# Owner(s): ["module: dynamo"] import contextlib import functools import logging import os import unittest.mock import torch import torch._dynamo.test_case import torch._dynamo.testing import torch.distributed as dist from torch._dynamo.testing import empty_line_normalizer, skipIfNotPy311 from torch._dynamo.trace_rules import _as_posix_path from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing._internal.common_utils import ( find_free_port, munge_exc, skipIfTorchDynamo, ) from torch.testing._internal.inductor_utils import HAS_CUDA from torch.testing._internal.logging_utils import ( LoggingTestCase, make_logging_test, make_settings_test, ) requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda") requires_distributed = functools.partial( unittest.skipIf, not dist.is_available(), "requires distributed" ) def example_fn(a): output = a.mul(torch.ones(1000, 1000)) output = output.add(torch.ones(1000, 1000)) return output def dynamo_error_fn(a): output = a.mul(torch.ones(1000, 1000)) output = output.add(torch.ones(10, 10)) return output def inductor_error_fn(a): output = torch.round(a) return output def inductor_schedule_fn(a): output = a.add(torch.ones(1000, 1000, device="cuda")) return output ARGS = (torch.ones(1000, 1000, requires_grad=True),) def multi_record_test(num_records, **kwargs): @make_logging_test(**kwargs) def fn(self, records): fn_opt = torch._dynamo.optimize("inductor")(example_fn) fn_opt(*ARGS) self.assertEqual(len(records), num_records) return fn def within_range_record_test(num_records_lower, num_records_higher, **kwargs): @make_logging_test(**kwargs) def fn(self, records): fn_opt = torch._dynamo.optimize("inductor")(example_fn) fn_opt(*ARGS) self.assertGreaterEqual(len(records), num_records_lower) self.assertLessEqual(len(records), num_records_higher) return fn def single_record_test(**kwargs): return multi_record_test(1, **kwargs) class LoggingTests(LoggingTestCase): test_bytecode = multi_record_test(2, bytecode=True) test_output_code = multi_record_test(2, output_code=True) test_aot_graphs = multi_record_test(3, aot_graphs=True) @requires_cuda @make_logging_test(schedule=True) def test_schedule(self, records): fn_opt = torch._dynamo.optimize("inductor")(inductor_schedule_fn) fn_opt(torch.ones(1000, 1000, device="cuda")) self.assertGreater(len(records), 0) self.assertLess(len(records), 5) @requires_cuda @make_logging_test(fusion=True) def test_fusion(self, records): fn_opt = torch._dynamo.optimize("inductor")(inductor_schedule_fn) fn_opt(torch.ones(1000, 1000, device="cuda")) self.assertGreater(len(records), 0) self.assertLess(len(records), 8) @requires_cuda @make_logging_test(cudagraphs=True) def test_cudagraphs(self, records): fn_opt = torch.compile(mode="reduce-overhead")(inductor_schedule_fn) fn_opt(torch.ones(1000, 1000, device="cuda")) self.assertGreater(len(records), 0) self.assertLess(len(records), 8) @make_logging_test(recompiles=True) def test_recompiles(self, records): def fn(x, y): return torch.add(x, y) fn_opt = torch._dynamo.optimize("inductor")(fn) fn_opt(torch.ones(1000, 1000), torch.ones(1000, 1000)) fn_opt(torch.ones(1000, 1000), 1) self.assertGreater(len(records), 0) test_dynamo_debug = within_range_record_test(30, 90, dynamo=logging.DEBUG) test_dynamo_info = within_range_record_test(2, 10, dynamo=logging.INFO) @skipIfTorchDynamo("too slow") @make_logging_test(dynamo=logging.DEBUG) def test_dynamo_debug_default_off_artifacts(self, records): fn_opt = torch._dynamo.optimize("inductor")(example_fn) fn_opt(torch.ones(1000, 1000)) self.assertEqual(len([r for r in records if ".__bytecode" in r.name]), 0) self.assertEqual(len([r for r in records if ".