#define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include #include #include #include #include #include #include #ifndef AT_PER_OPERATOR_HEADERS #include #include #else #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif namespace at::native { DEFINE_DISPATCH(pdist_forward_stub); DEFINE_DISPATCH(pdist_backward_stub); DEFINE_DISPATCH(cdist_stub); DEFINE_DISPATCH(cdist_backward_stub); Tensor pairwise_distance(const Tensor& x1, const Tensor& x2, double p, double eps, bool keepdim) { // Since either x1 or x2 could be broadcasted auto x1_dim = x1.dim(); auto x2_dim = x2.dim(); auto output_dim = x1_dim > x2_dim ? x1_dim : x2_dim; auto innermost_dim = output_dim - 1; return at::norm(x1 - x2 + eps, p, innermost_dim, keepdim); } // This is to guarantee that the contiguous memory is passed to the backward pass Tensor pdist(const Tensor& self, const double p) { TORCH_CHECK(self.dim() == 2, "pdist only supports 2D tensors, got: ", self.dim(), "D"); TORCH_CHECK(at::isFloatingType(self.scalar_type()), "pdist only supports floating-point dtypes"); TORCH_CHECK(p >= 0, "pdist only supports non-negative p values"); return at::_pdist_forward(self.contiguous(), p); } Tensor _euclidean_dist(const Tensor& x1, const Tensor& x2) { /** This function does the fist part of the euclidean distance calculation * We divide it in two steps to simplify dealing with subgradients in the * backward step */ Tensor x1_norm = x1.pow(2).sum(-1, true); Tensor x1_pad = at::ones_like(x1_norm, LEGACY_CONTIGUOUS_MEMORY_FORMAT); Tensor x2_norm = x2.pow(2).sum(-1, true); Tensor x2_pad = at::ones_like(x2_norm, LEGACY_CONTIGUOUS_MEMORY_FORMAT); Tensor x1_ = at::cat({x1.mul(-2), std::move(x1_norm), std::move(x1_pad)}, -1); Tensor x2_ = at::cat({x2, std::move(x2_pad), std::move(x2_norm)}, -1); Tensor result = x1_.matmul(x2_.mT()); result.clamp_min_(0).sqrt_(); return result; } static Tensor cdist_impl(const Tensor& x1, const Tensor& x2, const double p, std::optional compute_mode) { TORCH_CHECK(at::isFloatingType(x1.scalar_type()), "cdist only supports floating-point dtypes, X1 got: ", x1.scalar_type()); auto device1 = x1.device().type(); TORCH_CHECK(at::isFloatingType(x2.scalar_type()), "cdist only supports floating-point dtypes, X2 got: ", x2.scalar_type()); auto device2 = x2.device().type(); TORCH_CHECK(p >= 0, "cdist only supports non-negative p values"); TORCH_CHECK(device1 == device2, "X1 and X2 must have the same device type. X1: ", device1, " X2: ", device2); // TODO: This is bad; this test should apply universally TORCH_CHECK(!x1.is_cuda() || x1.get_device() == x2.get_device(), "device of X1 (", x1.get_device(), ") must match device of X2 (", x2.get_device(), ")"); SymInt c1 = x1.sym_size(-1); SymInt c2 = x2.sym_size(-1); // 0 - default value. If p = 2 and r1 > 25 or r2 > 25 (these values are based on performance metrics), // it will try to compute distance using matrix multiplication approach // 1 - force to use matrix multiplication for p = 2 // 2 - do not use matrix multiplication for p = 2 int64_t mode = compute_mode.value_or(0); TORCH_CHECK(mode >= 0 && mode <= 2, "possible modes: 0, 1, 2, but was: ", mode); SymInt r1 = x1.sym_size(-2); SymInt r2 = x2.sym_size(-2); // See Note [cdist relies on cdist_impl redispatching] // Keep this condition in sync with the condition at the Note if (!(p == 2 && (mode == 1 || (mode == 0 && (r1 > 25 || r2 > 25))))) { TORCH_CHECK(device1 == kCPU || device1 == kCUDA || device1 == kXPU, "cdist only supports CPU, XPU and CUDA devices, X1 got: ", device1); TORCH_CHECK(device2 == kCPU || device2 == kCUDA || device2 == kXPU, "cdist only supports CPU, XPU and CUDA devices, X2 got: ", device2); } auto dim1 = x1.dim(); auto dim2 = x2.dim(); //For batch calculation we expand all dimensions(except the last two) to one, with size that equals to product of them. //The last two dimensions will stay the same SymIntArrayRef batch_tensor1(x1.sym_sizes().data(), dim1 - 2); SymIntArrayRef batch_tensor2(x2.sym_sizes().data(), dim2 - 2); std::vector expand_batch_portion = infer_size_symint(batch_tensor1, batch_tensor2); std::vector tensor1_expand_size(expand_batch_portion); tensor1_expand_size.insert(tensor1_expand_size.end(), {r1, c1}); std::vector tensor2_expand_size(expand_batch_portion); tensor2_expand_size.insert(tensor2_expand_size.end(), {r2, c2}); const SymInt expand_batch_product = c10::multiply_integers(expand_batch_portion); std::vector