions * after \p inst, inst->next is a moving target and we need to save * it off here so that we insert the zip instructions in the right * place. * * Since we're inserting split instructions after after_inst, the * instructions will end up in the reverse order that we insert them. * However, certain render target writes require that the low group * instructions come before the high group. From the Ivy Bridge PRM * Vol. 4, Pt. 1, Section 3.9.11: * * "If multiple SIMD8 Dual Source messages are delivered by the * pixel shader thread, each SIMD8_DUALSRC_LO message must be * issued before the SIMD8_DUALSRC_HI message with the same Slot * Group Select setting." * * And, from Section 3.9.11.1 of the same PRM: * * "When SIMD32 or SIMD16 PS threads send render target writes * with multiple SIMD8 and SIMD16 messages, the following must * hold: * * All the slots (as described above) must have a corresponding * render target write irrespective of the slot's validity. A slot * is considered valid when at least one sample is enabled. For * example, a SIMD16 PS thread must send two SIMD8 render target * writes to cover all the slots. * * PS thread must send SIMD render target write messages with * increasing slot numbers. For example, SIMD16 thread has * Slot[15:0] and if two SIMD8 render target writes are used, the * first SIMD8 render target write must send Slot[7:0] and the * next one must send Slot[15:8]." * * In order to make low group instructions come before high group * instructions (this is required for some render target writes), we * split from the highest group to lowest. */ exec_node *const after_inst = inst->next; for (int i = n - 1; i >= 0; i--) { /* Emit a copy of the original instruction with the lowered width. * If the EOT flag was set throw it away except for the last * instruction to avoid killing the thread prematurely. */ elk_fs_inst split_inst = *inst; split_inst.exec_size = lower_width; split_inst.eot = inst->eot && i == int(n - 1); /* Select the correct channel enables for the i-th group, then * transform the sources and destination and emit the lowered * instruction. */ const fs_builder lbld = ibld.group(lower_width, i); for (unsigned j = 0; j < inst->sources; j++) split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j); split_inst.dst = emit_zip(lbld.at(block, inst), lbld.at(block, after_inst), inst); split_inst.size_written = split_inst.dst.component_size(lower_width) * dst_size + residency_size; lbld.at(block, inst->next).emit(split_inst); } inst->remove(block); progress = true; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); return progress; } /** * Transform barycentric vectors into the interleaved form expected by the PLN * instruction and returned by the Gfx7+ PI shared function. * * For channels 0-15 in SIMD16 mode they are expected to be laid out as * follows in the register file: * * rN+0: X[0-7] * rN+1: Y[0-7] * rN+2: X[8-15] * rN+3: Y[8-15] * * There is no need to handle SIMD32 here -- This is expected to be run after * SIMD lowering, since SIMD lowering relies on vectors having the standard * component layout. */ bool elk_fs_visitor::lower_barycentrics() { const bool has_interleaved_layout = devinfo->has_pln || devinfo->ver >= 7; bool progress = false; if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout) return false; foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { if (inst->exec_size < 16) continue; const fs_builder ibld(this, block, inst); const fs_builder ubld = ibld.exec_all().group(8, 0); switch (inst->opcode) { case ELK_FS_OPCODE_LINTERP : { assert(inst->exec_size == 16); const elk_fs_reg tmp = ibld.vgrf(inst->src[0].type, 2); elk_fs_reg srcs[4]; for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++) srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2), 8 * (i / 2)); ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs)); inst->src[0] = tmp; progress = true; break; } case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE: case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: { assert(inst->exec_size == 16); const elk_fs_reg tmp = ibld.vgrf(inst->dst.type, 2); for (unsigned i = 0; i < 2; i++) { for (unsigned g = 0; g < inst->exec_size / 8; g++) { elk_fs_inst *mov = ibld.at(block, inst->next).group(8, g) .MOV(horiz_offset(offset(inst->dst, ibld, i), 8 * g), offset(tmp, ubld, 2 * g + i)); mov->predicate = inst->predicate; mov->predicate_inverse = inst->predicate_inverse; mov->flag_subreg = inst->flag_subreg; } } inst->dst = tmp; progress = true; break; } default: break; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); return progress; } bool elk_fs_visitor::lower_find_live_channel() { bool progress = false; if (devinfo->ver < 8) return false; bool packed_dispatch = elk_stage_has_packed_dispatch(devinfo, stage, stage_prog_data); bool vmask = stage == MESA_SHADER_FRAGMENT && elk_wm_prog_data(stage_prog_data)->uses_vmask; foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) { if (inst->opcode != ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL && inst->opcode != ELK_SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL) continue; bool first = inst->opcode == ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL; /* Getting the first active channel index is easy on Gfx8: Just find * the first bit set in the execution mask. The register exists on * HSW already but it reads back as all ones when the current * instruction has execution masking disabled, so it's kind of * useless there. */ elk_fs_reg exec_mask(retype(elk_mask_reg(0), ELK_REGISTER_TYPE_UD)); const fs_builder ibld(this, block, inst); if (!inst->is_partial_write()) ibld.emit_undef_for_dst(inst); const fs_builder ubld = fs_builder(this, block, inst).exec_all().group(1, 0); /* ce0 doesn't consider the thread dispatch mask (DMask or VMask), * so combine the execution and dispatch masks to obtain the true mask. * * If we're looking for the first live channel, and we have packed * dispatch, we can skip this step, as we know all dispatched channels * will appear at the front of the mask. */ if (!(first && packed_dispatch)) { elk_fs_reg mask = ubld.vgrf(ELK_REGISTER_TYPE_UD); ubld.UNDEF(mask); ubld.emit(ELK_SHADER_OPCODE_READ_SR_REG, mask, elk_imm_ud(vmask ? 3 : 2)); /* Quarter control has the effect of magically shifting the value of * ce0 so you'll get the first/last active channel relative to the * specified quarter control as result. */ if (inst->group > 0) ubld.SHR(mask, mask, elk_imm_ud(ALIGN(inst->group, 8))); ubld.AND(mask, exec_mask, mask); exec_mask = mask; } if (first) { ubld.FBL(inst->dst, exec_mask); } else { elk_fs_reg tmp = ubld.vgrf(ELK_REGISTER_TYPE_UD, 1); ubld.UNDEF(tmp); ubld.LZD(tmp, exec_mask); ubld.ADD(inst->dst, negate(tmp), elk_imm_uw(31)); } inst->remove(block); progress = true; } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); return progress; } void elk_fs_visitor::dump_instructions_to_file(FILE *file) const { if (cfg) { const register_pressure &rp = regpressure_analysis.require(); unsigned ip = 0, max_pressure = 0; unsigned cf_count = 0; foreach_block_and_inst(block, elk_backend_instruction, inst, cfg) { if (inst->is_control_flow_end()) cf_count -= 1; max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]); fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip); for (unsigned i = 0; i < cf_count; i++) fprintf(file, " "); dump_instruction(inst, file); ip++; if (inst->is_control_flow_begin()) cf_count += 1; } fprintf(file, "Maximum %3d registers live at once.