__output_code" in r.name]), 0) @make_logging_test() def test_dynamo_error(self, records): try: fn_opt = torch._dynamo.optimize("inductor")(dynamo_error_fn) fn_opt(*ARGS) except Exception: pass record = self.getRecord(records, "WON'T CONVERT") self.assertExpectedInline( munge_exc(record.getMessage()), """\ WON'T CONVERT dynamo_error_fn test_logging.py line N due to: Traceback (most recent call last): torch._dynamo.exc.TorchRuntimeError: Failed running call_method add(*(FakeTensor(..., size=(1000, 1000), grad_fn=), FakeTensor(..., size=(10, 10))), **{}): Attempting to broadcast a dimension of length 10 at -1! Mismatching argument at index 1 had torch.Size([10, 10]); but expected shape should be broadcastable to [1000, 1000] from user code: File "test_logging.py", line N, in dynamo_error_fn output = output.add(torch.ones(10, 10))""", # noqa: B950 ) test_aot = within_range_record_test(2, 6, aot=logging.INFO) test_inductor_debug = within_range_record_test(3, 17, inductor=logging.DEBUG) test_inductor_info = within_range_record_test(2, 4, inductor=logging.INFO) @make_logging_test() def test_inductor_error(self, records): exitstack = contextlib.ExitStack() import torch._inductor.lowering def throw(x): raise AssertionError # inject an error in the lowerings dict_entries = {} for x in list(torch._inductor.lowering.lowerings.keys()): if "round" in x.__name__: dict_entries[x] = throw exitstack.enter_context( unittest.mock.patch.dict(torch._inductor.lowering.lowerings, dict_entries) ) try: fn_opt = torch._dynamo.optimize("inductor")(inductor_error_fn) fn_opt(*ARGS) except Exception: pass record = self.getRecord(records, "WON'T CONVERT") self.assertExpectedInline( munge_exc(record.getMessage()), """\ WON'T CONVERT inductor_error_fn test_logging.py line N due to: Traceback (most recent call last): File "test_logging.py", line N, in throw raise AssertionError torch._inductor.exc.LoweringException: AssertionError: target: aten.round.default args[0]: TensorBox(StorageBox( InputBuffer(name='primals_1', layout=FixedLayout('cpu', torch.float32, size=[1000, 1000], stride=[1000, 1])) )) The above exception was the direct cause of the following exception: Traceback (most recent call last): torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: LoweringException: AssertionError: target: aten.round.default args[0]: TensorBox(StorageBox( InputBuffer(name='primals_1', layout=FixedLayout('cpu', torch.float32, size=[1000, 1000], stride=[1000, 1])) ))""", ) exitstack.close() @requires_distributed() @requires_cuda @make_logging_test(ddp_graphs=True) def test_ddp_graphs(self, records): class ToyModel(torch.nn.Module): def __init__(self) -> None: super().__init__() self.layers = torch.nn.Sequential( torch.nn.Linear(1024, 1024), torch.nn.Linear(1024, 1024), ) def forward(self, x): return self.layers(x) os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = str(find_free_port()) dist.init_process_group("gloo", rank=0, world_size=1) ddp_model = torch._dynamo.optimize("inductor")( DDP(ToyModel().to("cuda:0"), device_ids=[0], bucket_cap_mb=4) ) ddp_model(torch.randn(1024, 1024, device="cuda:0")) dist.destroy_process_group() self.assertEqual(len([r for r in records if "__ddp_graphs" in r.name]), 4) # check that logging to a child log of a registered logger # does not register it and result in duplicated records @make_settings_test("torch._dynamo.output_graph") def test_open_registration_with_registered_parent(self, records): logger = logging.getLogger("torch._dynamo.output_graph") logger.info("hi") self.assertEqual(len(records), 1) # check logging to a random log that is not a child log of a registered # logger registers it and sets handlers properly @make_settings_test("torch.utils") def test_open_registration(self, records): logger = logging.getLogger("torch.utils") logger.info("hi") self.assertEqual(len(records), 1) # check logging to a random log that is not a child log of a registered # logger registers it and sets handlers properly @make_logging_test(modules={"torch.utils": logging.INFO}) def test_open_registration_python_api(self, records): logger = logging.getLogger("torch.utils") logger.info("hi") self.assertEqual(len(records), 