// Copyright 2011 The PDFium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file input format is based loosely on // Tools/DumpRenderTree/ImageDiff.m // The exact format of this tool's output to stdout is important, to match // what the run-webkit-tests script expects. #include #include #include #include #include #include #include #include #include "core/fxcrt/fx_memory.h" #include "testing/image_diff/image_diff_png.h" #include "testing/utils/path_service.h" #include "third_party/base/numerics/safe_conversions.h" #if BUILDFLAG(IS_WIN) #include #endif // Return codes used by this utility. constexpr int kStatusSame = 0; constexpr int kStatusDifferent = 1; constexpr int kStatusError = 2; // Color codes. constexpr uint32_t RGBA_RED = 0x000000ff; constexpr uint32_t RGBA_ALPHA = 0xff000000; class Image { public: Image() = default; Image(const Image& image) = default; Image& operator=(const Image& other) = default; bool has_image() const { return w_ > 0 && h_ > 0; } int w() const { return w_; } int h() const { return h_; } pdfium::span span() const { return data_; } // Creates the image from the given filename on disk, and returns true on // success. bool CreateFromFilename(const std::string& path) { return CreateFromFilenameImpl(path, /*reverse_byte_order=*/false); } // Same as CreateFromFilename(), but with BGRA instead of RGBA ordering. bool CreateFromFilenameWithReverseByteOrder(const std::string& path) { return CreateFromFilenameImpl(path, /*reverse_byte_order=*/true); } void Clear() { w_ = h_ = 0; data_.clear(); } // Returns the RGBA value of the pixel at the given location uint32_t pixel_at(int x, int y) const { if (!pixel_in_bounds(x, y)) return 0; return *reinterpret_cast(&(data_[pixel_address(x, y)])); } void set_pixel_at(int x, int y, uint32_t color) { if (!pixel_in_bounds(x, y)) return; void* addr = &data_[pixel_address(x, y)]; *reinterpret_cast(addr) = color; } private: bool CreateFromFilenameImpl(const std::string& path, bool reverse_byte_order) { FILE* f = fopen(path.c_str(), "rb"); if (!f) return false; std::vector compressed; const size_t kBufSize = 1024; uint8_t buf[kBufSize]; size_t num_read = 0; while ((num_read = fread(buf, 1, kBufSize, f)) > 0) { compressed.insert(compressed.end(), buf, buf + num_read); } fclose(f); data_ = image_diff_png::DecodePNG(compressed, reverse_byte_order, &w_, &h_); if (data_.empty()) { Clear(); return false; } return true; } bool pixel_in_bounds(int x, int y) const { return x >= 0 && x < w_ && y >= 0 && y < h_; } size_t pixel_address(int x, int y) const { return (y * w_ + x) * 4; } // Pixel dimensions of the image. int w_ = 0; int h_ = 0; std::vector data_; }; float CalculateDifferencePercentage(const Image& actual, int pixels_different) { // Like the WebKit ImageDiff tool, we define percentage different in terms // of the size of the 'actual' bitmap. float total_pixels = static_cast(actual.w()) * static_cast(actual.h()); if (total_pixels == 0) { // When the bitmap is empty, they are 100% different. return 100.0f; } return 100.0f * pixels_different / total_pixels; } void CountImageSizeMismatchAsPixelDifference(const Image& baseline, const Image& actual, int* pixels_different) { int w = std::min(baseline.w(), actual.w()); int h = std::min(baseline.h(), actual.h()); // Count pixels that are a difference in size as also being different. int max_w = std::max(baseline.w(), actual.w()); int max_h = std::max(baseline.h(), actual.h()); // These pixels are off the right side, not including the lower right corner. *pixels_different += (max_w - w) * h; // These pixels are along the bottom, including the lower right corner. *pixels_different += (max_h - h) * max_w; } struct UnpackedPixel { explicit UnpackedPixel(uint32_t packed) : red(packed & 0xff), green((packed >> 8) & 0xff), blue((packed >> 16) & 0xff), alpha((packed >> 24) & 0xff) {} uint8_t red; uint8_t green; uint8_t blue; uint8_t alpha; }; uint8_t ChannelDelta(uint8_t baseline_channel, uint8_t actual_channel) { // No casts are necessary because arithmetic operators implicitly convert // `uint8_t` to `int` first. The final delta is always in the range 0 to 255. return std::abs(baseline_channel - actual_channel); } uint8_t MaxPixelPerChannelDelta(const UnpackedPixel& baseline_pixel, const UnpackedPixel& actual_pixel) { return std::max({ChannelDelta(baseline_pixel.red, actual_pixel.red), ChannelDelta(baseline_pixel.green, actual_pixel.green), ChannelDelta(baseline_pixel.blue, actual_pixel.blue), ChannelDelta(baseline_pixel.alpha, actual_pixel.alpha)}); } float