\n", max_pressure); } else { int ip = 0; foreach_in_list(elk_backend_instruction, inst, &instructions) { fprintf(file, "%4d: ", ip++); dump_instruction(inst, file); } } } void elk_fs_visitor::dump_instruction_to_file(const elk_backend_instruction *be_inst, FILE *file) const { const elk_fs_inst *inst = (const elk_fs_inst *)be_inst; if (inst->predicate) { fprintf(file, "(%cf%d.%d) ", inst->predicate_inverse ? '-' : '+', inst->flag_subreg / 2, inst->flag_subreg % 2); } fprintf(file, "%s", elk_instruction_name(&compiler->isa, inst->opcode)); if (inst->saturate) fprintf(file, ".sat"); if (inst->conditional_mod) { fprintf(file, "%s", elk_conditional_modifier[inst->conditional_mod]); if (!inst->predicate && (devinfo->ver < 5 || (inst->opcode != ELK_OPCODE_SEL && inst->opcode != ELK_OPCODE_CSEL && inst->opcode != ELK_OPCODE_IF && inst->opcode != ELK_OPCODE_WHILE))) { fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2); } } fprintf(file, "(%d) ", inst->exec_size); if (inst->mlen) { fprintf(file, "(mlen: %d) ", inst->mlen); } if (inst->eot) { fprintf(file, "(EOT) "); } switch (inst->dst.file) { case VGRF: fprintf(file, "vgrf%d", inst->dst.nr); break; case FIXED_GRF: fprintf(file, "g%d", inst->dst.nr); break; case MRF: fprintf(file, "m%d", inst->dst.nr); break; case BAD_FILE: fprintf(file, "(null)"); break; case UNIFORM: fprintf(file, "***u%d***", inst->dst.nr); break; case ATTR: fprintf(file, "***attr%d***", inst->dst.nr); break; case ARF: switch (inst->dst.nr) { case ELK_ARF_NULL: fprintf(file, "null"); break; case ELK_ARF_ADDRESS: fprintf(file, "a0.%d", inst->dst.subnr); break; case ELK_ARF_ACCUMULATOR: fprintf(file, "acc%d", inst->dst.subnr); break; case ELK_ARF_FLAG: fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); break; default: fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); break; } break; case IMM: unreachable("not reached"); } if (inst->dst.offset || (inst->dst.file == VGRF && alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE); fprintf(file, "+%d.%d", inst->dst.offset / reg_size, inst->dst.offset % reg_size); } if (inst->dst.stride != 1) fprintf(file, "<%u>", inst->dst.stride); fprintf(file, ":%s, ", elk_reg_type_to_letters(inst->dst.type)); for (int i = 0; i < inst->sources; i++) { if (inst->src[i].negate) fprintf(file, "-"); if (inst->src[i].abs) fprintf(file, "|"); switch (inst->src[i].file) { case VGRF: fprintf(file, "vgrf%d", inst->src[i].nr); break; case FIXED_GRF: fprintf(file, "g%d", inst->src[i].nr); break; case MRF: fprintf(file, "***m%d***", inst->src[i].nr); break; case ATTR: fprintf(file, "attr%d", inst->src[i].nr); break; case UNIFORM: fprintf(file, "u%d", inst->src[i].nr); break; case BAD_FILE: fprintf(file, "(null)"); break; case IMM: switch (inst->src[i].type) { case ELK_REGISTER_TYPE_HF: fprintf(file, "%-ghf", _mesa_half_to_float(inst->src[i].ud & 0xffff)); break; case ELK_REGISTER_TYPE_F: fprintf(file, "%-gf", inst->src[i].f); break; case ELK_REGISTER_TYPE_DF: fprintf(file, "%fdf", inst->src[i].df); break; case ELK_REGISTER_TYPE_W: case ELK_REGISTER_TYPE_D: fprintf(file, "%dd", inst->src[i].d); break; case ELK_REGISTER_TYPE_UW: case ELK_REGISTER_TYPE_UD: fprintf(file, "%uu", inst->src[i].ud); break; case ELK_REGISTER_TYPE_Q: fprintf(file, "%" PRId64 "q", inst->src[i].d64); break; case ELK_REGISTER_TYPE_UQ: fprintf(file, "%" PRIu64 "uq", inst->src[i].u64); break; case ELK_REGISTER_TYPE_VF: fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", elk_vf_to_float((inst->src[i].ud >> 0) & 0xff), elk_vf_to_float((inst->src[i].ud >> 8) & 0xff), elk_vf_to_float((inst->src[i].ud >> 16) & 0xff), elk_vf_to_float((inst->src[i].ud >> 24) & 0xff)); break; case ELK_REGISTER_TYPE_V: case ELK_REGISTER_TYPE_UV: fprintf(file, "%08x%s", inst->src[i].ud, inst->src[i].type == ELK_REGISTER_TYPE_V ? "V" : "UV"); break; default: fprintf(file, "???"); break; } break; case ARF: switch (inst->src[i].nr) { case ELK_ARF_NULL: fprintf(file, "null"); break; case ELK_ARF_ADDRESS: fprintf(file, "a0.%d", inst->src[i].subnr); break; case ELK_ARF_ACCUMULATOR: fprintf(file, "acc%d", inst->src[i].subnr); break; case ELK_ARF_FLAG: fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); break; default: fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); break; } break; } if (inst->src[i].offset || (inst->src[i].file == VGRF && alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE); fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, inst->src[i].offset % reg_size); } if (inst->src[i].abs) fprintf(file, "|"); if (inst->src[i].file != IMM) { unsigned stride; if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) { unsigned hstride = inst->src[i].hstride; stride = (hstride == 0 ? 0 : (1 << (hstride - 1))); } else { stride = inst->src[i].stride; } if (stride != 1) fprintf(file, "<%u>", stride); fprintf(file, ":%s", elk_reg_type_to_letters(inst->src[i].type)); } if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE) fprintf(file, ", "); } fprintf(file, " "); if (inst->force_writemask_all) fprintf(file, "NoMask "); if (inst->exec_size != dispatch_width) fprintf(file, "group%d ", inst->group); fprintf(file, "\n"); } elk::register_pressure::register_pressure(const elk_fs_visitor *v) { const fs_live_variables &live = v->live_analysis.require(); const unsigned num_instructions = v->cfg->num_blocks ? v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0; regs_live_at_ip = new unsigned[num_instructions](); for (unsigned reg = 0; reg < v->alloc.count; reg++) { for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++) regs_live_at_ip[ip] += v->alloc.sizes[reg]; } const unsigned payload_count = v->first_non_payload_grf; int *payload_last_use_ip = new int[payload_count]; v->calculate_payload_ranges(payload_count, payload_last_use_ip); for (unsigned reg = 0; reg < payload_count; reg++) { for (int ip = 0; ip < payload_last_use_ip[reg]; ip++) ++regs_live_at_ip[ip]; } delete[] payload_last_use_ip; } elk::register_pressure::~register_pressure() { delete[] regs_live_at_ip; } void elk_fs_visitor::invalidate_analysis(elk::analysis_dependency_class c) { elk_backend_shader::invalidate_analysis(c); live_analysis.invalidate(c); regpressure_analysis.invalidate(c); } void elk_fs_visitor::debug_optimizer(const nir_shader *nir, const char *pass_name, int iteration, int pass_num) const { if (!elk_should_print_shader(nir, DEBUG_OPTIMIZER)) return; char *filename; int ret = asprintf(&filename, "%s/%s%d-%s-%02d-%02d-%s", debug_get_option("INTEL_SHADER_OPTIMIZER_PATH", "./"), _mesa_shader_stage_to_abbrev(stage), dispatch_width, nir->info.name, iteration, pass_num, pass_name); if (ret == -1) return; dump_instructions(filename); free(filename); } void elk_fs_visitor::optimize() { debug_optimizer(nir, "start", 0, 0); /* Start by validating the shader we currently have. */ validate(); bool progress = false; int iteration = 0; int pass_num = 0; #define OPT(pass, args...) ({ \ pass_num++; \ bool this_progress = pass(args); \ \ if (this_progress) \ debug_optimizer(nir, #pass, iteration, pass_num); \ \ validate(); \ \ progress = progress || this_progress; \ this_progress; \ }) assign_constant_locations(); OPT(lower_constant_loads); validate(); OPT(split_virtual_grfs); /* Before anything else, eliminate dead code. The