from benchmark_helper import time_with_torch_timer import torch import torch._dynamo import torch._inductor.config as inductor_config inductor_config.triton.mm = "triton" @torch._dynamo.optimize("inductor", nopython=True) def inductor_mm(a, b): return torch.mm(a, b) def torch_mm_relu(a, b): return torch.nn.functional.relu(torch.mm(a, b)) def torch_mm(a, b): return torch.mm(a, b) if __name__ == "__main__": # Real shapes from torchbench a_shapes = [ [2048, 768], [64, 1280], [2048, 768], [32, 2048], [1, 39200], [128, 3072], [16, 1280], ] b_shapes = [ [768, 3072], [1280, 1000], [768, 768], [2048, 1000], [39200, 50], [3072, 1000], [1280, 1000], ] # Artificial larger shapes a_shapes += [[10240, 512], [10240, 1024]] b_shapes += [[512, 10240], [1024, 10240]] for i in range(len(a_shapes)): a_shape = a_shapes[i] b_shape = b_shapes[i] print("Shape:", a_shape, "x", b_shape) a = torch.randn(a_shape, device="cuda", dtype=torch.float16) b = torch.randn(b_shape, device="cuda", dtype=a.dtype) time_with_torch_timer(torch_mm, (a, b), string_id="torch mm") time_with_torch_timer(torch_mm_relu, (a, b), string_id="torch mm + relu") time_with_torch_timer(inductor_mm, (a, b), string_id="inductor mm") # Results obtained on the AWS AI cluster # CPU: Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz # GPU: NVIDIA A100-SXM 40GB memory """ Shape: [2048, 768] x [768, 3072] torch mm mean: 0.0592 ms torch mm + relu mean: 0.0759 ms inductor mm mean: 0.0653 ms Shape: [64, 1280] x [1280, 1000] torch mm mean: 0.0231 ms torch mm + relu mean: 0.0316 ms inductor mm mean: 0.0252 ms Shape: [2048, 768] x [768, 768] torch mm mean: 0.0190 ms torch mm + relu mean: 0.0277 ms inductor mm mean: 0.0274 ms Shape: [32, 2048] x [2048, 1000] torch mm mean: 0.0188 ms torch mm + relu mean: 0.0290 ms inductor mm mean: 0.0244 ms Shape: [1, 39200] x [39200, 50] torch mm mean: 0.0134 ms torch mm + relu mean: 0.0234 ms inductor mm mean: 0.0290 ms Shape: [128, 3072] x [3072, 1000] torch mm mean: 0.0181 ms torch mm + relu mean: 0.0322 ms inductor mm mean: 0.0319 ms Shape: [16, 1280] x [1280, 1000] torch mm mean: 0.0188 ms torch mm + relu mean: 0.0289 ms inductor mm mean: 0.0255 ms Shape: [10240, 512] x [512, 10240] torch mm mean: 0.4589 ms torch mm + relu mean: 0.7896 ms inductor mm mean: 0.5090 ms Shape: [10240, 1024] x [1024, 10240] torch mm mean: 0.9152 ms torch mm + relu mean: 1.2124 ms inductor mm mean: 0.9462 ms """