# Owner(s): ["module: functorch"] # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import contextlib import functools import itertools import os import random import types import unittest import warnings from collections import namedtuple from typing import OrderedDict from unittest.case import skipIf from common_utils import ( check_vmap_fallback, compute_quantities_for_vmap_test, decorate, DisableVmapFallback, generate_vmap_inputs, get_fallback_and_vmap_exhaustive, is_batch_norm_training, is_valid_inplace_sample_input, opsToleranceOverride, skip, skipOps, tol1, xfail, ) from functorch_additional_op_db import additional_op_db import functorch import torch import torch.nn.functional as F from functorch import grad, grad_and_value, jacfwd, jvp, vjp, vmap from functorch.experimental import chunk_vmap from torch import Tensor from torch._C._functorch import reshape_dim_into, reshape_dim_outof from torch._functorch.make_functional import functional_init_with_buffers from torch._functorch.vmap import restore_vmap from torch.nn.attention import sdpa_kernel, SDPBackend from torch.testing._internal.autograd_function_db import autograd_function_db from torch.testing._internal.common_cuda import ( PLATFORM_SUPPORTS_CUDNN_ATTENTION, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, with_tf32_off, ) from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, onlyCUDA, OpDTypes, ops, tol, toleranceOverride, ) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_WINDOWS, markDynamoStrictTest, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, unMarkDynamoStrictTest, xfailIfTorchDynamo, ) from torch.testing._internal.custom_op_db import custom_op_db from torch.utils import _pytree as pytree def get_platform_specific_sdpa(): ret = [SDPBackend.MATH] if PLATFORM_SUPPORTS_FLASH_ATTENTION: ret.append(SDPBackend.FLASH_ATTENTION) if PLATFORM_SUPPORTS_MEM_EFF_ATTENTION: ret.append(SDPBackend.EFFICIENT_ATTENTION) if PLATFORM_SUPPORTS_CUDNN_ATTENTION: ret.append(SDPBackend.CUDNN_ATTENTION) return ret PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() FALLBACK_REGEX = "There is a performance drop" class EnableVmapFallbackWarnings: def __enter__(self): self.prev_state = torch._C._debug_only_are_vmap_fallback_warnings_enabled() torch._C._debug_only_display_vmap_fallback_warnings(True) def __exit__(self, *ignored): torch._C._debug_only_display_vmap_fallback_warnings(self.prev_state) @markDynamoStrictTest class TestVmapAPI(TestCase): def test_non_tensor_output_raises(self): with self.assertRaisesRegex(ValueError, "got type "): vmap(lambda x: 3.14)(torch.ones(3)) def multiple_outputs(x): return x, 3 with self.assertRaisesRegex(ValueError, "got type "): vmap(multiple_outputs)(torch.ones(3)) def test_different_map_dim_size_raises(self): x = torch.randn(2) y = torch.randn(3) expected_msg = ( "Expected all tensors to have the same size in the mapped dimension" ) with self.assertRaisesRegex(ValueError, expected_msg): vmap(torch.mul)(x, y) with self.assertRaisesRegex(ValueError, expected_msg): vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y)) with self.assertRaisesRegex(ValueError, expected_msg): vmap(lambda z: z["x"] + z["y"], in_dims=({"x": 0, "y": 0},))( {"x": x, "y": y} ) def test_func_with_no_inputs(self): expected_msg = "got no inputs" def foo(): return torch.randn(3) def bar(x): return torch.randn(3) with self.assertRaisesRegex(ValueError, expected_msg): vmap(foo)() with self.assertRaisesRegex(ValueError, expected_msg): vmap(bar)() def test_func_with_no_tensors(self): def foo(x): return torch.randn(3) with self.assertRaisesRegex(ValueError, "at least one Tensor"): vmap(foo, (None,))(1) def test_constant_function(self): output = vmap(lambda x: torch.tensor(3.14))(torch.ones(3)) self.assertEqual(output, torch.tensor([3.14, 3.14, 3.14])) def test_single_input(self): x = torch.randn(2, 3) def square(x): return x * x output = vmap(square)(x) self.assertEqual(output, x * x) def test_multiple_inputs(self): x = torch.randn(2, 3) y = torch.randn(2, 3) output = vmap(torch.mul)(x, y) self.assertEqual(output, x * y) def test_multiple_outputs(self): def foo(x): return x * x, x * x * x x = torch.randn(3) outputs = vmap(foo)(x) self.assertEqual(outputs[0], x * x) self.assertEqual(outputs[1], x * x * x) def test_multiple_outputs2(self): # This is the same thing as # def returns_tuple_of_tensors(x): # return x, x def returns_tuple_of_tensors(x): return (x, x) def returns_list_of_two_tensors(x): return [x, x] def returns_list_of_one_tensor(x): return [x] x = torch.randn(3) # should not throw vmap(returns_tuple_of_tensors)(x) vmap(returns_list_of_two_tensors)(x) vmap(returns_list_of_one_tensor)(x) def test_nested_with_same_map_dim(self): x = torch.randn(2, 3, 5) y = torch.randn(2, 3, 5) output = vmap(vmap(torch.mul))(x, y) self.assertEqual(output, x * y) output = vmap(vmap(vmap(torch.mul)))(x, y) self.assertEqual(output, x * y) def test_nested_with_diag_embed(self): # diag_embed requires special testing because it is registered with conditional functionalization. x = torch.randn(3, 3, 5) output = vmap(vmap(torch.diag_embed))(x) self.assertEqual(output, torch.diag_embed(x)) def test_nested_with_different_map_dim(self): x = torch.randn(2, 3) y = torch.randn(5, 3) output = vmap(lambda x: vmap(lambda y: x * y)(y))(x) self.assertEqual(output.shape, (2, 5, 3)) self.assertEqual(output, x.view(2, 1, 3) * y) z = torch.randn(7, 3) output = vmap(lambda x: vmap(lambda y: vmap(lambda z: x * y * z)(z))(y))(x) self.assertEqual(output.shape, (2, 5, 7, 3)) self.assertEqual(output, x.view(2, 1, 1, 3) * y.view(5, 1, 3) * z) def test_noop_in_inner_vmap(self): x = torch.randn(3) y = torch.randn(5) output = vmap(lambda x: vmap(lambda y: x)(y))(x) self.assertEqual(output, x.view(3, 1).expand(3, 5)) def test_checkpoint(self): A = torch.randn((3, 8, 8), dtype=torch.float64, requires_grad=True) def get_grad(checkpoint): A.grad = None def get_loss(A): ortho_A, _ = torch.func.vmap(torch.linalg.qr)(A) return torch.sum(ortho_A) if checkpoint: loss = torch.utils.checkpoint.checkpoint( get_loss, A, use_reentrant=False ) else: loss = get_loss(A) loss.backward() return A.grad expected = get_grad(checkpoint=False) result = get_grad(checkpoint=True) self.assertEqual(result, expected) def test_unsupported_op_err_msg(self): # Unsupported view op tensor = torch.randn(2, 3) msg = ( r"Batching rule not implemented for aten::.+; the " r"fallback path doesn't work on out= or view ops" ) # TODO: find a view op # with self.assertRaisesRegex(RuntimeError, msg): # vmap(torch.ravel)(tensor) def out_op(x, y): return torch.abs(x, out=y) with self.assertRaisesRegex(RuntimeError, msg): vmap(out_op)(tensor, tensor) # Don't support non-tensor returns. This is a limitation of vmap; # functions that don't return tensors must be special cased with self.assertRaisesRegex(RuntimeError, "Batching rule not implemented"): vmap(torch.equal)(tensor, tensor) def test_nonzero_out_dims(self): # Basic test tensor = torch.randn(2, 3) result = vmap(lambda x: x, out_dims=1)(tensor) self.assertEqual(result, tensor.permute(1, 0)) self.assertEqual(result.data_ptr(), tensor.data_ptr()) # Test that the batch dimension gets permuted to dim 2 tensor = torch.randn(2, 3, 5, 7) result = vmap(lambda x: x, out_dims=2)(tensor) self.assertEqual(result, tensor.permute(1, 2, 0, 3)) self.assertEqual(result.data_ptr(), tensor.data_ptr()) # negative out_dim tensor = torch.randn(2, 3, 5, 7) result = vmap(lambda x: x, out_dims=-1)(tensor) self.assertEqual(result, tensor.permute(1, 2, 3, 0)) self.assertEqual(result.data_ptr(), tensor.data_ptr()) # check that out_dims works