results of some NIR * instructions may effectively be calculated twice. Once when the * instruction is encountered, and again when the user of that result is * encountered. Wipe those away before algebraic optimizations and * especially copy propagation can mix things up. */ OPT(dead_code_eliminate); OPT(remove_extra_rounding_modes); do { progress = false; pass_num = 0; iteration++; OPT(remove_duplicate_mrf_writes); OPT(opt_algebraic); OPT(opt_cse); OPT(opt_copy_propagation); OPT(elk_opt_predicated_break, this); OPT(opt_cmod_propagation); OPT(dead_code_eliminate); OPT(opt_peephole_sel); OPT(elk_dead_control_flow_eliminate, this); OPT(opt_saturate_propagation); OPT(register_coalesce); OPT(compute_to_mrf); OPT(eliminate_find_live_channel); OPT(compact_virtual_grfs); } while (progress); progress = false; pass_num = 0; if (OPT(lower_pack)) { OPT(register_coalesce); OPT(dead_code_eliminate); } OPT(lower_simd_width); OPT(lower_barycentrics); OPT(lower_logical_sends); /* After logical SEND lowering. */ if (OPT(opt_copy_propagation)) OPT(opt_algebraic); /* Identify trailing zeros LOAD_PAYLOAD of sampler messages. * Do this before splitting SENDs. */ if (devinfo->ver >= 7) { if (OPT(opt_zero_samples) && OPT(opt_copy_propagation)) OPT(opt_algebraic); } if (progress) { if (OPT(opt_copy_propagation)) OPT(opt_algebraic); /* Run after logical send lowering to give it a chance to CSE the * LOAD_PAYLOAD instructions created to construct the payloads of * e.g. texturing messages in cases where it wasn't possible to CSE the * whole logical instruction. */ OPT(opt_cse); OPT(register_coalesce); OPT(compute_to_mrf); OPT(dead_code_eliminate); OPT(remove_duplicate_mrf_writes); OPT(opt_peephole_sel); } OPT(opt_redundant_halt); if (OPT(lower_load_payload)) { OPT(split_virtual_grfs); /* Lower 64 bit MOVs generated by payload lowering. */ if (!devinfo->has_64bit_float || !devinfo->has_64bit_int) OPT(opt_algebraic); OPT(register_coalesce); OPT(lower_simd_width); OPT(compute_to_mrf); OPT(dead_code_eliminate); } OPT(opt_combine_constants); if (OPT(lower_integer_multiplication)) { /* If lower_integer_multiplication made progress, it may have produced * some 32x32-bit MULs in the process of lowering 64-bit MULs. Run it * one more time to clean those up if they exist. */ OPT(lower_integer_multiplication); } OPT(lower_sub_sat); if (devinfo->ver <= 5 && OPT(lower_minmax)) { OPT(opt_cmod_propagation); OPT(opt_cse); if (OPT(opt_copy_propagation)) OPT(opt_algebraic); OPT(dead_code_eliminate); } progress = false; OPT(lower_regioning); if (progress) { if (OPT(opt_copy_propagation)) OPT(opt_algebraic); OPT(dead_code_eliminate); OPT(lower_simd_width); } OPT(lower_uniform_pull_constant_loads); OPT(lower_find_live_channel); validate(); } /** * Three source instruction must have a GRF/MRF destination register. * ARF NULL is not allowed. Fix that up by allocating a temporary GRF. */ void elk_fs_visitor::fixup_3src_null_dest() { bool progress = false; foreach_block_and_inst_safe (block, elk_fs_inst, inst, cfg) { if (inst->elk_is_3src(compiler) && inst->dst.is_null()) { inst->dst = elk_fs_reg(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type); progress = true; } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES); } uint32_t elk_fs_visitor::compute_max_register_pressure() { const register_pressure &rp = regpressure_analysis.require(); uint32_t ip = 0, max_pressure = 0; foreach_block_and_inst(block, elk_backend_instruction, inst, cfg) { max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]); ip++; } return max_pressure; } static elk_fs_inst ** save_instruction_order(const struct elk_cfg_t *cfg) { /* Before we schedule anything, stash off the instruction order as an array * of elk_fs_inst *. This way, we can reset it between scheduling passes to * prevent dependencies between the different scheduling modes. */ int num_insts = cfg->last_block()->end_ip + 1; elk_fs_inst **inst_arr = new elk_fs_inst * [num_insts]; int ip = 0; foreach_block_and_inst(block, elk_fs_inst, inst, cfg) { assert(ip >= block->start_ip && ip <= block->end_ip); inst_arr[ip++] = inst; } assert(ip == num_insts); return inst_arr; } static void restore_instruction_order(struct elk_cfg_t *cfg, elk_fs_inst **inst_arr) { ASSERTED int num_insts = cfg->last_block()->end_ip + 1; int ip = 0; foreach_block (block, cfg) { block->instructions.make_empty(); assert(ip == block->start_ip); for (; ip <= block->end_ip; ip++) block->instructions.push_tail(inst_arr[ip]); } assert(ip == num_insts); } void elk_fs_visitor::allocate_registers(bool allow_spilling) { bool allocated; static const enum instruction_scheduler_mode pre_modes[] = { SCHEDULE_PRE, SCHEDULE_PRE_NON_LIFO, SCHEDULE_NONE, SCHEDULE_PRE_LIFO, }; static const char *scheduler_mode_name[] = { [SCHEDULE_PRE] = "top-down", [SCHEDULE_PRE_NON_LIFO] = "non-lifo", [SCHEDULE_PRE_LIFO] = "lifo", [SCHEDULE_POST] = "post", [SCHEDULE_NONE] = "none", }; uint32_t best_register_pressure = UINT32_MAX; enum instruction_scheduler_mode best_sched = SCHEDULE_NONE; compact_virtual_grfs(); if (needs_register_pressure) shader_stats.max_register_pressure = compute_max_register_pressure(); debug_optimizer(nir, "pre_register_allocate", 90, 90); bool spill_all = allow_spilling && INTEL_DEBUG(DEBUG_SPILL_FS); /* Before we schedule anything, stash off the instruction order as an array * of elk_fs_inst *. This way, we can reset it between scheduling passes to * prevent dependencies between the different scheduling modes. */ elk_fs_inst **orig_order = save_instruction_order(cfg); elk_fs_inst **best_pressure_order = NULL; void *scheduler_ctx = ralloc_context(NULL); elk_fs_instruction_scheduler *sched = prepare_scheduler(scheduler_ctx); /* Try each scheduling heuristic to see if it can successfully register * allocate without spilling. They should be ordered by decreasing * performance but increasing likelihood of allocating. */ for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) { enum instruction_scheduler_mode sched_mode = pre_modes[i]; schedule_instructions_pre_ra(sched, sched_mode); this->shader_stats.scheduler_mode = scheduler_mode_name[sched_mode]; debug_optimizer(nir, shader_stats.scheduler_mode, 95, i); if (0) { assign_regs_trivial(); allocated = true; break; } /* We should only spill registers on the last scheduling. */ assert(!spilled_any_registers); allocated = assign_regs(false, spill_all); if (allocated) break; /* Save the maximum register pressure */ uint32_t this_pressure = compute_max_register_pressure(); if (0) { fprintf(stderr, "Scheduler mode \"%s\" spilled, max pressure = %u\n", scheduler_mode_name[sched_mode], this_pressure); } if (this_pressure < best_register_pressure) { best_register_pressure = this_pressure; best_sched = sched_mode; delete[] best_pressure_order; best_pressure_order = save_instruction_order(cfg); } /* Reset back to the original order before trying the next mode */ restore_instruction_order(cfg, orig_order); invalidate_analysis(DEPENDENCY_INSTRUCTIONS); } ralloc_free(scheduler_ctx); if (!allocated) { if (0) { fprintf(stderr, "Spilling - using lowest-pressure mode \"%s\"\n", scheduler_mode_name[best_sched]); } restore_instruction_order(cfg, best_pressure_order); shader_stats.scheduler_mode = scheduler_mode_name[best_sched]; allocated = assign_regs(allow_spilling, spill_all); } delete[] orig_order; delete[] best_pressure_order; if (!allocated) { fail("Failure to register allocate. Reduce number of " "live scalar values to avoid this."); } else if (spilled_any_registers) { elk_shader_perf_log(compiler, log_data, "%s shader triggered register spilling. " "Try reducing the number of live scalar " "values to improve performance.