1) @make_logging_test(all=logging.DEBUG, dynamo=logging.INFO) def test_all(self, _): registry = torch._logging._internal.log_registry dynamo_qnames = registry.log_alias_to_log_qnames["dynamo"] for logger_qname in torch._logging._internal.log_registry.get_log_qnames(): logger = logging.getLogger(logger_qname) # if logger_qname is a.b.c and dynamo_qnames contains a.b, it still matches dynamo's INFO setting if any(logger_qname.find(d) == 0 for d in dynamo_qnames): self.assertEqual( logger.getEffectiveLevel(), logging.INFO, msg=f"expected {logger_qname} is INFO, got {logging.getLevelName(logger.getEffectiveLevel())}", ) else: self.assertEqual( logger.getEffectiveLevel(), logging.DEBUG, msg=f"expected {logger_qname} is DEBUG, got {logging.getLevelName(logger.getEffectiveLevel())}", ) @make_logging_test(graph_breaks=True) def test_graph_breaks(self, records): @torch._dynamo.optimize("inductor") def fn(x): torch._dynamo.graph_break() return x + 1 fn(torch.ones(1)) self.assertEqual(len(records), 1) @make_settings_test("torch._dynamo.utils") def test_dump_compile_times(self, records): fn_opt = torch._dynamo.optimize("inductor")(example_fn) fn_opt(torch.ones(1000, 1000)) # This function runs during exit via atexit.register. # We're not actually going to run atexit._run_exit_funcs() here, # because it'll destroy state necessary for other tests. torch._dynamo.utils.dump_compile_times() self.assertEqual( len( [r for r in records if "TorchDynamo compilation metrics" in str(r.msg)] ), 1, ) @make_logging_test(dynamo=logging.INFO) def test_custom_format_exc(self, records): dynamo_log = logging.getLogger(torch._dynamo.__name__) try: raise RuntimeError("foo") except RuntimeError: dynamo_log.exception("test dynamo") dynamo_log.info("with exc", exc_info=True) dynamo_log.info("with stack", stack_info=True) self.assertEqual(len(records), 3) # unfortunately there's no easy way to test the final formatted log other than # to ask the dynamo logger's handler to format it. for handler in dynamo_log.handlers: if torch._logging._internal._is_torch_handler(handler): break self.assertIsNotNone(handler) self.assertIn("Traceback", handler.format(records[0])) self.assertIn("Traceback", handler.format(records[1])) self.assertIn("Stack", handler.format(records[2])) @make_logging_test(dynamo=logging.INFO) def test_custom_format(self, records): dynamo_log = logging.getLogger(torch._dynamo.__name__) test_log = torch._logging.getArtifactLogger( torch._dynamo.__name__, "custom_format_test_artifact" ) dynamo_log.info("test dynamo") test_log.info("custom format") self.assertEqual(len(records), 2) # unfortunately there's no easy way to test the final formatted log other than # to ask the dynamo logger's handler to format it. for handler in dynamo_log.handlers: if torch._logging._internal._is_torch_handler(handler): break self.assertIsNotNone(handler) self.assertIn("I", handler.format(records[0])) self.assertEqual("custom format", handler.format(records[1])) @make_logging_test(dynamo=logging.INFO) def test_multiline_format(self, records): dynamo_log = logging.getLogger(torch._dynamo.__name__) dynamo_log.info("test\ndynamo") dynamo_log.info("%s", "test\ndynamo") dynamo_log.info("test\n%s", "test\ndynamo") self.assertEqual(len(records), 3) # unfortunately there's no easy way to test the final formatted log other than # to ask the dynamo logger's handler to format it. for handler in dynamo_log.handlers: if torch._logging._internal._is_torch_handler(handler): break self.assertIsNotNone(handler) for record in records: r = handler.format(record) for l in r.splitlines(): self.assertIn("I", l) test_trace_source_simple = within_range_record_test(1, 100, trace_source=True) @make_logging_test(trace_source=True) def test_trace_source_if_stmt(self, records): def fn(x): if x.sum() > 0: return x * 2 return x * 3 fn_opt = torch._dynamo.optimize("eager")(fn) fn_opt(torch.ones(3, 