# Owner(s): ["module: dynamo"] import io import os import shutil import sys import tempfile import unittest import torch._dynamo.test_case from torch._dynamo.repro.after_aot import InputReader, InputWriter, save_graph_repro from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.common_utils import IS_FBCODE from torch.utils._traceback import report_compile_source_on_error def strip_trailing_whitespace(r): return "\n".join([l.rstrip() for l in r.split("\n")]) class TestAfterAot(torch._dynamo.test_case.TestCase): @unittest.skipIf(IS_FBCODE, "NotImplementedError") def test_save_graph_repro(self): # TODO: This triggers CUDA context initialization, even though # it is CPU only buf = io.StringIO() args = [torch.randn(4)] def f(x): return (x * x,) gm = make_fx(f)(*args) with tempfile.TemporaryDirectory() as d: save_graph_repro(buf, gm, args, "inductor_accuracy", save_dir=d) r = buf.getvalue() with report_compile_source_on_error(): exec(r, {"__compile_source__": r}) shutil.rmtree(os.path.join(d, "storages")) # Should still work even without the save dir with report_compile_source_on_error(): exec(r, {"__compile_source__": r}) @unittest.skipIf(sys.byteorder != "little", "checksum depends on endianness") def test_dump_tensor(self): def test(tensor, expected): with tempfile.TemporaryDirectory() as d: writer = InputWriter(d, stable_hash=True) writer.tensor("x", tensor) self.assertExpectedInline("\n".join(writer._lines), expected, skip=1) reader = InputReader(d) env = {"reader": reader, "torch": torch} # TODO: assert no logs exec("\n".join(writer._lines), env) self.assertEqual(reader.args[0], tensor) test( torch.zeros(3, 4), """\ buf0 = reader.storage('c17fd92682ca5b304ac71074b558dda9e8eb4d66', 48) reader.tensor(buf0, (3, 4), is_leaf=True) # x""", ) test( torch.ones(3, 4, dtype=torch.int32), """\ buf0 = reader.storage('7c221e2da0c58c700cc2996644dd13d042bd552e', 48, dtype_hint=torch.int32) reader.tensor(buf0, (3, 4), dtype=torch.int32, is_leaf=True) # x""", ) test( torch.empty((3, 4, 5, 6), memory_format=torch.channels_last).fill_(2), """\ buf0 = reader.storage('49ebab3961d6221e64c4c72b0aefd976bdd2afc4', 1440) reader.tensor(buf0, (3, 4, 5, 6), (120, 1, 24, 4), is_leaf=True) # x""", ) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()