\n", _mesa_shader_stage_to_string(stage)); } /* This must come after all optimization and register allocation, since * it inserts dead code that happens to have side effects, and it does * so based on the actual physical registers in use. */ insert_gfx4_send_dependency_workarounds(); if (failed) return; opt_bank_conflicts(); schedule_instructions_post_ra(); if (last_scratch > 0) { ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024; /* Take the max of any previously compiled variant of the shader. In the * case of bindless shaders with return parts, this will also take the * max of all parts. */ prog_data->total_scratch = MAX2(elk_get_scratch_size(last_scratch), prog_data->total_scratch); if (gl_shader_stage_is_compute(stage)) { if (devinfo->platform == INTEL_PLATFORM_HSW) { /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space" * field documentation, Haswell supports a minimum of 2kB of * scratch space for compute shaders, unlike every other stage * and platform. */ prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048); } else if (devinfo->ver <= 7) { /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space" * field documentation, platforms prior to Haswell measure scratch * size linearly with a range of [1kB, 12kB] and 1kB granularity. */ prog_data->total_scratch = ALIGN(last_scratch, 1024); max_scratch_size = 12 * 1024; } } /* We currently only support up to 2MB of scratch space. If we * need to support more eventually, the documentation suggests * that we could allocate a larger buffer, and partition it out * ourselves. We'd just have to undo the hardware's address * calculation by subtracting (FFTID * Per Thread Scratch Space) * and then add FFTID * (Larger Per Thread Scratch Space). * * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline > * Thread Group Tracking > Local Memory/Scratch Space. */ assert(prog_data->total_scratch < max_scratch_size); } } bool elk_fs_visitor::run_vs() { assert(stage == MESA_SHADER_VERTEX); payload_ = new elk_vs_thread_payload(*this); nir_to_elk(this); if (failed) return false; emit_urb_writes(); calculate_cfg(); optimize(); assign_curb_setup(); assign_vs_urb_setup(); fixup_3src_null_dest(); allocate_registers(true /* allow_spilling */); return !failed; } void elk_fs_visitor::set_tcs_invocation_id() { struct elk_tcs_prog_data *tcs_prog_data = elk_tcs_prog_data(prog_data); struct elk_vue_prog_data *vue_prog_data = &tcs_prog_data->base; const fs_builder bld = fs_builder(this).at_end(); const unsigned instance_id_mask = INTEL_MASK(23, 17); const unsigned instance_id_shift = 17; elk_fs_reg t = bld.vgrf(ELK_REGISTER_TYPE_UD); bld.AND(t, elk_fs_reg(retype(elk_vec1_grf(0, 2), ELK_REGISTER_TYPE_UD)), elk_imm_ud(instance_id_mask)); invocation_id = bld.vgrf(ELK_REGISTER_TYPE_UD); if (vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH) { /* gl_InvocationID is just the thread number */ bld.SHR(invocation_id, t, elk_imm_ud(instance_id_shift)); return; } assert(vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH); elk_fs_reg channels_uw = bld.vgrf(ELK_REGISTER_TYPE_UW); elk_fs_reg channels_ud = bld.vgrf(ELK_REGISTER_TYPE_UD); bld.MOV(channels_uw, elk_fs_reg(elk_imm_uv(0x76543210))); bld.MOV(channels_ud, channels_uw); if (tcs_prog_data->instances == 1) { invocation_id = channels_ud; } else { elk_fs_reg instance_times_8 = bld.vgrf(ELK_REGISTER_TYPE_UD); bld.SHR(instance_times_8, t, elk_imm_ud(instance_id_shift - 3)); bld.ADD(invocation_id, instance_times_8, channels_ud); } } void elk_fs_visitor::emit_tcs_thread_end() { /* Try and tag the last URB write with EOT instead of emitting a whole * separate write just to finish the thread. There isn't guaranteed to * be one, so this may not succeed. */ if (devinfo->ver != 8 && mark_last_urb_write_with_eot()) return; const fs_builder bld = fs_builder(this).at_end(); /* Emit a URB write to end the thread. On Broadwell, we use this to write * zero to the "TR DS Cache Disable" bit (we haven't implemented a fancy * algorithm to set it optimally). On other platforms, we simply write * zero to a reserved/MBZ patch header DWord which has no consequence. */ elk_fs_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = tcs_payload().patch_urb_output; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = elk_imm_ud(WRITEMASK_X << 16); srcs[URB_LOGICAL_SRC_DATA] = elk_imm_ud(0); srcs[URB_LOGICAL_SRC_COMPONENTS] = elk_imm_ud(1); elk_fs_inst *inst = bld.emit(ELK_SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); inst->eot = true; } bool elk_fs_visitor::run_tcs() { assert(stage == MESA_SHADER_TESS_CTRL); struct elk_vue_prog_data *vue_prog_data = elk_vue_prog_data(prog_data); const fs_builder bld = fs_builder(this).at_end(); assert(vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH || vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH); payload_ = new elk_tcs_thread_payload(*this); /* Initialize gl_InvocationID */ set_tcs_invocation_id(); const bool fix_dispatch_mask = vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH && (nir->info.tess.tcs_vertices_out % 8) != 0; /* Fix the disptach mask */ if (fix_dispatch_mask) { bld.CMP(bld.null_reg_ud(), invocation_id, elk_imm_ud(nir->info.tess.tcs_vertices_out), ELK_CONDITIONAL_L); bld.IF(ELK_PREDICATE_NORMAL); } nir_to_elk(this); if (fix_dispatch_mask) { bld.emit(ELK_OPCODE_ENDIF); } emit_tcs_thread_end(); if (failed) return false; calculate_cfg(); optimize(); assign_curb_setup(); assign_tcs_urb_setup(); fixup_3src_null_dest(); allocate_registers(true /* allow_spilling */); return !failed; } bool elk_fs_visitor::run_tes() { assert(stage == MESA_SHADER_TESS_EVAL); payload_ = new elk_tes_thread_payload(*this); nir_to_elk(this); if (failed) return false; emit_urb_writes(); calculate_cfg(); optimize(); assign_curb_setup(); assign_tes_urb_setup(); fixup_3src_null_dest(); allocate_registers(true /* allow_spilling */); return !failed; } bool elk_fs_visitor::run_gs() { assert(stage == MESA_SHADER_GEOMETRY); payload_ = new elk_gs_thread_payload(*this); this->final_gs_vertex_count = vgrf(glsl_uint_type()); if (gs_compile->control_data_header_size_bits > 0) { /* Create a VGRF to store accumulated control data bits. */ this->control_data_bits = vgrf(glsl_uint_type()); /* If we're outputting more than 32 control data bits, then EmitVertex() * will set control_data_bits to 0 after emitting the first vertex. * Otherwise, we need to initialize it to 0 here. */ if (gs_compile->control_data_header_size_bits <= 32) { const fs_builder bld = fs_builder(this).at_end(); const fs_builder abld = bld.annotate("initialize control data bits"); abld.MOV(this->control_data_bits, elk_imm_ud(0u)); } } nir_to_elk(this); emit_gs_thread_end(); if (failed) return false; calculate_cfg(); optimize(); assign_curb_setup(); assign_gs_urb_setup(); fixup_3src_null_dest(); allocate_registers(true /* allow_spilling */); return !failed; } bool elk_fs_visitor::run_fs(bool allow_spilling, bool do_rep_send) { struct elk_wm_prog_data *wm_prog_data = elk_wm_prog_data(this->prog_data); elk_wm_prog_key *wm_key = (elk_wm_prog_key *) this->key; const fs_builder bld = fs_builder(this).at_end(); assert(stage == MESA_SHADER_FRAGMENT); payload_ = new elk_fs_thread_payload(*this, source_depth_to_render_target, runtime_check_aads_emit); if (do_rep_send) { assert(dispatch_width == 16); emit_repclear_shader(); } else { if (nir->info.inputs_read > 0 || BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) || (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) { if (devinfo->ver < 6) emit_interpolation_setup_gfx4(); else emit_interpolation_setup_gfx6(); } /* We handle discards by keeping track of the still-live pixels in f0.1. * Initialize it with the dispatched pixels. */ if (wm_prog_data->uses_kill) { const unsigned lower_width = MIN2(dispatch_width, 16); for (unsigned i = 0; i < dispatch_width / lower_width; i++) { /* According to the "PS Thread Payload for Normal * Dispatch" pages on the BSpec, the dispatch mask is * stored in R1.7/R2.7 on gfx6+. */ const elk_fs_reg dispatch_mask = devinfo->ver >= 6 ? elk_vec1_grf(i + 1, 7) : elk_vec1_grf(0, 0); bld.exec_all().group(1, 0) .MOV(elk_sample_mask_reg(bld.group(lower_width, i)), retype(dispatch_mask, ELK_REGISTER_TYPE_UW)); } } if (nir->info.writes_memory) wm_prog_data->has_side_effects = true; nir_to_elk(this); if (failed) return false; if (wm_key->emit_alpha_test) emit_alpha_test(); emit_fb_writes(); calculate_cfg(); optimize(); assign_curb_setup(); assign_urb_setup(); fixup_3src_null_dest(); allocate_registers(allow_spilling); } return !failed; } bool elk_fs_visitor::run_cs(bool allow_spilling) { assert(gl_shader_stage_is_compute(stage)); assert(devinfo->ver >= 7); const fs_builder bld = fs_builder(this).at_end(); payload_ = new elk_cs_thread_payload(*this); if (devinfo->platform == INTEL_PLATFORM_HSW && prog_data->total_shared > 0) { /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */ const fs_builder abld = bld.exec_all().group(1, 0); abld.MOV(retype(elk_sr0_reg(1), ELK_REGISTER_TYPE_UW), suboffset(retype(elk_vec1_grf(0, 0), ELK_REGISTER_TYPE_UW), 1)); } nir_to_elk(this); if (failed) return false; emit_cs_terminate(); calculate_cfg(); optimize(); assign_curb_setup(); fixup_3src_null_dest(); allocate_registers(allow_spilling); return !failed; } static bool is_used_in_not_interp_frag_coord(nir_def *def) { nir_foreach_use_including_if(src, def) { if (nir_src_is_if(src)) return true; if (nir_src_parent_instr(src)->type != nir_instr_type_intrinsic) return true; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(nir_src_parent_instr(src)); if (intrin->intrinsic != nir_intrinsic_load_frag_coord) return true; } return false; } /** * Return a bitfield where bit n is set if barycentric interpolation mode n * (see enum elk_barycentric_mode) is needed by the fragment shader. * * We examine the load_barycentric intrinsics rather than looking at input * variables so that we catch interpolateAtCentroid() messages too, which * also need the ELK_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up. */ static unsigned elk_compute_barycentric_interp_modes(const struct intel_device_info *devinfo, const nir_shader *shader) { unsigned barycentric_interp_modes = 0; nir_foreach_function_impl(impl, shader) { nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_centroid: case nir_intrinsic_load_barycentric_sample: case nir_intrinsic_load_barycentric_at_sample: case nir_intrinsic_load_barycentric_at_offset: break; default: continue; } /* Ignore WPOS; it doesn't require interpolation. */ if (!is_used_in_not_interp_frag_coord(&intrin->def)) continue; nir_intrinsic_op bary_op = intrin->intrinsic; enum elk_barycentric_mode bary = elk_barycentric_mode(intrin); barycentric_interp_modes |= 1 << bary; if (devinfo->needs_unlit_centroid_workaround && bary_op == nir_intrinsic_load_barycentric_centroid) barycentric_interp_modes |= 1 << centroid_to_pixel(bary); } } } return barycentric_interp_modes; } static void elk_compute_flat_inputs(struct elk_wm_prog_data *prog_data, const nir_shader *shader) { prog_data->flat_inputs = 0; nir_foreach_shader_in_variable(var, shader) { /* flat shading */ if (var->data.interpolation != INTERP_MODE_FLAT) continue; if (var->data.per_primitive) continue; unsigned slots = glsl_count_attribute_slots(var->type, false); for (unsigned s = 0; s < slots; s++) { int input_index = prog_data->urb_setup[var->data.location + s]; if (input_index >= 0) prog_data->flat_inputs |= 1 << input_index; } } } static uint8_t computed_depth_mode(const nir_shader *shader) { if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { switch (shader->info.fs.depth_layout) { case FRAG_DEPTH_LAYOUT_NONE: case FRAG_DEPTH_LAYOUT_ANY: return ELK_PSCDEPTH_ON; case FRAG_DEPTH_LAYOUT_GREATER: return ELK_PSCDEPTH_ON_GE; case FRAG_DEPTH_LAYOUT_LESS: return ELK_PSCDEPTH_ON_LE; case FRAG_DEPTH_LAYOUT_UNCHANGED: /* We initially set this to OFF, but having the shader write the * depth means we allocate register space in the SEND message. The * difference between the SEND register count and the OFF state * programming makes the HW hang. * * Removing the depth writes also leads to test failures. So use * LesserThanOrEqual, which fits writing the same value * (unchanged/equal). * */ return ELK_PSCDEPTH_ON_LE; } } return ELK_PSCDEPTH_OFF; } /** * Move load_interpolated_input with simple (payload-based) barycentric modes * to the top of the program so we don't emit multiple PLNs for the same input. * * This works around CSE not being able to handle non-dominating cases * such as: * * if (...) { * interpolate input * } else { * interpolate the same exact input * } * * This should be replaced by global value numbering someday. */ bool elk_nir_move_interpolation_to_top(nir_shader *nir) { bool progress = false; nir_foreach_function_impl(impl, nir) { nir_block *top = nir_start_block(impl); nir_cursor cursor = nir_before_instr(nir_block_first_instr(top)); bool impl_progress = false; for (nir_block *block = nir_block_cf_tree_next(top); block != NULL; block = nir_block_cf_tree_next(block)) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic != nir_intrinsic_load_interpolated_input) continue; nir_intrinsic_instr *bary_intrinsic = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr); nir_intrinsic_op op = bary_intrinsic->intrinsic; /* Leave interpolateAtSample/Offset() where they are. */ if (op == nir_intrinsic_load_barycentric_at_sample || op == nir_intrinsic_load_barycentric_at_offset) continue; nir_instr *move[3] = { &bary_intrinsic->instr, intrin->src[1].ssa->parent_instr, instr }; for (unsigned i = 0; i < ARRAY_SIZE(move); i++) { if (move[i]->block != top) { nir_instr_move(cursor, move[i]); impl_progress = true; } } } } progress = progress || impl_progress; nir_metadata_preserve(impl, impl_progress ? nir_metadata_control_flow : nir_metadata_all); } return progress; } static void elk_nir_populate_wm_prog_data(nir_shader *shader, const struct intel_device_info *devinfo, const struct elk_wm_prog_key *key, struct elk_wm_prog_data *prog_data) { /* key->alpha_test_func means simulating alpha testing via discards, * so the shader definitely kills pixels. */ prog_data->uses_kill = shader->info.fs.uses_discard || key->emit_alpha_test; prog_data->uses_omask = !key->ignore_sample_mask_out && (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)); prog_data->color_outputs_written = key->color_outputs_valid; prog_data->computed_depth_mode = computed_depth_mode(shader); prog_data->computed_stencil = shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL); prog_data->sample_shading = shader->info.fs.uses_sample_shading || shader->info.outputs_read; assert(key->multisample_fbo != ELK_NEVER || key->persample_interp == ELK_NEVER); prog_data->persample_dispatch = key->persample_interp; if (prog_data->sample_shading) prog_data->persample_dispatch = ELK_ALWAYS; /* We can only persample dispatch if we have a multisample FBO */ prog_data->persample_dispatch = MIN2(prog_data->persample_dispatch, key->multisample_fbo); /* Currently only the Vulkan API allows alpha_to_coverage to be dynamic. If * persample_dispatch & multisample_fbo are not dynamic, Anv should be able * to definitively tell whether alpha_to_coverage is on or off. */ prog_data->alpha_to_coverage = key->alpha_to_coverage; assert(prog_data->alpha_to_coverage != ELK_SOMETIMES || prog_data->persample_dispatch == ELK_SOMETIMES); if (devinfo->ver >= 6) { prog_data->uses_sample_mask = BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN); /* From the Ivy Bridge PRM documentation for 3DSTATE_PS: * * "MSDISPMODE_PERSAMPLE is required in order to select * POSOFFSET_SAMPLE" * * So we can only really get sample positions if we are doing real * per-sample dispatch. If we need gl_SamplePosition and we don't have * persample dispatch, we hard-code it to 0.5. */ prog_data->uses_pos_offset = prog_data->persample_dispatch != ELK_NEVER && (BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS) || BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS_OR_CENTER)); } prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests; prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage; prog_data->inner_coverage = shader->info.fs.inner_coverage; prog_data->barycentric_interp_modes = elk_compute_barycentric_interp_modes(devinfo, shader); /* From the BDW PRM documentation for 3DSTATE_WM: * * "MSDISPMODE_PERSAMPLE is required in order to select Perspective * Sample or Non- perspective Sample barycentric coordinates." * * So cleanup any potentially set sample barycentric mode when not in per * sample dispatch. */ if (prog_data->persample_dispatch == ELK_NEVER) { prog_data->barycentric_interp_modes &= ~BITFIELD_BIT(ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE); } prog_data->uses_nonperspective_interp_modes |= (prog_data->barycentric_interp_modes & ELK_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0; /* ICL PRMs, Volume 9: Render Engine, Shared Functions Pixel Interpolater, * Message Descriptor : * * "Message Type. Specifies the type of message being sent when * pixel-rate evaluation is requested : * * Format = U2 * 0: Per Message Offset (eval_snapped with immediate offset) * 1: Sample Position Offset (eval_sindex) * 2: Centroid Position Offset (eval_centroid) * 3: Per Slot Offset (eval_snapped with register offset) * * Message Type. Specifies the type of message being sent when * coarse-rate evaluation is requested : * * Format = U2 * 0: Coarse to Pixel Mapping Message (internal message) * 1: Reserved * 2: Coarse Centroid Position (eval_centroid) * 3: Per Slot Coarse Pixel Offset (eval_snapped with register offset)" * * The Sample Position Offset is marked as reserved for coarse rate * evaluation and leads to hangs if we try to use it. So disable coarse * pixel shading if we have any intrinsic that will result in a pixel * interpolater message at sample. */ intel_nir_pulls_at_sample(shader); /* We choose to always enable VMask prior to XeHP, as it would cause * us to lose out on the eliminate_find_live_channel() optimization. */ prog_data->uses_vmask = true; prog_data->uses_src_w = BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD); prog_data->uses_src_depth = BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD); calculate_urb_setup(devinfo, key, prog_data, shader); elk_compute_flat_inputs(prog_data, shader); } /** * Pre-gfx6, the register file of the EUs was shared between threads, * and each thread used some subset allocated on a 16-register block * granularity. The unit states wanted these block counts. */ static inline int elk_register_blocks(int reg_count) { return ALIGN(reg_count, 16) / 16 - 1; } const unsigned * elk_compile_fs(const struct elk_compiler *compiler, struct elk_compile_fs_params *params) { struct nir_shader *nir = params->base.nir; const struct elk_wm_prog_key *key = params->key; struct elk_wm_prog_data *prog_data = params->prog_data; bool allow_spilling = params->allow_spilling; const bool debug_enabled = elk_should_print_shader(nir, params->base.debug_flag ? params->base.debug_flag : DEBUG_WM); prog_data->base.stage = MESA_SHADER_FRAGMENT; prog_data->base.total_scratch = 0; const struct intel_device_info *devinfo = compiler->devinfo; const unsigned max_subgroup_size = compiler->devinfo->ver >= 6 ? 32 : 16; elk_nir_apply_key(nir, compiler, &key->base, max_subgroup_size); elk_nir_lower_fs_inputs(nir, devinfo, key); elk_nir_lower_fs_outputs(nir); if (devinfo->ver < 6) elk_setup_vue_interpolation(params->vue_map, nir, prog_data); /* From the SKL PRM, Volume 7, "Alpha Coverage": * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in * hardware, regardless of the state setting for this feature." */ if (devinfo->ver > 6 && key->alpha_to_coverage != ELK_NEVER) { /* Run constant fold optimization in order to get the correct source * offset to determine render target 0 store instruction in * emit_alpha_to_coverage pass. */ NIR_PASS(_, nir, nir_opt_constant_folding); NIR_PASS(_, nir, elk_nir_lower_alpha_to_coverage, key, prog_data); } NIR_PASS(_, nir, elk_nir_move_interpolation_to_top); elk_postprocess_nir(nir, compiler, debug_enabled, key->base.robust_flags); elk_nir_populate_wm_prog_data(nir, compiler->devinfo, key, prog_data); std::unique_ptr v8, v16, v32, vmulti; elk_cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL; float throughput = 0; bool has_spilled = false; v8 = std::make_unique(compiler, ¶ms->base, key, prog_data, nir, 8, params->base.stats != NULL, debug_enabled); if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) { params->base.error_str = ralloc_strdup(params->base.mem_ctx, v8->fail_msg); return NULL; } else if (INTEL_SIMD(FS, 8)) { simd8_cfg = v8->cfg; assert(v8->payload().num_regs % reg_unit(devinfo) == 0); prog_data->base.dispatch_grf_start_reg = v8->payload().num_regs / reg_unit(devinfo); prog_data->reg_blocks_8 = elk_register_blocks(v8->grf_used); const performance &perf = v8->performance_analysis.require(); throughput = MAX2(throughput, perf.throughput); has_spilled = v8->spilled_any_registers; allow_spilling = false; } /* Limit dispatch width to simd8 with dual source blending on gfx8. * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917 */ if (devinfo->ver == 8 && prog_data->dual_src_blend && INTEL_SIMD(FS, 8)) { assert(!params->use_rep_send); v8->limit_dispatch_width(8, "gfx8 workaround: " "using SIMD8 when dual src blending.