PercentageDifferent(const Image& baseline, const Image& actual, uint8_t max_pixel_per_channel_delta) { int w = std::min(baseline.w(), actual.w()); int h = std::min(baseline.h(), actual.h()); // Compute pixels different in the overlap. int pixels_different = 0; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const uint32_t baseline_pixel = baseline.pixel_at(x, y); const uint32_t actual_pixel = actual.pixel_at(x, y); if (baseline_pixel == actual_pixel) { continue; } if (MaxPixelPerChannelDelta(UnpackedPixel(baseline_pixel), UnpackedPixel(actual_pixel)) > max_pixel_per_channel_delta) { ++pixels_different; } } } CountImageSizeMismatchAsPixelDifference(baseline, actual, &pixels_different); return CalculateDifferencePercentage(actual, pixels_different); } float HistogramPercentageDifferent(const Image& baseline, const Image& actual) { // TODO(johnme): Consider using a joint histogram instead, as described in // "Comparing Images Using Joint Histograms" by Pass & Zabih // http://www.cs.cornell.edu/~rdz/papers/pz-jms99.pdf int w = std::min(baseline.w(), actual.w()); int h = std::min(baseline.h(), actual.h()); // Count occurrences of each RGBA pixel value of baseline in the overlap. std::map baseline_histogram; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { // hash_map operator[] inserts a 0 (default constructor) if key not found. ++baseline_histogram[baseline.pixel_at(x, y)]; } } // Compute pixels different in the histogram of the overlap. int pixels_different = 0; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { uint32_t actual_rgba = actual.pixel_at(x, y); auto it = baseline_histogram.find(actual_rgba); if (it != baseline_histogram.end() && it->second > 0) --it->second; else ++pixels_different; } } CountImageSizeMismatchAsPixelDifference(baseline, actual, &pixels_different); return CalculateDifferencePercentage(actual, pixels_different); } void PrintHelp(const std::string& binary_name) { fprintf( stderr, "Usage:\n" " %s OPTIONS \n" " Compares two files on disk, returning 0 when they are the same.\n" " Passing \"--histogram\" additionally calculates a diff of the\n" " RGBA value histograms (which is resistant to shifts in layout).\n" " Passing \"--reverse-byte-order\" additionally assumes the\n" " compare file has BGRA byte ordering.\n" " Passing \"--fuzzy\" additionally allows individual pixels to\n" " differ by at most 1 on each channel.\n\n" " %s --diff \n" " Compares two files on disk, and if they differ, outputs an image\n" " to that visualizes the differing pixels as red\n" " dots.\n\n" " %s --subtract \n" " Compares two files on disk, and if they differ, outputs an image\n" " to that visualizes the difference as a scaled\n" " subtraction of pixel values.\n", binary_name.c_str(), binary_name.c_str(), binary_name.c_str()); } int CompareImages(const std::string& binary_name, const std::string& file1, const std::string& file2, bool compare_histograms, bool reverse_byte_order, uint8_t max_pixel_per_channel_delta) { Image actual_image; Image baseline_image; bool actual_load_result = reverse_byte_order ? actual_image.CreateFromFilenameWithReverseByteOrder(file1) : actual_image.CreateFromFilename(file1); if (!actual_load_result) { fprintf(stderr, "%s: Unable to open file \"%s\"\n", binary_name.c_str(), file1.c_str()); return kStatusError; } if (!baseline_image.CreateFromFilename(file2)) { fprintf(stderr, "%s: Unable to open file \"%s\"\n", binary_name.c_str(), file2.c_str()); return kStatusError; } if (compare_histograms) { float percent = HistogramPercentageDifferent(actual_image, baseline_image); const char* passed = percent > 0.0 ? "failed" : "passed"; printf("histogram diff: %01.2f%% %s\n", percent, passed); } const char* const diff_name = compare_histograms ? "exact diff" : "diff"; float percent = PercentageDifferent(actual_image, baseline_image, max_pixel_per_channel_delta); const char* const passed = percent > 0.0 ? "failed" : "passed"; printf("%s: %01.2f%% %s\n", diff_name, percent, passed); if (percent > 0.0) { // failure: The WebKit version also writes the difference image to // stdout, which seems excessive for our needs. return kStatusDifferent; } // success return kStatusSame; } bool CreateImageDiff(const Image& image1, const Image& image2, Image* out) { int w = std::min(image1.w(), image2.w()); int h = std::min(image1.h(), image2.h()); *out = Image(image1); bool same = (image1.w() == image2.w()) && (image1.h() == image2.h()); // TODO(estade): do something with the extra pixels if the image sizes // are different. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { uint32_t base_pixel = image1.pixel_at(x, y); if (base_pixel != image2.pixel_at(x, y)) { // Set differing pixels red. out->set_pixel_at(x, y, RGBA_RED | RGBA_ALPHA); same = false; } else { // Set same pixels as faded. uint32_t alpha = base_pixel & RGBA_ALPHA; uint32_t new_pixel = base_pixel - ((alpha / 2) & RGBA_ALPHA); out->set_pixel_at(x, y, new_pixel); } } } return same; } bool SubtractImages(const Image& image1, const Image& image2, Image* out) { int w = std::min(image1.w(), image2.w()); int h = std::min(image1.h(), image2.h()); *out = Image(image1); bool same = (image1.w() == image2.w()) && (image1.h() == image2.h()); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { uint32_t pixel1 = image1.pixel_at(x, y); int32_t r1 = pixel1 & 0xff; int32_t g1 = (pixel1 >> 8) & 0xff; int32_t b1 = (pixel1 >> 16) & 0xff; uint32_t pixel2 = image2.pixel_at(x, y); int32_t r2 = pixel2 & 0xff; int32_t g2 = (pixel2 >> 8) & 0xff; int32_t b2 = (pixel2 >> 16) & 0xff; int32_t delta_r = r1 - r2; int32_t delta_g = g1 - g2; int32_t delta_b = b1 - b2; same &= (delta_r == 0 && delta_g == 0 && delta_b == 0); delta_r = std::clamp(128 + delta_r * 8, 0, 255); delta_g = std::clamp(128 + delta_g * 8, 0, 255); delta_b = std::clamp(128 + delta_b * 8, 0, 255); uint32_t new_pixel = RGBA_ALPHA; new_pixel |= delta_r; new_pixel |= (delta_g << 8); new_pixel |= (delta_b << 16); out->set_pixel_at(x, y, new_pixel); } } return same; } int DiffImages(const std::string& binary_name, const std::string& file1, const std::string& file2, const std::string& out_file, bool do_subtraction, bool reverse_byte_order) { Image actual_image; Image baseline_image; bool actual_load_result = reverse_byte_order ? actual_image.CreateFromFilenameWithReverseByteOrder(file1) : actual_image.CreateFromFilename(file1); if (!actual_load_result) { fprintf(stderr, "%s: Unable to open file \"%s\"\n", binary_name.c_str(), file1.c_str()); return kStatusError; } if (!baseline_image.CreateFromFilename(file2)) { fprintf(stderr, "%s: Unable to open file \"%s\"\n", binary_name.c_str(), file2.c_str()); return kStatusError; } Image diff_image; bool same = do_subtraction ? SubtractImages(baseline_image, actual_image, &diff_image) : CreateImageDiff(baseline_image, actual_image, &diff_image); if (same) return kStatusSame; std::vector png_encoding = image_diff_png::EncodeRGBAPNG( diff_image.span(), diff_image.w(), diff_image.h(), diff_image.w() * 4); if (png_encoding.empty()) return kStatusError; FILE* f = fopen(out_file.c_str(), "wb"); if (!f) return kStatusError; size_t size = png_encoding.size(); char* ptr = reinterpret_cast(&png_encoding.front()); if (fwrite(ptr, 1, size, f) != size) return kStatusError; return kStatusDifferent; } int main(int argc, const char* argv[]) { FX_InitializeMemoryAllocators(); bool histograms = false; bool produce_diff_image = false; bool produce_image_subtraction = false; bool reverse_byte_order = false; uint8_t max_pixel_per_channel_delta = 0; std::string filename1; std::string filename2; std::string diff_filename; // Strip the path from the first arg const char* last_separator = strrchr(argv[0], PATH_SEPARATOR); std::string binary_name = last_separator ? last_separator + 1 : argv[0]; int i; for (i = 1; i < argc; ++i) { const char* arg = argv[i]; if (strstr(arg, "--") != arg) break; if (strcmp(arg, "--histogram") == 0) { histograms = true; } else if (strcmp(arg, "--diff") == 0) { produce_diff_image = true; } else if (strcmp(arg, "--subtract") == 0) { produce_image_subtraction = true; } else if (strcmp(arg, "--reverse-byte-order") == 0) { reverse_byte_order = true; } else if (strcmp(arg, "--fuzzy") == 0) { max_pixel_per_channel_delta = 1; } } if (i < argc) filename1 = argv[i++]; if (i < argc) filename2 = argv[i++]; if (i < argc) diff_filename = argv[i++]; if (produce_diff_image || produce_image_subtraction) { if (!diff_filename.empty()) { return DiffImages(binary_name, filename1, filename2, diff_filename, produce_image_subtraction, reverse_byte_order); } } else if (!filename2.empty()) { return CompareImages(binary_name, filename1, filename2, histograms, reverse_byte_order, max_pixel_per_channel_delta); } PrintHelp(binary_name); return kStatusError; }