on ALL outputs tensor = torch.randn(2, 3, 5, 7) other = torch.randn(2, 3, 5, 7) result = vmap(lambda x, y: (x, y), out_dims=2)(tensor, other) self.assertEqual( result, (tensor.permute(1, 2, 0, 3), other.permute(1, 2, 0, 3)) ) # use out_dims with the maximum vmap-able tensor dims (64 dims) ndims = 64 shape = [2] + [1] * (ndims - 1) expected_shape = [1, 1, 2] + [1] * (ndims - 3) tensor = torch.randn(shape) result = vmap(lambda x: x, out_dims=2)(tensor) self.assertEqual(result.shape, expected_shape) # test something that is not the identity function def foo(x, y): return x, x * y, x * y * y x = torch.randn(2, 3, 5) y = torch.randn(2, 3, 5) result = vmap(foo, out_dims=1)(x, y) self.assertEqual( result, ( x.permute(1, 0, 2), (x * y).permute(1, 0, 2), (x * y * y).permute(1, 0, 2), ), ) def test_multiple_out_dims(self): def foo(x): return x, x def bar(x, y): return x, x, x, x * y x = torch.randn(2, 3, 5) y = torch.randn(2, 3, 5) result = vmap(foo, out_dims=(0, 1))(x) self.assertEqual(result, (x, x.permute(1, 0, 2))) result = vmap(bar, out_dims=(-1, 0, 1, 2))(x, y) expected = ( x.permute(1, 2, 0), x, x.permute(1, 0, 2), (x * y).permute(1, 2, 0), ) self.assertEqual(result, expected) def test_nested_out_dims(self): y = torch.randn(2, 3, 5, 7) # Inner vmap has non-zero out_dim result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y))(y) self.assertEqual(result.shape, (2, 5, 3, 7)) self.assertEqual(result, y.permute(0, 2, 1, 3)) # all vmaps have non-zero out_dim result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y), out_dims=1)(y) self.assertEqual(result.shape, (5, 2, 3, 7)) self.assertEqual(result, y.permute(2, 0, 1, 3)) # throwing in some negative out_dims result = vmap(lambda y: vmap(lambda x: x, out_dims=-1)(y), out_dims=-1)(y) self.assertEqual(result.shape, (5, 7, 3, 2)) self.assertEqual(result, y.permute(2, 3, 1, 0)) # testing fn that isn't the identity x = torch.randn(2, 3) y = torch.randn(5, 3) result = vmap(lambda y: vmap(lambda x: x * y, out_dims=1)(x), out_dims=-1)(y) self.assertEqual(result.shape, (3, 2, 5)) self.assertEqual(result, (y.view(5, 1, 3) * x).permute(2, 1, 0)) def test_out_dims_edge_case(self): def foo(x): return x # Test that we accept out_dims=(1,) for a function with one output. tensor = torch.randn(2, 3) expected = vmap(foo, out_dims=1)(tensor) result = vmap(foo, out_dims=(1,))(tensor) self.assertEqual(result, expected) def test_out_dims_none_tuple(self): def foo(x): return x, "hello world" tensor = torch.randn(2, 3) result = vmap(foo, out_dims=(0, None))(tensor) self.assertEqual(result[1], "hello world") self.assertEqual(result[0], tensor) def foo(x): x.add_(1) return None, "hello world" result = vmap(foo, out_dims=(None, None))(tensor) self.assertEqual(result, (None, "hello world")) def test_out_dims_none(self): def foo(x): return x tensor = torch.randn(2, 3) with self.assertRaisesRegex( ValueError, "can not return a BatchedTensor when out_dim is None" ): vmap(foo, out_dims=None)(tensor) def foo(x): x.add_(1) return "hello world" result = vmap(foo, out_dims=None)(tensor) self.assertEqual(result, "hello world") def test_out_dims_normal_tensor(self): def foo(x): return torch.arange(3) tensor = torch.randn(2, 3) result = vmap(foo)(tensor) self.assertEqual(result.shape, [2, 3]) result = vmap(foo, out_dims=None)(tensor) self.assertEqual(result, torch.arange(3)) def test_pytree_returns(self): x = torch.randn(2, 3) def f(x): y = x.sin() return y, (y, y), [y, (y, y)] y0, (y1, y2), (y3, (y4, y5)) = vmap(f)(x) self.assertEqual(y0, x.sin()) self.assertEqual(y0, y1) self.assertEqual(y2, y1) self.assertEqual(y2, y3) self.assertEqual(y4, y3) self.assertEqual(y5, y4) def test_pytree_odict_returns(self): x = torch.randn(2, 3) def f(t): y = t.sin() return OrderedDict([("sin", y), ("cos", t.cos())]) out = vmap(f)(x) assert isinstance(out, OrderedDict) expected = f(x) self.assertEqual(out["sin"], expected["sin"]) self.assertEqual(out["cos"], expected["cos"]) def test_pytree_returns_outdims(self): x = torch.randn(2, 3) def f(x): y = x.sin() return y, (y, y) y0, (y1, y2) = vmap(f, out_dims=(0, (0, 1)))(x) self.assertEqual(y0, x.sin()) self.assertEqual(y1, x.sin()) self.assertEqual(y2, x.sin().t()) def test_pytree_returns_broadcast_simple(self): x = torch.randn(2, 3) def f(x): y = x.sin() return y, (y, y) y0, (y1, y2) = vmap(f, out_dims=1)(x) self.assertEqual(y0, x.sin().t()) self.assertEqual(y1, y0) self.assertEqual(y2, y0) def test_pytree_returns_broadcast_nested(self): x = torch.randn(2, 3) def f(x): y = x.sin() return y, (y, y) y0, (y1, y2) = vmap(f, out_dims=(0, 1))(x) self.assertEqual(y0, x.sin()) self.assertEqual(y1, y0.t()) self.assertEqual(y2, y0.t()) def test_out_dims_must_be_int_or_collection_of_int_err_msg(self): msg = "must be an int, None or a python collection of ints" tensor = torch.randn(2, 3) with self.assertRaisesRegex(ValueError, msg): vmap(lambda x: x, out_dims="lol")(tensor) with self.assertRaisesRegex(ValueError, msg): vmap(lambda x: x, out_dims=("lol",))(tensor) def test_out_dims_and_num_outputs_mismatch_err_msg(self): msg = "not compatible" x = torch.randn(2, 3, 5) # Too many out_dims with self.assertRaisesRegex(ValueError, msg): vmap(lambda x: x, out_dims=(0, 0))(x) with self.assertRaisesRegex(ValueError, msg): vmap(lambda x: (x, x, x), out_dims=(0, 0, 0, 0))(x) # Too few out_dims with self.assertRaisesRegex(ValueError, msg): vmap(lambda x: (x, x), out_dims=(0,))(x) with self.assertRaisesRegex(ValueError, msg): vmap(lambda x: (x, x, x), out_dims=(0, 0))(x) def test_out_dim_out_of_bounds_err_msg(self): # TODO(rzou): This error message isn't that great. It comes straight # from maybe_wrap_dim. Consider doing a try-catch-(add some context) to # the error message in the future in C++ msg = "Dimension out of range" x = torch.randn(2, 3, 5) with self.assertRaisesRegex(IndexError, msg): vmap(lambda x: x, out_dims=3)(x) with self.assertRaisesRegex(IndexError, msg): vmap(lambda x: x, out_dims=-4)(x) def test_non_zero_in_dims(self): tensor = torch.randn(2, 3, 5) # Implicit out_dims = 0; vmap will move the batch dim to the front. output = vmap(lambda x: x, (1,))(tensor) self.assertEqual(output, tensor.permute(1, 0, 2)) self.assertEqual(output.data_ptr(), tensor.data_ptr()) x = torch.randn(2, 3) y = torch.randn(3, 2) output = vmap(torch.mul, (0, 1))(x, y) self.assertEqual(output, x * y.t()) output = vmap(torch.mul, (1, 0))(x, y) self.assertEqual(output, x.t() * y) def test_none_in_dims(self): x = torch.randn(2, 3) y = torch.randn(2, 3) # None in_dim for a Tensor means we don't map over it output = vmap(torch.mul, (0, None))(x, y) self.assertEqual(output.shape, (2, 2, 3)) self.assertEqual(output, x.view(2, 1, 3) * y) # None in_dim for non-tensor arguments output = vmap(torch.mul, (0, None))(x, 2) self.assertEqual(output, x * 2) def test_nested_non_default_in_dims(self): x = torch.rand(5, 2, 3) y = torch.rand(3, 5, 2) result = vmap(vmap(vmap(torch.mul), (1, 0)), (1, 2))(x, y) self.assertEqual(result, x.permute(1, 2, 0) * y.permute(2, 0, 1)) def test_nested_negative_in_dims(self): x = torch.randn(2, 3) y = torch.randn(2, 3) output = vmap(torch.mul, (-1, -1))(x, y) self.assertEqual(output.shape, (3, 2)) self.assertEqual(output, (x * y).permute(1, 0)) def test_non_default_in_dims_out_dims(self): x = torch.randn(2, 3, 5) # Same in_dim as out_dim, vmap over identity result = vmap(lambda x: x, in_dims=1, out_dims=1)(x) self.assertEqual(result, x) self.assertEqual(result.data_ptr(), x.data_ptr()) # Different in_dim from out_dim, vmap over identity result = vmap(lambda x: x, in_dims=2, out_dims=1)(x) self.assertEqual(result.shape, (2, 5, 