# Owner(s): ["module: functorch"] import torch from functorch import make_fx from functorch.compile import minifier from torch._functorch.compile_utils import get_outputs, get_placeholders from torch.testing._internal.common_utils import run_tests, TestCase class TestMinifier(TestCase): def test_has_mul_minifier(self): def failing_f(x, y): y = y / 3 x = x + 3 x = x * y return x + y inps = [torch.randn(3), torch.randn(3)] failing_f = make_fx(failing_f)(*inps) def has_mul(fx_g, inps): return torch.ops.aten.mul.Tensor in (i.target for i in fx_g.graph.nodes) min_f, inps = minifier(failing_f, inps, has_mul) self.assertEqual(len(min_f.graph.nodes), 4) self.assertEqual(len(inps), 2) def test_has_add_mul(self): def failing_f(x): x = x * 3 x = x + 5 x = x.cos() zero = x - x result = zero / zero result = result + 3 return (result * 2,) inps = [torch.randn(3)] failing_f = make_fx(failing_f)(*inps) def has_nans(fx_g, inps): # Basically, make sure none of the nodes are computing nans for i in inps: if torch.isnan(i).any(): return False return torch.isnan(fx_g(*inps)[0]).any() min_f, inps = minifier(failing_f, inps, has_nans) self.assertEqual(len(min_f.graph.nodes), 3) self.assertEqual(len(inps), 1) def test_input_returned(self): def f(a, b, c): a = a.sin() c = c.cos() d = a * c return (a, b, c, d) inps = [torch.randn(3) for _ in range(3)] def inputs_returned(fx_g, inps): inps = set(get_placeholders(fx_g.graph)) outs = set(get_outputs(fx_g.graph)) return len(inps & outs) > 0 failing_f = make_fx(f)(*inps) min_f, inps = minifier(failing_f, inps, inputs_returned) self.assertEqual(len(min_f.graph.nodes), 2) self.assertEqual(len(inps), 1) def test_tup_use(self): def f(a, b): tup = torch.std_mean(a) return (tup[0] + b * tup[1],) inps = [torch.randn(3), torch.randn(3)] def has_add(fx_g, inps): return torch.ops.aten.add.Tensor in (i.target for i in fx_g.graph.nodes) failing_f = make_fx(f)(*inps) min_f, inps = minifier(failing_f, inps, has_add) self.assertEqual(len(min_f.graph.nodes), 4) self.assertEqual(len(inps), 2) def test_module(self): class MockModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.relu = torch.nn.ReLU() def forward(self, x): y = self.relu(x) zero = y - y result = zero / zero result = result + 3 return result mod = MockModule() failing_f = torch.fx.symbolic_trace(mod) inps = [torch.randn(3)] def pass_checker(fx_g, inps): # Basically, make sure none of the inputs are nans for i in inps: if torch.isnan(i).any(): return False return torch.isnan(fx_g(*inps)[0]).any() min_f, inps = minifier(failing_f, inps, pass_checker) assert len(min_f.graph.nodes) == 3 assert len(inps) == 1 if __name__ == "__main__": run_tests()