\n"); } if (!has_spilled && (!v8 || v8->max_dispatch_width >= 16) && (INTEL_SIMD(FS, 16) || params->use_rep_send)) { /* Try a SIMD16 compile */ v16 = std::make_unique(compiler, ¶ms->base, key, prog_data, nir, 16, params->base.stats != NULL, debug_enabled); if (v8) v16->import_uniforms(v8.get()); if (!v16->run_fs(allow_spilling, params->use_rep_send)) { elk_shader_perf_log(compiler, params->base.log_data, "SIMD16 shader failed to compile: %s\n", v16->fail_msg); } else { simd16_cfg = v16->cfg; assert(v16->payload().num_regs % reg_unit(devinfo) == 0); prog_data->dispatch_grf_start_reg_16 = v16->payload().num_regs / reg_unit(devinfo); prog_data->reg_blocks_16 = elk_register_blocks(v16->grf_used); const performance &perf = v16->performance_analysis.require(); throughput = MAX2(throughput, perf.throughput); has_spilled = v16->spilled_any_registers; allow_spilling = false; } } const bool simd16_failed = v16 && !simd16_cfg; /* Currently, the compiler only supports SIMD32 on SNB+ */ if (!has_spilled && (!v8 || v8->max_dispatch_width >= 32) && (!v16 || v16->max_dispatch_width >= 32) && !params->use_rep_send && devinfo->ver >= 6 && !simd16_failed && INTEL_SIMD(FS, 32)) { /* Try a SIMD32 compile */ v32 = std::make_unique(compiler, ¶ms->base, key, prog_data, nir, 32, params->base.stats != NULL, debug_enabled); if (v8) v32->import_uniforms(v8.get()); else if (v16) v32->import_uniforms(v16.get()); if (!v32->run_fs(allow_spilling, false)) { elk_shader_perf_log(compiler, params->base.log_data, "SIMD32 shader failed to compile: %s\n", v32->fail_msg); } else { const performance &perf = v32->performance_analysis.require(); if (!INTEL_DEBUG(DEBUG_DO32) && throughput >= perf.throughput) { elk_shader_perf_log(compiler, params->base.log_data, "SIMD32 shader inefficient\n"); } else { simd32_cfg = v32->cfg; assert(v32->payload().num_regs % reg_unit(devinfo) == 0); prog_data->dispatch_grf_start_reg_32 = v32->payload().num_regs / reg_unit(devinfo); prog_data->reg_blocks_32 = elk_register_blocks(v32->grf_used); throughput = MAX2(throughput, perf.throughput); } } } /* When the caller requests a repclear shader, they want SIMD16-only */ if (params->use_rep_send) simd8_cfg = NULL; /* Prior to Iron Lake, the PS had a single shader offset with a jump table * at the top to select the shader. We've never implemented that. * Instead, we just give them exactly one shader and we pick the widest one * available. */ if (compiler->devinfo->ver < 5) { if (simd32_cfg || simd16_cfg) simd8_cfg = NULL; if (simd32_cfg) simd16_cfg = NULL; } /* If computed depth is enabled SNB only allows SIMD8. */ if (compiler->devinfo->ver == 6 && prog_data->computed_depth_mode != ELK_PSCDEPTH_OFF) assert(simd16_cfg == NULL && simd32_cfg == NULL); if (compiler->devinfo->ver <= 5 && !simd8_cfg) { /* Iron lake and earlier only have one Dispatch GRF start field. Make * the data available in the base prog data struct for convenience. */ if (simd16_cfg) { prog_data->base.dispatch_grf_start_reg = prog_data->dispatch_grf_start_reg_16; } else if (simd32_cfg) { prog_data->base.dispatch_grf_start_reg = prog_data->dispatch_grf_start_reg_32; } } elk_fs_generator g(compiler, ¶ms->base, &prog_data->base, v8 && v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT); if (unlikely(debug_enabled)) { g.enable_debug(ralloc_asprintf(params->base.mem_ctx, "%s fragment shader %s", nir->info.label ? nir->info.label : "unnamed", nir->info.name)); } struct elk_compile_stats *stats = params->base.stats; uint32_t max_dispatch_width = 0; if (simd8_cfg) { prog_data->dispatch_8 = true; g.generate_code(simd8_cfg, 8, v8->shader_stats, v8->performance_analysis.require(), stats); stats = stats ? stats + 1 : NULL; max_dispatch_width = 8; } if (simd16_cfg) { prog_data->dispatch_16 = true; prog_data->prog_offset_16 = g.generate_code( simd16_cfg, 16, v16->shader_stats, v16->performance_analysis.require(), stats); stats = stats ? stats + 1 : NULL; max_dispatch_width = 16; } if (simd32_cfg) { prog_data->dispatch_32 = true; prog_data->prog_offset_32 = g.generate_code( simd32_cfg, 32, v32->shader_stats, v32->performance_analysis.require(), stats); stats = stats ? stats + 1 : NULL; max_dispatch_width = 32; } for (struct elk_compile_stats *s = params->base.stats; s != NULL && s != stats; s++) s->max_dispatch_width = max_dispatch_width; g.add_const_data(nir->constant_data, nir->constant_data_size); return g.get_assembly(); } unsigned elk_cs_push_const_total_size(const struct elk_cs_prog_data *cs_prog_data, unsigned threads) { assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0); assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0); return cs_prog_data->push.per_thread.size * threads + cs_prog_data->push.cross_thread.size; } static void fill_push_const_block_info(struct elk_push_const_block *block, unsigned dwords) { block->dwords = dwords; block->regs = DIV_ROUND_UP(dwords, 8); block->size = block->regs * 32; } static void cs_fill_push_const_info(const struct intel_device_info *devinfo, struct elk_cs_prog_data *cs_prog_data) { const struct elk_stage_prog_data *prog_data = &cs_prog_data->base; int subgroup_id_index = elk_get_subgroup_id_param_index(devinfo, prog_data); bool cross_thread_supported = devinfo->verx10 >= 75; /* The thread ID should be stored in the last param dword */ assert(subgroup_id_index == -1 || subgroup_id_index == (int)prog_data->nr_params - 1); unsigned cross_thread_dwords, per_thread_dwords; if (!cross_thread_supported) { cross_thread_dwords = 0u; per_thread_dwords = prog_data->nr_params; } else if (subgroup_id_index >= 0) { /* Fill all but the last register with cross-thread payload */ cross_thread_dwords = 8 * (subgroup_id_index / 8); per_thread_dwords = prog_data->nr_params - cross_thread_dwords; assert(per_thread_dwords > 0 && per_thread_dwords <= 8); } else { /* Fill all data using cross-thread payload */ cross_thread_dwords = prog_data->nr_params; per_thread_dwords = 0u; } fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords); fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords); assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 || cs_prog_data->push.per_thread.size == 0); assert(cs_prog_data->push.cross_thread.dwords + cs_prog_data->push.per_thread.dwords == prog_data->nr_params); } static bool filter_simd(const nir_instr *instr, const void * /* options */) { if (instr->type != nir_instr_type_intrinsic) return false; switch (nir_instr_as_intrinsic(instr)->intrinsic) { case nir_intrinsic_load_simd_width_intel: case nir_intrinsic_load_subgroup_id: return true; default: return false; } } static nir_def * lower_simd(nir_builder *b, nir_instr *instr, void *options) { uintptr_t simd_width = (uintptr_t)options; switch (nir_instr_as_intrinsic(instr)->intrinsic) { case nir_intrinsic_load_simd_width_intel: return nir_imm_int(b, simd_width); case nir_intrinsic_load_subgroup_id: /* If the whole workgroup fits in one thread, we can lower subgroup_id * to a constant zero. */ if (!b->shader->info.workgroup_size_variable) { unsigned local_workgroup_size = b->shader->info.workgroup_size[0] * b->shader->info.workgroup_size[1] * b->shader->info.workgroup_size[2]; if (local_workgroup_size <= simd_width) return nir_imm_int(b, 0); } return NULL; default: return NULL; } } bool elk_nir_lower_simd(nir_shader *nir, unsigned dispatch_width) { return nir_shader_lower_instructions(nir, filter_simd, lower_simd, (void *)(uintptr_t)dispatch_width); } const unsigned * elk_compile_cs(const struct elk_compiler *compiler, struct elk_compile_cs_params *params) { const nir_shader *nir = params->base.nir; const struct elk_cs_prog_key *key = params->key; struct elk_cs_prog_data *prog_data = params->prog_data; const bool debug_enabled = elk_should_print_shader(nir, params->base.debug_flag ? params->base.debug_flag : DEBUG_CS); prog_data->base.stage = MESA_SHADER_COMPUTE; prog_data->base.total_shared = nir->info.shared_size; prog_data->base.total_scratch = 0; if (!nir->info.workgroup_size_variable) { prog_data->local_size[0] = nir->info.workgroup_size[0]; prog_data->local_size[1] = nir->info.workgroup_size[1]; prog_data->local_size[2] = nir->info.workgroup_size[2]; } elk_simd_selection_state simd_state{ .devinfo = compiler->devinfo, .prog_data = prog_data, .required_width = elk_required_dispatch_width(&nir->info), }; std::unique_ptr v[3]; for (unsigned simd = 0; simd < 3; simd++) { if (!elk_simd_should_compile(simd_state, simd)) continue; const unsigned dispatch_width = 8u << simd; nir_shader *shader = nir_shader_clone(params->base.mem_ctx, nir); elk_nir_apply_key(shader, compiler, &key->base, dispatch_width); NIR_PASS(_, shader, elk_nir_lower_simd, dispatch_width); /* Clean up after the local index and ID calculations. */ NIR_PASS(_, shader, nir_opt_constant_folding); NIR_PASS(_, shader, nir_opt_dce); elk_postprocess_nir(shader, compiler, debug_enabled, key->base.robust_flags); v[simd] = std::make_unique(compiler, ¶ms->base, &key->base, &prog_data->base, shader, dispatch_width, params->base.stats != NULL, debug_enabled); const int first = elk_simd_first_compiled(simd_state); if (first >= 0) v[simd]->import_uniforms(v[first].get()); const bool allow_spilling = first < 0 || nir->info.workgroup_size_variable; if (v[simd]->run_cs(allow_spilling)) { cs_fill_push_const_info(compiler->devinfo, prog_data); elk_simd_mark_compiled(simd_state, simd, v[simd]->spilled_any_registers); } else { simd_state.error[simd] = ralloc_strdup(params->base.mem_ctx, v[simd]->fail_msg); if (simd > 0) { elk_shader_perf_log(compiler, params->base.log_data, "SIMD%u shader failed to compile: %s\n", dispatch_width, v[simd]->fail_msg); } } } const int selected_simd = elk_simd_select(simd_state); if (selected_simd < 0) { params->base.error_str = ralloc_asprintf(params->base.mem_ctx, "Can't compile shader: " "SIMD8 '%s', SIMD16 '%s' and SIMD32 '%s'.\n", simd_state.error[0], simd_state.error[1], simd_state.error[2]); return NULL; } assert(selected_simd < 3); elk_fs_visitor *selected = v[selected_simd].get(); if (!nir->info.workgroup_size_variable) prog_data->prog_mask = 1 << selected_simd; elk_fs_generator g(compiler, ¶ms->base, &prog_data->base, selected->runtime_check_aads_emit, MESA_SHADER_COMPUTE); if (unlikely(debug_enabled)) { char *name = ralloc_asprintf(params->base.mem_ctx, "%s compute shader %s", nir->info.label ? nir->info.label : "unnamed", nir->info.name); g.enable_debug(name); } uint32_t max_dispatch_width = 8u << (util_last_bit(prog_data->prog_mask) - 1); struct elk_compile_stats *stats = params->base.stats; for (unsigned simd = 0; simd < 3; simd++) { if (prog_data->prog_mask & (1u << simd)) { assert(v[simd]); prog_data->prog_offset[simd] = g.generate_code(v[simd]->cfg, 8u << simd, v[simd]->shader_stats, v[simd]->performance_analysis.require(), stats); if (stats) stats->max_dispatch_width = max_dispatch_width; stats = stats ? stats + 1 : NULL; max_dispatch_width = 8u << simd; } } g.add_const_data(nir->constant_data, nir->constant_data_size); return g.get_assembly(); } struct intel_cs_dispatch_info elk_cs_get_dispatch_info(const struct intel_device_info *devinfo, const struct elk_cs_prog_data *prog_data, const unsigned *override_local_size) { struct intel_cs_dispatch_info info = {}; const unsigned *sizes = override_local_size ? override_local_size : prog_data->local_size; const int simd = elk_simd_select_for_workgroup_size(devinfo, prog_data, sizes); assert(simd >= 0 && simd < 3); info.group_size = sizes[0] * sizes[1] * sizes[2]; info.simd_size = 8u << simd; info.threads = DIV_ROUND_UP(info.group_size, info.simd_size); const uint32_t remainder = info.group_size & (info.simd_size - 1); if (remainder > 0) info.right_mask = ~0u >> (32 - remainder); else info.right_mask = ~0u >> (32 - info.simd_size); return info; } uint64_t elk_bsr(const struct intel_device_info *devinfo, uint32_t offset, uint8_t simd_size, uint8_t local_arg_offset) { assert(offset % 64 == 0); assert(simd_size == 8 || simd_size == 16); assert(local_arg_offset % 8 == 0); return offset | SET_BITS(simd_size == 8, 4, 4) | SET_BITS(local_arg_offset / 8, 2, 0); } /** * Test the dispatch mask packing assumptions of * elk_stage_has_packed_dispatch(). Call this from e.g. the top of * elk_fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is * executed with an unexpected dispatch mask. */ static UNUSED void elk_fs_test_dispatch_packing(const fs_builder &bld) { const elk_fs_visitor *shader = static_cast(bld.shader); const gl_shader_stage stage = shader->stage; const bool uses_vmask = stage == MESA_SHADER_FRAGMENT && elk_wm_prog_data(shader->stage_prog_data)->uses_vmask; if (elk_stage_has_packed_dispatch(shader->devinfo, stage, shader->stage_prog_data)) { const fs_builder ubld = bld.exec_all().group(1, 0); const elk_fs_reg tmp = component(bld.vgrf(ELK_REGISTER_TYPE_UD), 0); const elk_fs_reg mask = uses_vmask ? elk_vmask_reg() : elk_dmask_reg(); ubld.ADD(tmp, mask, elk_imm_ud(1)); ubld.AND(tmp, mask, tmp); /* This will loop forever if the dispatch mask doesn't have the expected * form '2^n-1', in which case tmp will be non-zero. */ bld.emit(ELK_OPCODE_DO); bld.CMP(bld.null_reg_ud(), tmp, elk_imm_ud(0), ELK_CONDITIONAL_NZ); set_predicate(ELK_PREDICATE_NORMAL, bld.emit(ELK_OPCODE_WHILE)); } } unsigned elk_fs_visitor::workgroup_size() const { assert(gl_shader_stage_uses_workgroup(stage)); const struct elk_cs_prog_data *cs = elk_cs_prog_data(prog_data); return cs->local_size[0] * cs->local_size[1] * cs->local_size[2]; } bool elk_should_print_shader(const nir_shader *shader, uint64_t debug_flag) { return INTEL_DEBUG(debug_flag) && (!shader->info.internal || NIR_DEBUG(PRINT_INTERNAL)); } namespace elk { elk_fs_reg fetch_payload_reg(const elk::fs_builder &bld, uint8_t regs[2], elk_reg_type type, unsigned n) { if (!regs[0]) return elk_fs_reg(); if (bld.dispatch_width() > 16) { const elk_fs_reg tmp = bld.vgrf(type, n); const elk::fs_builder hbld = bld.exec_all().group(16, 0); const unsigned m = bld.dispatch_width() / hbld.dispatch_width(); elk_fs_reg *const components = new elk_fs_reg[m * n]; for (unsigned c = 0; c < n; c++) { for (unsigned g = 0; g < m; g++) components[c * m + g] = offset(retype(elk_vec8_grf(regs[g], 0), type), hbld, c); } hbld.LOAD_PAYLOAD(tmp, components, m * n, 0); delete[] components; return tmp; } else { return elk_fs_reg(retype(elk_vec8_grf(regs[0], 0), type)); } } elk_fs_reg fetch_barycentric_reg(const elk::fs_builder &bld, uint8_t regs[2]) { if (!regs[0]) return elk_fs_reg(); const elk_fs_reg tmp = bld.vgrf(ELK_REGISTER_TYPE_F, 2); const elk::fs_builder hbld = bld.exec_all().group(8, 0); const unsigned m = bld.dispatch_width() / hbld.dispatch_width(); elk_fs_reg *const components = new elk_fs_reg[2 * m]; for (unsigned c = 0; c < 2; c++) { for (unsigned g = 0; g < m; g++) components[c * m + g] = offset(elk_vec8_grf(regs[g / 2], 0), hbld, c + 2 * (g % 2)); } hbld.LOAD_PAYLOAD(tmp, components, 2 * m, 0); delete[] components; return tmp; } void check_dynamic_msaa_flag(const fs_builder &bld, const struct elk_wm_prog_data *wm_prog_data, enum intel_msaa_flags flag) { elk_fs_inst *inst = bld.AND(bld.null_reg_ud(), dynamic_msaa_flags(wm_prog_data), elk_imm_ud(flag)); inst->conditional_mod = ELK_CONDITIONAL_NZ; } }