3)) self.assertEqual(result, x.transpose(1, 2)) self.assertEqual(result.data_ptr(), x.data_ptr()) def foo(x): return x * 2 # Same in_dim as out_dim, vmap over operation result = vmap(foo, in_dims=1, out_dims=1)(x) self.assertEqual(result, x * 2) # Different in_dim as out_dim, vmap over operation result = vmap(foo, in_dims=2, out_dims=1)(x) self.assertEqual(result.shape, (2, 5, 3)) self.assertEqual(result, (x * 2).transpose(1, 2)) # Basic nested test. result = vmap(vmap(foo, 1, 1), 1, 1)(x) self.assertEqual(result, x * 2) def test_item_throws(self): def f(x): return x.item() with self.assertRaisesRegex(RuntimeError, r"item\(\) on a Tensor"): vmap(f)(torch.randn(3)) def test_data_dependent_control_flow_throws(self): def f(x): if x: return x return 0 with self.assertRaisesRegex(RuntimeError, r"data-dependent control flow"): vmap(f)(torch.randn(3)) def test_accepts_nested_inputs(self): x = torch.randn(2, 3) y = torch.randn(2, 3) # Single layer of nesting out = vmap(lambda z: z[0] + z[1])((x, y)) self.assertEqual(out, x + y) out = vmap(lambda z: z[0] + z[1], in_dims=(0,))((x, y)) self.assertEqual(out, x + y) out = vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y)) self.assertEqual(out, x + y) out = vmap(lambda z: z[0] + z[1])([x, y]) self.assertEqual(out, x + y) out = vmap(lambda z: z[0] + z[1], in_dims=(0,))([x, y]) self.assertEqual(out, x + y) out = vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, y]) self.assertEqual(out, x + y) out = vmap(lambda z: z["x"] + z["y"])({"x": x, "y": y}) self.assertEqual(out, x + y) out = vmap(lambda z: z["x"] + z["y"], in_dims=(0,))({"x": x, "y": y}) self.assertEqual(out, x + y) out = vmap(lambda z: z["x"] + z["y"], in_dims=({"x": 0, "y": 0},))( {"x": x, "y": y} ) self.assertEqual(out, x + y) # Multiple layers of nesting out_fn = vmap(lambda z: z["x"][0] + z["x"][1][0] + z["y"][0] + z["y"][1]) out = out_fn({"x": [x, (x,)], "y": [y, y]}) self.assertEqual(out, x + x + y + y) def test_in_dims_wrong_type_err_msg(self): x = torch.randn(3) y = torch.randn(3) msg = r"expected `in_dims` to be int or a \(potentially nested\) tuple" with self.assertRaisesRegex(ValueError, msg): vmap(torch.mul, [0, 0])(x, y) with self.assertRaisesRegex(ValueError, msg): vmap(torch.mul, set({0}))(x, y) with self.assertRaisesRegex(ValueError, msg): vmap(torch.mul, "lol")(x, y) with self.assertRaisesRegex(ValueError, msg): vmap(lambda z: z[0] + z[1], in_dims=[0, 0])([x, y]) # The following should not throw vmap(torch.mul, (0, 0))(x, y) def test_not_enough_in_dims_err_msg(self): x = torch.randn(3) y = torch.randn(3) msg = r"in_dims is not compatible with the structure of `inputs`" with self.assertRaisesRegex(ValueError, msg): vmap(torch.mul, (0,))(x, y) with self.assertRaisesRegex(ValueError, msg): vmap(torch.mul, (0, 0, 0))(x, y) with self.assertRaisesRegex(ValueError, msg): vmap(lambda z: z[0] + z[1], in_dims=([0],))([x, y]) with self.assertRaisesRegex(ValueError, msg): vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))([x, y]) # The following should not throw vmap(torch.mul, (0, 0))(x, y) def test_integer_in_dim_but_not_tensor_input_err_msg(self): def foo(xy): return xy[0] * xy[1] def bar(x, yz): return x * yz[0] * yz[1] x = torch.randn(2, 3) # the following are errors in jax (and will always be errors) msg = "Got in_dim=0 for an input but the input is of type" with self.assertRaisesRegex(ValueError, msg): vmap(torch.sum)(x, 0) with self.assertRaisesRegex(ValueError, msg): vmap(torch.sum, (0, 0))(x, 0) with self.assertRaisesRegex(ValueError, msg): vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, 1]) # The following should not throw vmap(torch.sum, (0, None))(x, 0) def test_in_dim_not_in_tensor_err_msg(self): def foo(x): return x * x x = torch.randn(2, 3) y = torch.randn(2, 3) msg = r"Got in_dim=-?\w for some input, but that input is a Tensor of dimensionality \w" with self.assertRaisesRegex(ValueError, msg): vmap(foo)(torch.randn([])) with self.assertRaisesRegex(ValueError, msg): vmap(foo, in_dims=(0,))(torch.randn([])) with self.assertRaisesRegex(ValueError, msg): vmap(foo, in_dims=(-3,))(x) with self.assertRaisesRegex(ValueError, msg): vmap(foo, in_dims=(2,))(y) with self.assertRaisesRegex(ValueError, msg): vmap(lambda z: z[0] + z[1], in_dims=([3, 0],))([x, y]) # the following should not throw vmap(foo, in_dims=(0,))(torch.randn(2, 3)) vmap(foo, in_dims=(1,))(torch.randn(2, 3)) def test_fallback_does_not_warn_by_default(self): op = torch._test_functorch_fallback x = torch.randn(11) y = torch.randn(11) with warnings.catch_warnings(record=True) as wa: torch.vmap(op)(x, y) # The single warning here is the "vmap is experimental" # warning, not a warning from the vmap fallback path. self.assertEqual(len(wa), 1) @unittest.expectedFailure def test_fallback_warns_when_warnings_are_enabled(self): # NB: One day we will implement a batching rule for torch.atan2. # If/when we do, this test should be replaced to test the fallback # path on another operator to avoid bitrot. op = torch._test_functorch_fallback x = torch.randn(11) y = torch.randn(11) with warnings.catch_warnings(record=True) as wa: with EnableVmapFallbackWarnings(): torch.vmap(op)(x, y) self.assertEqual(len(wa), 2) self.assertRegex(str(wa[-1].message), FALLBACK_REGEX) def _assert_uses_vmap_fallback(self, vmap_args, inputs): return # with warnings.catch_warnings(record=True) as wa: # with EnableVmapFallbackWarnings(): # result = vmap(*vmap_args)(*inputs) # self.assertEqual(len(wa), 2) # self.assertRegex(str(wa[-1].message), FALLBACK_REGEX) def test_fallback_zero_dim(self): op = torch._test_functorch_fallback x = torch.randn(11) y = torch.randn(11) self._assert_uses_vmap_fallback((op,), (x, y)) B0, B1 = 0, 3 x = torch.randn(B0, 11) y = torch.randn(11) msg = "The fallback path does not support vmap over dims of size 0" with self.assertRaisesRegex(RuntimeError, msg): vmap(op, (0, None))(x, y) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, (None, 0))(y, x) with self.assertRaisesRegex(RuntimeError, msg): vmap(op)(x, x) x = torch.randn(B0, B1, 11) y = torch.randn(B1, 11) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, (0, None))(x, y) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, (None, 0))(y, x) with self.assertRaisesRegex(RuntimeError, msg): vmap(op)(x, x) def test_fallback_warning(self): # We use a dummy function _test_functorch_fallback # defined in prim_native_functions.cpp for this op = torch._test_functorch_fallback x = torch.randn(5, 7, 11) y = torch.randn(5, 7, 11) self._assert_uses_vmap_fallback((op,), (x, y)) x = torch.randn(7, 11, 5) y = torch.randn(5, 7, 11) result = vmap(op, (2, 0))(x, y) self.assertEqual(result, op(x.permute(2, 0, 1), y)) # nested vmap x = torch.randn(7, 11, 5) y = torch.randn(5, 7, 11) result = vmap(vmap(op), (2, 0))(x, y) self.assertEqual(result, op(x.permute(2, 0, 1), y)) # big batch size (total 10000) x = torch.randn(100, 10, 10, 5) y = torch.randn(100, 10, 10) result = vmap(vmap(vmap(op)))(x, y) self.assertEqual(result, op(x, y.view(100, 10, 10, 1))) # TODO: No clue what is wrong here. @unittest.skip def test_fallback_masked_fill(self): # NB: One day we will implement a batching rule for masked_fill # If/when we do, this test should be replaced to test the fallback # path on another operator to avoid bitrot. def run_test(batch_size): B0 = batch_size x = torch.randn(B0, 7, 11, 13) dim = 0 index = torch.tensor([0, 4, 2]) values = torch.randn(B0, 3, 13) self._assert_uses_vmap_fallback( (torch.index_add, (0, None, None, 0)), (x, dim, index, values) ) result = vmap(torch.index_add, (0, None, None, 0))(x, dim, index, values) expected = torch.index_add(x, dim + 1, index, values.view(B0, 3, 1, 13)) self.assertEqual(result, expected) run_test(batch_size=5) run_test(batch_size=1237) def test_fallback_multiple_returns(self): # NB: One day we will implement a batching rule for torch.var_mean # If/when we do, this test should be replaced to test the fallback # path on another operator to avoid bitrot. B0, B1, B2 = 2, 3, 1237 tensor = torch.randn(B0, 10) self._assert_uses_vmap_fallback((torch.var_mean,), (tensor,)) # fallback correctness on torch.var_mean result = vmap(torch.var_mean)(tensor) expected = torch.var_mean(tensor, dim=1) self.assertEqual(result, expected) # nested vmap tensor = torch.randn(B0, B1, 10) result = vmap(vmap(torch.var_mean))(tensor) expected = torch.var_mean(tensor, dim=2) self.assertEqual(result, expected) # big batch size, nested vmap tensor = torch.randn(B0, B1, B2, 10) result = vmap(vmap(vmap(torch.var_mean)))(tensor) expected = torch.var_mean(tensor, dim=3) self.assertEqual(result, expected) def test_inplace_fallback_unary(self): # Test the in-place fallback on an in-place method that takes no # additional Tensor arguments. This is the simplest case of the fallback. # NB: One day we will implement a batching rule for acos_. # If/when we do, this test should be replaced to test the fallback # path on another operator to avoid bitrot. op = Tensor.acos_ B0, B1, B2 = 2, 3, 10000 x = torch.randn(B0, 5) self._assert_uses_vmap_fallback((op,), (x,)) # Single vmap x_orig = torch.rand(B0, 5) x = x_orig.clone() result = vmap(op)(x) self.assertTrue(result is x) self.assertEqual(result, x_orig.acos()) # Single vmap + different out_dim produces a view(!) x_orig = torch.rand(B0, 5) x = x_orig.clone() result = vmap(op, out_dims=(1,))(x) self.assertTrue(result._base is x) self.assertEqual(result, x_orig.t().acos()) # Nested vmap x_orig = torch.randn(B0, B1, 5) x = x_orig.clone() result = vmap(vmap(op))(x) self.assertTrue(result is x) self.assertEqual(result, x_orig.acos()) # Nested vmap, large batch size x_orig = torch.randn(B0, B1, B2, 5) x = x_orig.clone() result = vmap(vmap(vmap(op)))(x) self.assertTrue(result is x) self.assertEqual(result, x_orig.acos()) def test_inplace_fallback_nary_same_levels(self): # NB: One day we will implement a batching rule for atan2_ # If/when we do, this test should be replaced to test the fallback # path on another operator to avoid bitrot. op = Tensor.atan2_ outplace_op = torch.atan2 x = torch.randn(5, 7, 11) y = torch.randn(5, 7, 11) self._assert_uses_vmap_fallback((op,), (x, y)) # Single vmap B0 = 5 x_orig = torch.randn(7, 11, B0) x = x_orig.clone() y = torch.randn(B0, 7, 11) vmap(op, (2, 0))(x, y) self.assertEqual(x, outplace_op(x_orig, y.movedim(0, 2))) # Nested vmap B0, B1 = 5, 7 x_orig = torch.randn(B1, 11, B0) x = x_orig.clone() y = torch.randn(B0, B1, 11) vmap(vmap(op), (2, 0))(x, y) self.assertEqual(x, outplace_op(x_orig, y.movedim([0, 1], [2, 0]))) # big batch size (total 10000) B0, B1, B2 = 100, 10, 10 x_orig = torch.randn(B0, B1, B2, 5) x = x_orig.clone() y = torch.randn(B0, B1, B2) vmap(vmap(vmap(op)))(x, y) self.assertEqual(x, outplace_op(x_orig, y.view(B0, B1, B2, 1))) # ("Fallback isInplaceVmapCompatible check is broken") @unittest.expectedFailure def test_inplace_fallback_nary_different_levels(self): # NB: One day we will implement a batching rule for atan2_ # If/when we do, this test should be replaced to test the fallback # path on another operator to avoid bitrot. op = Tensor.atan2_ outplace_op = torch.atan2 B0, B1 = 2, 3 x = torch.rand(B0, 7) y = torch.rand(7) self._assert_uses_vmap_fallback((op, (0, None)), (x, y)) # op(left, right): All of the levels in right are found in left x_orig = torch.rand(B0, 7) x = x_orig.clone() y = torch.rand(7) vmap(op, in_dims=(0, None))(x, y) self.assertEqual(x, outplace_op(x_orig, y)) x_orig = torch.rand(B0, B1, 7) x = x_orig.clone() y = torch.rand(B0, 7) vmap(vmap(op, in_dims=(0, None)))(x, y) self.assertEqual(x, outplace_op(x_orig, y.view(B0, 1, 7))) # op(left, right): Some of the levels in right are not found in left msg = r"vmap: aten::atan2_\(self, \*extra_args\) is not possible" x = torch.rand(7) y = torch.rand(B0, 7) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(None, 0))(x, y) x = torch.rand(B1, 7) y = torch.rand(B0, 7) with self.assertRaisesRegex(RuntimeError, msg): vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 0))(x, y) x = torch.rand(B1, 7) y = torch.rand(7, B0) with self.assertRaisesRegex(RuntimeError, msg): vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 1))(x, y) x = torch.rand(B0, 7) y = torch.rand(B0, B1, 7) with self.assertRaisesRegex(RuntimeError, msg): vmap(vmap(op, in_dims=(None, 0)))(x, y) def test_backward_unsupported_interaction(self): x = torch.randn(3, requires_grad=True) y = torch.randn(5) grad = torch.randn_like(x) err_msg = r"backward\(\) called inside a functorch transform" def backward_on_vmapped_tensor(x): x.sum().backward() # FIXME return self.skipTest( "error: element 0 of tensors does not require grad and does not have a grad_fn" ) with self.assertRaisesRegex(RuntimeError, err_msg): vmap(backward_on_vmapped_tensor)(x) def backward_with_vmapped_grad(x, grad): x.backward(grad) with self.assertRaisesRegex(RuntimeError, err_msg): vmap(backward_with_vmapped_grad)(x, grad) def completely_unrelated_backward(y): x.sum().backward() return y with self.assertRaisesRegex(RuntimeError, err_msg): vmap(completely_unrelated_backward)(y) @unittest.expectedFailure def test_grad_unsupported_interaction(self): input_tensor = torch.randn(3, requires_grad=True) err_msg = "autograd.grad.* called inside torch.vmap" captured = torch.randn(3, requires_grad=True) def output_to_grad_is_vmapped(input_tensor): output = (captured * input_tensor).sum() return torch.autograd.grad([output], [captured])[0] with self.assertRaisesRegex(RuntimeError, err_msg): vmap(output_to_grad_is_vmapped)(input_tensor) output = (input_tensor**2).sum() def input_to_grad_is_vmapped(input_tensor): return torch.autograd.grad([output], [input_tensor])[0] with self.assertRaisesRegex(RuntimeError, err_msg): vmap(input_to_grad_is_vmapped)(input_tensor) def test_batched_gradient_basic(self): N = 3 x = torch.randn(N, requires_grad=True) y = torch.randn(N) def vjp_mul(v): return torch.autograd.grad([x * y], [x], grad_outputs=[v])[0] batched_v = torch.eye(N) jacobian = vmap(vjp_mul)(batched_v) self.assertEqual(jacobian, torch.diagflat(y)) def test_functools_partial(self): x = torch.randn(3) y = torch.randn(2, 3) result = vmap(functools.partial(torch.mul, x))(y) self.assertEqual(result, x * y) def test_nn_module(self): tensor = torch.randn(2, 3) model = torch.nn.Linear(3, 3, bias=False) result = vmap(model)(tensor) self.assertEqual(result, model(tensor)) def test_fallback_with_undefined_grad(self): B0 = 7 x = torch.randn(2, 3, 4, 5, requires_grad=True) weight = torch.randn(3, 3, 1, 1) v = torch.randn(B0, 2, 3, 4, 5) def get_vjp(v): result = torch.nn.functional.conv2d(x, weight) (grad_x,) = torch.autograd.grad(result, x, v) return grad_x # Runs vmap(get_vjp)(v), which should not error out. # The backward formula for convolution returns an undefined # Tensor for grad_bias because the original bias does not exist. # # In the future we'll probably add a batching rule for convolution # backward. When this happens, we should modify this test to use a # different op (and/or create and use a dummy operator) to avoid bitrot. self._assert_uses_vmap_fallback([get_vjp], [v]) def test_reshape_dim_into(self): x = torch.randn(2, 3, 5, 7) y = reshape_dim_into(0, 0, x) self.assertEqual(y, x.reshape(6, 5, 7)) y = reshape_dim_into(0, 