3)) found_x2 = False found_x3 = False for record in records: msg = record.getMessage() if "return x * 2" in msg: found_x2 = True if "return x * 3" in msg: found_x3 = True self.assertTrue(found_x2) self.assertFalse(found_x3) @make_logging_test(trace_source=True) def test_trace_source_nested(self, records): def fn1(x): x = fn2(x) return x * 2 def fn2(x): x = fn3(x) return x * 3 def fn3(x): return x * 4 fn_opt = torch._dynamo.optimize("eager")(fn1) fn_opt(torch.ones(3, 3)) found_x2 = False found_x3 = False found_x4 = False for record in records: msg = record.getMessage() if "return x * 2" in msg: found_x2 = True self.assertNotIn("inline depth", msg) elif "return x * 3" in msg: found_x3 = True self.assertIn("inline depth: 1", msg) elif "return x * 4" in msg: found_x4 = True self.assertIn("inline depth: 2", msg) self.assertTrue(found_x2) self.assertTrue(found_x3) self.assertTrue(found_x4) @make_logging_test(trace_source=True) def test_trace_source_cond(self, records): from functorch.experimental.control_flow import cond def true_fn(x): return x * 2 def false_fn(x): return x * 3 def inner(pred, x): return cond(pred, true_fn, false_fn, [x]) def outer(pred, x): return inner(pred, x) fn_opt = torch._dynamo.optimize("eager")(outer) fn_opt(torch.tensor(True), torch.ones(3, 3)) found_x2 = False found_x3 = False for record in records: msg = record.getMessage() if "return x * 2" in msg: found_x2 = True self.assertIn("inline depth: 3", msg) if "return x * 3" in msg: found_x3 = True self.assertIn("inline depth: 3", msg) self.assertTrue(found_x2) self.assertTrue(found_x3) @make_logging_test(trace_source=True) def test_trace_source_funcname(self, records): # NOTE: list comprehensions are inlined in 3.12, so test with tuples def fn1(): def fn2(): if True: return tuple(torch.ones(3, 3) for _ in range(5)) return None return fn2() fn_opt = torch._dynamo.optimize("eager")(fn1) fn_opt() found_funcname = False for record in records: msg = record.getMessage() if "" in msg and "fn1.fn2" in msg: found_funcname = True self.assertTrue(found_funcname) def test_invalid_artifact_flag(self): with self.assertRaises(ValueError): torch._logging.set_logs(aot_graphs=5) @requires_distributed() def test_distributed_rank_logging(self): env = dict(os.environ) env["TORCH_LOGS"] = "dynamo" stdout, stderr = self.run_process_no_exception( """\ import torch.distributed as dist import logging from torch.testing._internal.distributed.fake_pg import FakeStore store = FakeStore() dist.init_process_group("fake", rank=0, world_size=2, store=store) dynamo_log = logging.getLogger("torch._dynamo") dynamo_log.info("woof") print("arf") """, env=env, ) self.assertIn("[rank0]:", stderr.decode("utf-8")) @skipIfNotPy311 @make_logging_test(trace_call=True) def test_trace_call(self, records): def fn(x, y): return (x * 2) @ (y * 3) fn_opt = torch._dynamo.optimize("eager")(fn) fn_opt(torch.randn(10, 20), torch.randn(20, 30)) self.assertEqual(len(records), 3) # only get last 2 lines messages = [ "\n".join(record.getMessage().split("\n")[-2:]) for record in records ] self.assertExpectedInline( messages[0], """\ return (x * 2) @ (y * 3) ~~^~~""", ) self.assertExpectedInline( messages[1], """\ return (x * 2) @ (y * 3) ~~^~~""", ) self.assertExpectedInline( messages[2], """\ return (x * 2) @ (y * 3) ~~~~~~~~^~~~~~~~~""", ) @skipIfNotPy311 @make_logging_test(trace_call=True) def test_trace_call_inline_call(self, records): def g(x): return x * 2 def f(x): return g(g(x)) fn_opt = torch._dynamo.optimize("eager")(f) fn_opt(torch.randn(3, 3)) self.assertEqual(len(records), 4) messages = [ "\n".join(record.getMessage().split("\n")[-2:]) for record in records ] self.assertExpectedInline( messages[0], """\ return g(g(x)) ~^^^""", ) self.assertExpectedInline( messages[1], """\ return x * 2 ~~^~~""", ) self.assertExpectedInline( messages[2], """\ return