tensor1_view{expand_batch_product, r1, c1}; std::vector tensor2_view{expand_batch_product, r2, c2}; Tensor tensor1_expanded = x1.expand_symint(tensor1_expand_size).contiguous().view_symint(tensor1_view); Tensor tensor2_expanded = x2.expand_symint(tensor2_expand_size).contiguous().view_symint(tensor2_view); std::vector output_shape(std::move(expand_batch_portion)); output_shape.insert(output_shape.end(), {r1, r2}); Tensor result; if (r1 == 0 || r2 == 0 || expand_batch_product == 0) { result = at::empty_symint(output_shape, x1.options()); } else if (c1 == 0) { result = at::zeros_symint(output_shape, x1.options()); } else if (p == 2 && (mode == 1 || (mode == 0 && (r1 > 25 || r2 > 25)))) { // See Note [cdist relies on cdist_impl redispatching] // Keep the condition above in sync with the condition at the Note Tensor dist = (expand_batch_product == 1) ? at::_euclidean_dist(x1, x2) : at::_euclidean_dist(tensor1_expanded, tensor2_expanded); result = dist.view_symint(output_shape); } else { result = at::empty_symint(output_shape, x1.options()); cdist_stub(device1, result, tensor1_expanded, tensor2_expanded, p); } return result; } Tensor cdist(const Tensor& x1, const Tensor& x2, const double p, std::optional compute_mode) { TORCH_CHECK(x1.dim() >= 2, "cdist only supports at least 2D tensors, X1 got: ", x1.dim(), "D"); TORCH_CHECK(x2.dim() >= 2, "cdist only supports at least 2D tensors, X2 got: ", x2.dim(), "D"); TORCH_CHECK(x1.sym_size(-1) == x2.sym_size(-1), "X1 and X2 must have the same number of columns. X1: ", x1.sym_size(-1), " X2: ", x2.sym_size(-1)); auto maybe_outnames = namedinference::compute_cdist_outnames(x1, x2); auto result = [&]() { NoNamesGuard guard; SymInt r1 = x1.sym_size(-2); SymInt r2 = x2.sym_size(-2); // Special case for empty input: always call the version with explicit autograd to ensure the graph is properly connected if (x1.sym_numel() == 0 || x2.sym_numel() == 0) { return at::_cdist_forward(x1, x2, p, compute_mode); } int64_t mode = compute_mode.value_or(0); // Note [cdist relies on cdist_impl redispatching] // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // This is for pytorch to figure the backward pass itself // when p=2. Keep this condition in sync with the See Note reference if (p == 2 && (mode == 1 || (mode == 0 && (r1 > 25 || r2 > 25)))) { return cdist_impl(x1, x2, p, compute_mode); } else { return at::_cdist_forward(x1, x2, p, compute_mode); } }(); namedinference::propagate_names_if_nonempty(result, maybe_outnames); return result; } Tensor _cdist_forward(const Tensor& x1, const Tensor& x2, const double p, std::optional compute_mode) { TORCH_CHECK(x1.dim() >= 2, "cdist only supports at least 2D tensors, X1 got: ", x1.dim(), "D"); TORCH_CHECK(x2.dim() >= 2, "cdist only supports at least 2D tensors, X2 got: ", x2.dim(), "D"); TORCH_CHECK(x1.size(-1) == x2.size(-1), "X1 and X2 must have the same number of columns. X1: ", x1.size(-1), " X2: ", x2.size(-1)); auto maybe_outnames = namedinference::compute_cdist_outnames(x1, x2); auto result = [&]() { NoNamesGuard guard; return cdist_impl(x1, x2, p, compute_mode); }(); namedinference::propagate_names_if_nonempty(result, maybe_outnames); return result; } Tensor _cdist_backward(const Tensor& _grad, const Tensor& _x1, const Tensor& _x2, const double p, const Tensor& _cdist) { // Broadcasting might generate non-contiguous Tensors, so handle it before doing checks int64_t c1 = _x1.size(-1); int64_t c2 = _x2.size(-1); int64_t r1 = _x1.size(-2); int64_t r2 = _x2.size(-2); auto dim1 = _x1.dim(); auto dim2 = _x2.dim(); IntArrayRef batch_tensor1(_x1.sizes().data(), dim1 - 2); IntArrayRef batch_tensor2(_x2.sizes().data(), dim2 - 2); std::vector expand_batch_portion = infer_size(batch_tensor1, batch_tensor2); std::vector tensor1_expand_size(expand_batch_portion); tensor1_expand_size.insert(tensor1_expand_size.end(), {r1, c1}); std::vector tensor2_expand_size(expand_batch_portion); tensor2_expand_size.insert(tensor2_expand_size.end(), {r2, c2}); // Compute the linearized batch size const int64_t batch_product = c10::multiply_integers(expand_batch_portion); // Gracefully handle empty Tensors if (r1 == 0 || r2 == 0 || c1 == 0 || batch_product == 0) { return at::zeros_like(_x1, _x1.options()); } Tensor x1 = _x1; if (tensor1_expand_size != x1.sizes()) { x1 = x1.expand(tensor1_expand_size); } Tensor x2 = _x2; if (tensor2_expand_size != x2.sizes()) { x2 = x2.expand(tensor2_expand_size); } x1 = x1.contiguous(); x2 = x2.contiguous(); auto cdist = _cdist.contiguous(); auto grad = _grad.contiguous(); int64_t n = x1.size(-2); int64_t m = x1.size(-1); auto device1 = x1.device().type(); TORCH_CHECK(device1 == kCPU || device1 == kCUDA, "_cdist_backward only supports CPU and CUDA devices, X1 got: ", device1); auto device2 = x2.device().type(); TORCH_CHECK(device2 == kCPU || device2 == kCUDA, "_cdist_backward only supports CPU and CUDA devices, X2 got: ", device2); Tensor grad_x1 = at::empty({batch_product, n, m}, x1.options(), LEGACY_CONTIGUOUS_MEMORY_FORMAT); cdist_backward_stub(device1, grad_x1, grad, x1, x2, p, cdist); // Use x1.size() here and not the original size of _x1.size() as this gradient is not taking broadcasting into account // Broadcasting will be handled automatically by the autograd engine return grad_x1.view(x1.sizes()); } Tensor _pdist_forward(const Tensor& self, const double p) { TORCH_CHECK(self.is_contiguous(), "_pdist_forward requires contiguous input"); auto device = self.device().type(); TORCH_CHECK(device == kCPU || device == kCUDA, "_pdist_forward only supports CPU and CUDA devices, got: ", device); Tensor result = at::empty({0}, self.options(), LEGACY_CONTIGUOUS_MEMORY_FORMAT); if (self.size(0) <= 1) { result.resize_({0}); } else { int64_t n = self.size(0); int64_t c = n * (n - 1) / 2; result.resize_({c}); if (self.size(1) == 0) { result.fill_(0); } else { pdist_forward_stub(device, result, self, p); } } return result; } Tensor _pdist_backward(const Tensor& grad, const Tensor& self, const double p, const Tensor& pdist) { TORCH_CHECK(self.is_contiguous(), "_pdist_backward requires self to be contiguous"); TORCH_CHECK(pdist.is_contiguous(), "_pdist_backward requires pdist to be contiguous"); auto device = self.device().type(); TORCH_CHECK(device == kCPU || device == kCUDA, "_pdist_backward only supports CPU and CUDA devices, got: ", device); Tensor result = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT); pdist_backward_stub(device, result, grad, self, p, pdist); return result; } Tensor cosine_similarity(const Tensor& x1_, const Tensor& x2_, int64_t dim, double eps) { /* * cosine_similarity(x1, x2) = / (||x1|| * ||x2||) * * The current implementation is an improvement over the previous version. * * Previous implementation: * 1. Compute num = , * 2. Compute denom = ||x1|| * ||x2||, * 3. Compute denom = max(denom, eps) to avoid division by zero, * 4. Return num / denom. * * Previous implementation has the following issues: * 1. Chance of losing precision in when ||x1|| and ||x2|| are large. * 2. Chance of losing precision in ||x1|| * ||x2|| when ||x1|| and ||x2|| are large. * 3. Losing precision may cause |cosing_similarity(x1, x2)| > 1.0. * * Current implementation: * 1. Compute x1_normalized = x1 / max(||x1||, eps), * x2_normalized = x2 / max(||x2||, eps), * 2. Return . * * The current implementation improves over the previous one by: * 1. Making sure that and ||x1|| * ||x2|| are not computed explicitly, * hence avoiding floating point overflows. * 2. Both methods might have issues with computing ||x1|| and ||x2||, but for * the current method this is the only source of the floating point imprecision. * 3. Makes sure |cosing_similarity(x1, x2)| <= 1.0. * */ auto commonDtype = at::result_type(x1_, x2_); TORCH_CHECK(at::isFloatingType(commonDtype), "expected common dtype to be floating point, yet common dtype is ", commonDtype); // We accept integral types (and bools lol) but vector_norm does not auto x1_is_int = c10::isIntegralType(x1_.scalar_type(), /*încludeBool=*/true); auto x2_is_int = c10::isIntegralType(x2_.scalar_type(), /*încludeBool=*/true); auto x1_t = x1_is_int ? x1_.to(commonDtype) : x1_; auto x2_t = x2_is_int ? x2_.to(commonDtype) : x2_; auto [x1, x2] = expand_outplace(x1_t, x2_t); // We want to divide each tensor by its norm first, as it's more numerically stable. // This keeps the result between -1.0 and 1.0 // We clone them, as we're going to modify them in-place // This allows the gradients to propagate properly all the way to x1 and x2 auto x1_norm = at::linalg_vector_norm(*x1, 2, /*dim=*/dim, /*keepdim=*/true).clone(); auto x2_norm = at::linalg_vector_norm(*x2, 2, /*dim=*/dim, /*keepdim=*/true).clone(); { at::NoGradGuard guard; x1_norm.clamp_min_(eps); x2_norm.clamp_min_(eps); } return ((*x1 / x1_norm) * (*x2 / x2_norm)).sum(dim); } } // namespace at::native