1, x) self.assertEqual(y, x.movedim(0, 1).reshape(3, 2 * 5, 7)) y = reshape_dim_into(0, 2, x) self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7)) y = reshape_dim_into(1, 2, x) self.assertEqual(y, x.movedim(1, 2).reshape(2, 5, 3 * 7)) y = reshape_dim_into(0, -2, x) self.assertEqual(y, x.movedim(0, 1).reshape(3, 2 * 5, 7)) y = reshape_dim_into(0, -1, x) self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7)) y = reshape_dim_into(-4, -1, x) self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7)) def test_reshape_dim_outof(self): x = torch.randn(12, 12, 12).permute(2, 1, 0) y = reshape_dim_outof(0, 2, x) self.assertEqual(y, x.reshape(2, 6, 12, 12)) y = reshape_dim_outof(1, 4, x) self.assertEqual(y, x.reshape(12, 4, 3, 12)) y = reshape_dim_outof(2, 6, x) self.assertEqual(y, x.reshape(12, 12, 6, 2)) y = reshape_dim_outof(-1, 6, x) self.assertEqual(y, x.reshape(12, 12, 6, 2)) # Case: `0` sized dim. x = torch.randn(12, 12, 0) y = reshape_dim_outof(-1, 6, x) self.assertEqual(y.shape, torch.Size((12, 12, 6, 0))) def test_batch_rule_does_not_need_to_handle_no_batched_input(self): def f(x, y): res = torch.dot(y, torch.ones(2)) return x + res x = torch.randn(7, 5) y = torch.randn(3, 2) out = vmap(vmap(f, in_dims=(0, None)), in_dims=(None, 0))(x, y) expected = torch.mv(y, torch.ones(2)).view(3, 1, 1) + x self.assertEqual(out, expected) def test_decomposition_under_python_dispatcher(self): # This test will raise an error if the vmap fallback gets invoked. # Here we test that decomps registered to FuncTorchBatchedDecomposition # are respected by the Python Dispatcher. t = torch.ones(3, 3) * 5 with DisableVmapFallback(): with torch._dispatch.python.enable_python_dispatcher(): o = torch.vmap(torch.square)(t) self.assertEqual(o, torch.square(t)) def _test_vmap_autocast(self, device): if torch.device(device).type == "cpu": amp_dtype = torch.bfloat16 else: amp_dtype = torch.float16 a_float32 = torch.rand(4, 2, 3, device=device) b_float32 = torch.rand(4, 3, 2, device=device) c_float32 = torch.rand(4, 2, 2, device=device) d_float32 = torch.rand(4, 3, 2, device=device) # Case 1, autocast inside vmapped function def func1(x, y, z, w): with torch.autocast(dtype=amp_dtype, device_type=device): e_float16 = torch.matmul(x, y) assert e_float16.dtype == amp_dtype, e_float16.dtype f_float16 = torch.matmul(z, e_float16) assert f_float16.dtype == amp_dtype, f_float16.dtype return torch.matmul(w, f_float16.float()) expected = func1(a_float32, b_float32, c_float32, d_float32) out = vmap(func1)(a_float32, b_float32, c_float32, d_float32) assert expected.allclose(out) # Case 2, autocast decorator inside vmapped function @torch.autocast(dtype=amp_dtype, device_type=device) def func2(x, y, z, w): e_float16 = torch.matmul(x, y) assert e_float16.dtype == amp_dtype, e_float16.dtype f_float16 = torch.matmul(z, e_float16) assert f_float16.dtype == amp_dtype, f_float16.dtype return torch.matmul(w, f_float16) expected = func2(a_float32, b_float32, c_float32, d_float32) out = vmap(func2)(a_float32, b_float32, c_float32, d_float32) assert expected.allclose(out) # Case 3, autocast is outside vmapped function def func3(x, y, z, w): e_float16 = torch.matmul(x, y) assert e_float16.dtype == amp_dtype, e_float16.dtype f_float16 = torch.matmul(z, e_float16) assert f_float16.dtype == amp_dtype, f_float16.dtype return torch.matmul(w, f_float16) with torch.autocast(dtype=amp_dtype, device_type=device): expected = func3(a_float32, b_float32, c_float32, d_float32) out = vmap(func3)(a_float32, b_float32, c_float32, d_float32) assert expected.allclose(out) @unittest.skip("Somehow, vmap and autocast do not work on CPU") def test_vmap_autocast_cpu(self): self._test_vmap_autocast("cpu") @skipIf(not torch.cuda.is_available(), "CUDA is unavailable") def test_vmap_autocast_cuda(self): self._test_vmap_autocast("cuda") def test_restore_vmap_pytree_input_output(self): def f(x, y): output0 = x[0] + x[1] output1 = y return {"a": output0, "b": output1} B = 2 x0 = torch.randn(B, 3) x1 = torch.randn(B) y = torch.randn(4, B) out, out_dims = restore_vmap(f, ((0, 0), 1), B, "error")((x0, x1), y) expected = vmap(f, in_dims=((0, 0), 1), out_dims={"a": 0, "b": 1})((x0, x1), y) self.assertEqual(out, expected) self.assertEqual(out_dims, {"a": 0, "b": 1}) def test_restore_vmap_no_vmapped_inputs(self): def f(x, y, z): return x, y * z, z B = 2 # Mix of tensor and non-tensor inputs x = torch.randn(3) y = torch.randn(4) z = 5 out, out_dims = restore_vmap(f, (None, None, None), B, "error")(x, y, z) self.assertEqual(out, f(x, y, z)) self.assertEqual(out_dims, (None, None, None)) def test_restore_vmap_unexpanded_outputs(self): def f(x, y): # Mix of tensor and non-tensor outputs return 3 * y, y.sum(), None B = 2 x = torch.randn(B, 3) y = torch.randn(4) out, out_dims = restore_vmap(f, (0, None), B, "error")(x, y) self.assertEqual(out, f(None, y)) self.assertEqual(out_dims, (None, None, None)) def test_data_attribute(self): def foo(x): y = x.data return x with self.assertRaisesRegex( RuntimeError, "accessing `data` under vmap transform" ): torch.func.vmap(foo)(torch.randn(3, 3)) def foo(x): x.data = torch.ones(3, 3) return x with self.assertRaisesRegex( RuntimeError, "mutating directly with `.data` under vmap" ): torch.func.vmap(foo)(torch.randn(3, 3)) def slice_inputs(inputs, bdims, i): result = [] for inp, bdim in zip(inputs, bdims): if bdim is None: result.append(inp) else: result.append(inp.select(bdim, i)) return tuple(result) def reference_vmap(op, inputs, in_dims=0, out_dims=0, return_nt=False): if isinstance(in_dims, int): in_dims = (in_dims,) * len(inputs) bdim_sizes = [inp.size(dim) for inp, dim in zip(inputs, in_dims) if dim is not None] assert all(bdim_size == bdim_sizes[0] for bdim_size in bdim_sizes) bdim_size = bdim_sizes[0] results = tuple(op(*slice_inputs(inputs, in_dims, i)) for i in range(bdim_size)) assert len(results) > 0 op_has_single_return = not isinstance(results[0], tuple) if op_has_single_return: assert all(isinstance(result, torch.Tensor) for result in results) if isinstance(out_dims, int): out_dims = (out_dims,) * 1 if return_nt: return torch.nested.nested_tensor(list(results)) else: return torch.stack(results, dim=out_dims[0]) assert all(isinstance(result, tuple) for result in results) num_returns = len(results[0]) assert all(len(result) == num_returns for result in results) if isinstance(out_dims, int): out_dims = (out_dims,) * num_returns if return_nt: return tuple( torch.nested.nested_tensor(list(result_shards)) for result_shards in zip(*results) ) else: return tuple( torch.stack(result_shards, out_dim) for result_shards, out_dim in zip(zip(*results), out_dims) ) class TensorFactory: @staticmethod def rand(size, device="cpu", dtype=torch.float): return torch.rand(size, device=device, dtype=dtype) @staticmethod def randn(size, device="cpu", dtype=torch.float): return torch.randn(size, device=device, dtype=dtype) @staticmethod def randp1(size, device="cpu", dtype=torch.float): return torch.rand(size, device=device, dtype=dtype) + 1 # Tests vmap(op, in_dims, out_dims)(*inputs) by comparing the output to a # (slow) sequential map+stack fallback. # # check_view: Test if the first returned output is a view of the first input # check_propagates_grad: Test if the operation propagates gradients. def _vmap_test( self, op, inputs, in_dims=0, out_dims=0, check_view=False, check_propagates_grad=True, ): result = vmap(op, in_dims, out_dims)(*inputs) are_nested = [t.is_nested for t in pytree.tree_leaves(result)] reference_result = reference_vmap( op, inputs, in_dims, out_dims, return_nt=any(are_nested) ) self.assertEqual(result, reference_result) op_has_single_return = not isinstance(result, tuple) if check_view: result_as_tuple = (result,) if op_has_single_return else result for output in result_as_tuple: input0_base = inputs[0] if inputs[0]._base is None else inputs[0]._base self.assertTrue( output._base is input0_base, msg="result was not a view of the first input!", ) if not check_propagates_grad: return # Assuming input[0] is a floating-point tensor. Check if the vmap # operation propagates the requires_grad flag to the zeroth output. # Some vmap operators are implemented in a way that assumes that # they are composite with respect to autograd. If the operator ever is # changed to not be composite with respect to autograd, then the # following check should fail. inputs_clone = list(inputs) inputs_clone[0] = inputs[0].clone().requires_grad_() result = vmap(op, in_dims, out_dims)(*inputs_clone) result_as_tuple = (result,) if op_has_single_return else result self.assertTrue(result[0].requires_grad) def should_allow_vmap_fallback_usage(fn): return getattr(fn, "_allow_vmap_fallback_usage", False) def allowVmapFallbackUsage(fn): fn._allow_vmap_fallback_usage = True return fn # All tests of TestVmapBase check that the slow vmap fallback is never invoked. # This is so that we can incrementally add batching rules for operators to # replace the slow vmap fallback path for said operators. To skip this check, # please use the allowVmapFallbackUsage decorator. # # NB: Don't add tests to TestVmapBase directly, unless you want them to run # on every subclass of TestVmapBase. Add them to e.g. TestVmapOperators. # # NB: TestVmapBase is a nested class. This prevents test runners from picking # it up and running it. class Namespace: class TestVmapBase(TestCase): def __init__(self, method_name="runTest"): super().__init__(method_name) test_method = getattr(self, method_name, None) if test_method is None: return if not should_allow_vmap_fallback_usage(test_method): setattr( self, method_name, self._wrap_method_with_vmap_fallback_check(test_method), ) def _wrap_method_with_vmap_fallback_check(self, method): # msg = ( # 'Expected the test to not invoke the vmap fallback path, i.e., ' # 'all of the operators being tested in this test should have batching ' # 'rules implemented. If you are intentionally testing something to ' # 'do with the fallback path, use allowVmapFallbackUsage. Otherwise, ' # 'please make sure that batching rules are implemented for the ' # 'operator(s) being tested.' # ) @functools.wraps(method) def wrapper(self, *args, **kwargs): with warnings.catch_warnings(record=True): warnings.simplefilter("always") with EnableVmapFallbackWarnings(): method(*args, **kwargs) # for captured_warning in wa: # self.assertNotRegex(str(captured_warning.message), FALLBACK_REGEX, msg) return types.MethodType(wrapper, self) @allowVmapFallbackUsage def test_vmap_fallback_check_ok(self): # One day we'll implement a batching rule for torch.var_mean. # When that happens, please change the example to use an # operator that doesn't have a batching rule implemented. op_using_fallback = torch.var_mean vmap(op_using_fallback)(torch.rand(3)) @unittest.expectedFailure def test_vmap_fallback_check(self): @self._wrap_method_with_vmap_fallback_check def no_fallback(self): pass # One day we'll implement a batching rule for torch.var_mean. # When that happens, please change the example to use an # operator that doesn't have a batching rule implemented. op_using_fallback = torch.var_mean @self._wrap_method_with_vmap_fallback_check def uses_fallback(self): vmap(op_using_fallback)(torch.rand(3)) no_fallback(self) with self.assertRaises(AssertionError): uses_fallback(self) def _make_case(op, input_getter=TensorFactory.randn): return (op, input_getter) @markDynamoStrictTest class TestVmapOperators(Namespace.TestVmapBase): def _vmap_test(self, *args, **kwargs): return _vmap_test(self, *args, **kwargs) def _vmap_view_test(self, *args, **kwargs): self._vmap_test(*args, **kwargs, check_view=True) def _test_unary(self, op, getter, device, *args, **kwargs): test = functools.partial(self._vmap_test, *args, **kwargs) B0, B1 = 7, 11 # Single vmap, various in_dims / out_dims test(op, [getter([B0, 3], device)]) test(op, [getter([2, 5, B0, 3], device)], in_dims=2) test(op, [getter([2, 5, B0, 3], device)], in_dims=2, out_dims=2) # Doubly nested vmap test(vmap(op), [getter([B0, B1], device)]) test(vmap(op), [getter([B1, 2, 5, B0, 3], device)], in_dims=2) test( vmap(op, in_dims=2), [getter([2, 5, B0, B1, 3], device)], in_dims=2, out_dims=2, ) @parametrize( "case", [ (torch.abs, TensorFactory.randn), (torch.acos, TensorFactory.rand), (torch.asin, TensorFactory.rand), (torch.atan, TensorFactory.rand), (torch.ceil, TensorFactory.randn), (torch.cos, TensorFactory.rand), (torch.cosh, TensorFactory.rand), (torch.digamma, TensorFactory.rand), (torch.exp, TensorFactory.randn), (torch.expm1, TensorFactory.randn), (torch.floor, TensorFactory.randn), (torch.frac, TensorFactory.randn), (torch.lgamma, TensorFactory.rand), (torch.log, TensorFactory.randp1), (torch.log10, TensorFactory.randp1), (torch.log1p, TensorFactory.randp1), (torch.log2, TensorFactory.randp1), (torch.neg, TensorFactory.randn), (torch.reciprocal, TensorFactory.randp1), (torch.relu, TensorFactory.randn), (torch.round, TensorFactory.randn), (torch.rsqrt, TensorFactory.randp1), (torch.sigmoid, TensorFactory.randn), (torch.sign, TensorFactory.randn), (torch.sin, TensorFactory.rand), (torch.sinh, TensorFactory.rand), (torch.sqrt, TensorFactory.rand), (torch.tan, TensorFactory.rand), (torch.tanh, TensorFactory.rand), (torch.trunc, TensorFactory.randn), ], name_fn=lambda x: x[0].__name__, ) def test_unary_pointwise(self, case): op, getter = case self._test_unary(op, getter, "cpu") # test in-place method = getattr(Tensor, f'{op.__name__ + "_"}') self._test_unary(method, getter, "cpu", check_propagates_grad=False) def test_clone(self): # Some basic tests self._test_unary(lambda x: x.clone(), TensorFactory.randn, "cpu") self._test_unary( lambda x: x.clone(memory_format=torch.preserve_format), TensorFactory.randn, "cpu", ) self._test_unary( lambda x: x.clone(memory_format=torch.contiguous_format), TensorFactory.randn, "cpu", ) # Test that the per-examples are contiguous when using torch.contiguous_format def clone_contiguous(x): return x.clone(memory_format=torch.contiguous_format) B0, B1 = 3, 5 x = torch.randn(2, B0, 7) y = vmap(clone_contiguous, in_dims=1, out_dims=1)(x) self.assertTrue(y.movedim(1, 0).is_contiguous()) self.assertTrue(y[:, 0, :].is_contiguous()) x = torch.randn(2, B0, 7, B1) y = vmap(vmap(clone_contiguous, in_dims=2), in_dims=1)(x) self.assertTrue(y.is_contiguous()) self.assertTrue(y[0][0].is_contiguous()) msg = r"only supported with memory_format torch.preserve_format or torch.contiguous_format" with self.assertRaisesRegex(RuntimeError, msg): vmap(lambda x: x.clone(memory_format=torch.channels_last))(torch.randn(B0)) with self.assertRaisesRegex(RuntimeError, msg): vmap(lambda x: x.clone(memory_format=torch.channels_last_3d))( torch.randn(B0) ) def test_weird_matmul_case(self): # Check that this doesn't crash. # https://github.com/pytorch/functorch/issues/417 x = torch.randn(5, 2, 2, 2) y = torch.randn(5, 7, 2) vmap(vmap(torch.matmul, in_dims=(None, 0)))(x, y) @parametrize( "case", ( (torch.clamp_min_, TensorFactory.randn), (torch.clamp_max_, TensorFactory.randn), ), name_fn=lambda x: x[0].