g(g(x)) ~^^^^^^""", ) self.assertExpectedInline( messages[3], """\ return x * 2 ~~^~~""", ) @skipIfNotPy311 @make_logging_test(trace_call=True) def test_trace_call_graph_break(self, records): def fn(x): x = x * 2 torch._dynamo.graph_break() return x * 3 fn_opt = torch._dynamo.optimize("eager")(fn) fn_opt(torch.randn(3, 3)) self.assertEqual(len(records), 3) messages = [ "\n".join(record.getMessage().split("\n")[-2:]) for record in records ] self.assertExpectedInline( messages[0], """\ x = x * 2 ~~^~~""", ) self.assertExpectedInline( messages[-1], """\ return x * 3 ~~^~~""", ) @make_logging_test(guards=True, recompiles=True) def test_guards_recompiles(self, records): def fn(x, ys, zs): return inner(x, ys, zs) def inner(x, ys, zs): for y, z in zip(ys, zs): x += y * z return x ys = [1.0, 2.0] zs = [3.0] x = torch.tensor([1.0]) fn_opt = torch._dynamo.optimize("eager")(fn) fn_opt(x, ys, zs) fn_opt(x, ys[:1], zs) record_str = "\n".join(r.getMessage() for r in records) self.assertIn( """L['zs'][0] == 3.0""", record_str, ) self.assertIn( "len(L['ys']) == 2", record_str, ) @make_logging_test(cudagraph_static_inputs=True) def test_cudagraph_static_inputs(self, records): @torch.compile(mode="reduce-overhead") def fn(x): return x + 1 x = torch.ones(2, 2) torch._dynamo.mark_static_address(x) fn(x) self.assertGreater(len(records), 0) self.assertLess(len(records), 4) @skipIfTorchDynamo("too slow") @make_logging_test(**torch._logging.DEFAULT_LOGGING) def test_default_logging(self, records): def fn(a): if a.sum() < 0: a = torch.sin(a) else: a = torch.cos(a) print("hello") return a + 1 fn_opt = torch._dynamo.optimize("eager")(fn) fn_opt(torch.ones(10, 10)) fn_opt(-torch.ones(10, 5)) self.assertGreater(len([r for r in records if ".__graph_breaks" in r.name]), 0) self.assertGreater(len([r for r in records if ".__recompiles" in r.name]), 0) self.assertGreater(len([r for r in records if ".symbolic_shapes" in r.name]), 0) self.assertGreater(len([r for r in records if ".__guards" in r.name]), 0) self.assertGreater( len([r for r in records if "return a + 1" in r.getMessage()]), 0 ) def test_logs_out(self): import tempfile with tempfile.NamedTemporaryFile(delete=False) as tmp: file_path = _as_posix_path(tmp.name) """ NamedTemporaryFile will include a file open operation. On Windowsm the file is opened by NamedTemporaryFile, the following run_process_no_exception can't access a opened file. And then, raise a PermissionError: [Errno 13] Permission denied: [file_path] """ tmp.close() env = dict(os.environ) env["TORCH_LOGS"] = "dynamo" env["TORCH_LOGS_OUT"] = file_path stdout, stderr = self.run_process_no_exception( """\ import torch @torch.compile(backend="eager") def fn(a): return a.sum() fn(torch.randn(5)) """, env=env, ) with open( file_path, encoding="utf-8" ) as fd: # encoding file to UTF-8 for Windows. lines = fd.read() fd.close() os.remove( file_path ) # Delete temp file manually, due to setup NamedTemporaryFile as delete=False. self.assertEqual( # process wrap difference: /r/n on Windows, /n on posix. empty_line_normalizer(lines), empty_line_normalizer(stderr.decode("utf-8")), ) # single record tests exclusions = { "bytecode", "cudagraphs", "output_code", "schedule", "fusion", "overlap", "aot_graphs", "aot_graphs_effects", "post_grad_graphs", "compiled_autograd", "compiled_autograd_verbose", "recompiles", "recompiles_verbose", "graph_breaks", "graph", "graph_code", "graph_sizes", "ddp_graphs", "perf_hints", "not_implemented", "trace_source", "trace_call", "trace_bytecode", "custom_format_test_artifact", "onnx", "onnx_diagnostics", "guards", "verbose_guards", "sym_node", "export", "trace_shape_events", "cudagraph_static_inputs", "benchmarking", "loop_ordering", } for name in torch._logging._internal.log_registry.artifact_names: if name not in exclusions: setattr(LoggingTests, f"test_{name}", single_record_test(**{name: True})) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()