__name__, ) def test_clamp_inplace_variant(self, case): test = self._vmap_test def get_number(getter): return getter([]).item() op, getter = case device = "cpu" B0, B1 = 7, 11 # Single vmap: op(Tensor, Tensor) test( op, (getter([B0, 3], device), getter([B0, 3], device)), check_propagates_grad=False, ) test( op, (getter([B0], device), getter([B0], device)), check_propagates_grad=False, ) test( op, (getter([2, B0, 3], device), getter([2, B0, 3], device)), in_dims=(1, 1), check_propagates_grad=False, ) test( op, (getter([B0, 2, 3], device), getter([2, B0, 3], device)), in_dims=(0, 1), out_dims=1, check_propagates_grad=False, ) test( op, (getter([B0, 2, 3], device), getter([1, 1], device)), in_dims=(0, None), check_propagates_grad=False, ) test( op, (getter([B0, 3], device), getter([B0, 3], device)), in_dims=(0, 0), check_propagates_grad=False, ) # Nested vmap: op(Tensor, Tensor) test( vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 1, 3], device)), check_propagates_grad=False, ) # Python number overload: op(Tensor, Number) number = get_number(getter) self._test_unary( lambda t: op(t, number), getter, device, check_propagates_grad=False ) @parametrize( "case", [ subtest(_make_case(torch.clamp_min), name="clamp_min"), subtest(_make_case(torch.clamp_max), name="clamp_max"), ], ) def test_clamp_variant(self, case): test = self._vmap_test def get_number(getter): return getter([]).item() op, getter = case device = "cpu" B0, B1 = 7, 11 # Single vmap: op(Tensor, Tensor) test(op, (getter([B0, 3], device), getter([B0, 3], device))) test(op, (getter([B0], device), getter([B0, 2, 3], device))) test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1)) test( op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1), out_dims=1, ) test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None)) test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(None, 0)) # Nested vmap: op(Tensor, Tensor) test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device))) test( vmap(op, in_dims=(None, 0)), (getter([B0, 2, 3], device), getter([B1, 3], device)), in_dims=(0, None), ) # Python number overload: op(Tensor, Number) number = get_number(getter) self._test_unary(lambda t: op(t, number), getter, device) def test_copy_(self): x = torch.randn(3) y = torch.randn(3) vmap(Tensor.copy_)(x, y) self.assertEqual(x, y) x = torch.randn(3) y = torch.randn(3, 2) vmap(Tensor.copy_, in_dims=(1, None))(y, x) self.assertEqual(y, x.expand(2, 3).t()) x = torch.randn(3) y = torch.randn(2, 3) with self.assertRaisesRegex(RuntimeError, "inplace"): vmap(Tensor.copy_, in_dims=(None, 0))(x, y) def test_silu_backward(self): test = self._vmap_test device = "cpu" getter = TensorFactory.randp1 B0 = 7 op = torch.ops.aten.silu_backward # Single vmap: op(Tensor, Tensor) test(op, (getter([B0, 3], device), getter([B0, 3], device))) test(op, (getter([], device), getter([B0], device)), in_dims=(None, 0)) test(op, (getter([2, B0], device), getter([2], device)), in_dims=(1, None)) @skipIf( TEST_WITH_TORCHDYNAMO and os.getenv("BUILD_ENVIRONMENT", "") == "linux-focal-py3.8-clang10", "Segfaults with dynamo on focal, see https://github.com/pytorch/pytorch/issues/107173", ) @parametrize( "case", [ subtest(_make_case(torch.add), name="add"), subtest(_make_case(lambda x, y: x + y), name="add_dunder"), subtest(_make_case(torch.sub), name="sub"), subtest(_make_case(lambda x, y: x - y), name="sub_dunder"), subtest(_make_case(torch.mul), name="mul"), subtest(_make_case(lambda x, y: x * y), name="mul_dunder"), subtest( _make_case(torch.div, input_getter=TensorFactory.randp1), name="div" ), subtest( _make_case(lambda x, y: x / y, input_getter=TensorFactory.randp1), name="div_dunder", ), subtest( _make_case(torch.pow, input_getter=TensorFactory.randp1), name="pow" ), subtest( _make_case(lambda x, y: x**y, input_getter=TensorFactory.randp1), name="pow_dunder", ), ], ) def test_arithmetic(self, case): test = self._vmap_test def get_number(getter): return getter([]).item() op, getter = case device = "cpu" B0, B1 = 7, 11 # Single vmap: op(Tensor, Tensor) test(op, (getter([B0, 3], device), getter([B0, 3], device))) test(op, (getter([B0], device), getter([B0, 2, 3], device))) test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1)) test( op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1), out_dims=1, ) test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None)) test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(0, None)) # Nested vmap: op(Tensor, Tensor) test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device))) test( vmap(op, in_dims=(None, 0)), (getter([B0, 2, 3], device), getter([B1, 3], device)), in_dims=(0, None), ) # Python number overload: op(Tensor, Number) (and vice-versa) number = get_number(getter) self._test_unary(lambda t: op(t, number), getter, device) number = get_number(getter) self._test_unary(lambda t: op(number, t), getter, device) # Type promotion: op(Logical Scalar Tensor, Logical Scalar Tensor) test(op, (getter([B0], device), getter([B0], device, dtype=torch.double))) test(op, (getter([B0], device, dtype=torch.double), getter([B0], device))) test(op, (getter([B0], device), getter([B0], device))) # Type promotion: op(Tensor, Logical Scalar Tensor) (and vice-versa) test(op, (getter([B0, 2], device), getter([B0], device, torch.double))) test(op, (getter([B0], device, torch.double), getter([B0, 2], device))) if not torch.cuda.is_available(): return # TODO(rzou): fix the following # # Test cross-device scalars # number = get_number(getter) # self._test_unary(lambda t: op(t, number), getter, device='cuda') # self._test_unary(lambda t: op(number, t), getter, device='cuda') # self._test_unary(lambda t: op(t, torch.tensor(number)), getter, device='cuda') def test_as_strided(self): def _test(sizes, strides, offset, tensor, lambd): # bdim at dim 0 test result = vmap(lambda t: t.as_strided(sizes, strides, offset))(tensor) expected = vmap(lambd)(tensor) self.assertTrue(result._base is expected._base) self.assertEqual(result, expected) # bdim at dim -1 test tensor = tensor.movedim(0, -1) result = vmap(lambda t: t.as_strided(sizes, strides, offset), -1)(tensor) expected = vmap(lambd, -1)(tensor) self.assertTrue(result._base is expected._base) self.assertEqual(result, expected) # single vmap test B0 = 5 # Each Tensor has shape [B0, 2, 3]; the expressions below # are just to get tensors of different strides that have shape [B0, 2, 3] tensors = [ # contiguous torch.randn(B0, 2, 3), # non-contiguous torch.randn(B0, 3, 2).transpose(1, 2), torch.randn(3, 2, B0).movedim(-1, 0).transpose(1, 2), # non-zero storage offset torch.randn(2, B0, 2, 3)[1], torch.randn(2, 2, B0, 3)[1].movedim(1, 0), # non-contiguous strides, zero storage offset torch.randn(B0, 2, 4, 3, 7)[:, :, 0, :, 0], torch.randn(2, 4, B0, 3, 7).movedim(2, 0)[:, :, 0, :, 0], # non-contiguous strides, non-zero storage offset torch.randn(B0, 2, 4, 3, 7)[:, :, 2, :, 1], torch.randn(2, 4, 3, 7, B0).movedim(-1, 0)[:, :, 2, :, 1], ] for x in tensors: S0, S1 = x.stride()[1:] offset = x.storage_offset() # Broadcast _test( [5, 5, 2, 3], [0, 0, S0, S1], offset, x, lambda x: x.expand(5, 5, 2, 3) ) # transpose _test([3, 2], [S1, S0], offset, x, lambda x: x.transpose(0, 1)) # select _test([2], [S0], offset + S1, x, lambda x: x[:, 1]) # diagonal _test([2], [S0 + S1], offset, x, lambda x: x.diagonal()) # strided slice _test([2], [S1 * 2], offset, x, lambda x: x[0, ::2]) # Nested vmap test B1 = 7 x = torch.randn(B1, B0, 2, 3) S0, S1 = x.stride()[2:] result = vmap( vmap(lambda t: t.as_strided([5, 5, 2, 3], [0, 0, S0, S1])), in_dims=1 )(x) expected = vmap(vmap(lambda t: t.expand(5, 5, 2, 3)), in_dims=1)(x) self.assertTrue(result._base is expected._base) self.assertEqual(result, expected) # Check that mal-formatted size/strides doesn't crash with self.assertRaisesRegex( RuntimeError, "size and stride must have the same length" ): x = torch.randn(B0, 2, 3).transpose(0, 1) vmap(lambda x: x.as_strided([1, 1, 1], [1, 1]))(x) # All the Sanity check #1{a,b,c} cases check that # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset()) # doesn't index memory that is out of bounds of xs[i]. This condition # is important to the correctness of the as_strided batching rule # (see NOTE: [When will the as_strided_batching_rule fail?]) # Sanity check #1a: The maximum indexable location of # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset()) # is less than or equal to the maximum indexable location of xs[i]. msg = "This is not supported inside of vmap" with self.assertRaisesRegex(RuntimeError, msg): x = torch.randn(B0, 3) vmap(lambda x: x.as_strided([3], [1], 1))(x) with self.assertRaisesRegex(RuntimeError, msg): x = torch.randn(B0, 3, 5) vmap(lambda x: x.as_strided([4, 4], [4, 1], 0))(x) with self.assertRaisesRegex(RuntimeError, msg): x = torch.randn(B0, B1, 3, 5) vmap(vmap(lambda x: x.as_strided([4, 4], [4, 1], 0)))(x) # Sanity check #1b: The min indexable location of # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset()) # is greater than or equal to the min indexable location of xs[i]. with self.assertRaisesRegex(RuntimeError, msg): x = torch.randn(2, B0, 3)[1] vmap(lambda x: x.as_strided([3], [1], B0 * 3 - 1))(x) # Sanity check #1c: # xs[i] is a zero-dim tensor, but # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset()) # is not with self.assertRaisesRegex(RuntimeError, msg): x = torch.randn(B0, 0, 3) vmap(lambda x: x.as_strided([3], [1]))(x) def test_nll_loss(self): test = self._vmap_test op = F.nll_loss B = 3 y = torch.randn(B, 2, 5) t = torch.randint(0, 5, (B, 2)) test(op, (y, t)) test(functools.partial(op, reduction="sum"), (y, t)) test(functools.partial(op, reduction="none"), (y, t)) y = torch.randn(B, 2, 5) t = torch.randint(0, 5, (2,)) test(op, (y, t), in_dims=(0, None)) test(functools.partial(op, reduction="sum"), (y, t), in_dims=(0, None)) test(functools.partial(op, reduction="none"), (y, t), in_dims=(0, None)) def test_adaptive_avg_pool2d(self): test = self._vmap_test op = functools.partial(F.adaptive_avg_pool2d, output_size=(3, 3)) x = torch.randn(3, 5, 7, 9, 11) test(op, (x,)) test(op, (x,), in_dims=(1,)) test(op, (x,), in_dims=(4,)) def test_bmm(self): op = torch.bmm test = self._vmap_test B0, B1 = 7, 11 # shape mismatch msg = "" with self.assertRaisesRegex(RuntimeError, msg): vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2)) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(0, None))(torch.randn(B0, 3, 3, 2), torch.randn(2, 2)) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2)) # left arg is vmapped test(op, (torch.rand(B0, 2, 3, 5), torch.rand(2, 5, 3)), in_dims=(0, None)) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 3, 5), torch.rand(2, 5, 3)), in_dims=(1, None), ) # right arg is vmapped test(op, (torch.rand(2, 5, 3), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0)) test( vmap(op, in_dims=(None, 0)), (torch.rand(2, 5, 3), torch.rand(B1, B0, 2, 3, 5)), in_dims=(None, 1), ) # both args are vmapped test(op, (torch.rand(B0, 2, 3, 5), torch.rand(B0, 2, 5, 3))) test( vmap(op), (torch.rand(B1, B0, 2, 3, 5), torch.rand(B0, B1, 2, 5, 3)), in_dims=(1, 0), ) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, 2, 3, 5), torch.rand(B0, 2, 5, 3)), in_dims=(None, 0), ) def test_cat(self): test = self._vmap_test B0, B1 = 5, 7 # Quick hack b/c vmap can't accept a list of tensors as an argument def get_op(dim): def op(*tensors): return torch.cat(tensors, dim=dim) return op test(get_op(0), (torch.rand(B0, 2), torch.rand(B0, 3))) test(get_op(0), (torch.rand(B0, 0), torch.rand(B0, 0))) test(get_op(0), (torch.rand(2), torch.rand(B0, 0)), in_dims=(None, 0)) test( get_op(1), (torch.rand(2, 5), torch.rand(B0, 0), torch.rand(2, 3)), in_dims=(None, 0, None), ) test(get_op(1), (torch.rand(B0, 2, 3), torch.rand(B0, 0))) test(get_op(1), (torch.rand(B0, 2, 3, 4), torch.rand(0)), in_dims=(0, None)) test( get_op(0), (torch.rand(0), torch.rand(B0, 2), torch.rand(B0, 0)), in_dims=(None, 0, 0), ) test(get_op(0), (torch.rand(2), torch.rand(B0, 3)), in_dims=(None, 0)) test(get_op(0), (torch.rand(2, 17), torch.rand(3, 17, B0)), in_dims=(None, 2)) test(get_op(-1), (torch.rand(17, 2), torch.rand(17, 3, B0)), in_dims=(None, 2)) test( vmap(get_op(0), in_dims=(0, None)), (torch.rand(B1, 2), torch.rand(B0, 3)), in_dims=(None, 0), ) test( vmap(get_op(0), in_dims=(0, 0)), (torch.rand(B1, 2), torch.rand(B0, B1, 3)), in_dims=(None, 0), ) def test_unsafe_view(self): # Unsafe view isn't exposed, so we get at it via # vmap(grad(matmul)) test = functools.partial(self._vmap_test, check_propagates_grad=False) B = 2 x = torch.randn(B, 2, 3, 3) y = torch.randn(B, 3, 3) def baz(x, y): return (x @ y).sum() test(functorch.grad(baz), (x, y)) def test_conj(self): op = torch.conj def run_test(dtype): def get(shape): return torch.randn(shape, dtype=dtype) B0, B1 = 7, 11 test = self._vmap_test # Single vmap, various in_dims / out_dims test(op, [get([B0, 3])]) test(op, [get([2, 5, B0, 3])], in_dims=2) test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2) # Doubly nested vmap test(vmap(op), [get([B0, B1])]) test(vmap(op), [get([B1, 2, 5, B0, 3])], in_dims=2) test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])], in_dims=2, out_dims=2) # correctness tests run_test(torch.float) run_test(torch.cfloat) # check that torch.conj on a non-complex tensor returns the same tensor real_tensor = torch.randn(3) result = vmap(op)(real_tensor) self.assertEqual(result.data_ptr(), real_tensor.data_ptr()) def test_contiguous(self): op = Tensor.contiguous self._test_unary(op, TensorFactory.randn, "cpu") # check that contiguous returns the original tensor if the per-examples # are already contiguous B0 = 3 x = torch.randn(B0, 2, 5, 7) x = x.movedim(0, 2) result = vmap(Tensor.contiguous, in_dims=2, out_dims=2)(x) self.assertTrue(result is x) msg = "NYI: querying is_contiguous inside of vmap for memory_format" tensor = torch.randn(B0, 3) with self.assertRaisesRegex(RuntimeError, msg): vmap(functools.partial(op, memory_format=torch.channels_last))(tensor) with self.assertRaisesRegex(RuntimeError, msg): vmap(functools.partial(op, memory_format=torch.channels_last_3d))(tensor) def test_stride(self): B0 = 3 x = torch.randn(B0, 2, 5, 7) def foo(x): assert x.stride() == (7 * 5, 7, 1) return x vmap(foo)(x) x = torch.randn(2, B0, 5, 7).movedim(1, 0) def bar(x): assert x.stride() == (7 * 5 * B0, 7, 1) return x vmap(bar)(x) def test_chunk(self): test = self._vmap_view_test op = torch.chunk B0, B1, B2 = 7, 11, 13 # tests for torch.split(self, split_size: int, dim) test(op, (torch.rand(B0, 2, 1024), 15, -1), in_dims=(0, None, None)) test(op, (torch.rand(2, B0, 1024), 9, 1), in_dims=(1, None, None)) test( vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 4, 0), in_dims=(2, None, None), ) test( vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)), (torch.rand(B1, 2, B0, 64, B2),), in_dims=2, ) def test_clamp(self): clamp_cases = ( (lambda t: t.clamp(min=-0.5), TensorFactory.randn), (lambda t: t.clamp(max=0.5), TensorFactory.randn), (lambda t: t.clamp(min=-0.5, max=0.5), TensorFactory.randn), (lambda t: t.clamp_min(min=-0.5), TensorFactory.randn), (lambda t: t.clamp_max(max=0.5), TensorFactory.randn), ) for op, getter in clamp_cases: self._test_unary(op, getter, "cpu") def test_comparison_ops(self): test = functools.partial(self._vmap_test, check_propagates_grad=False) getter = TensorFactory.randn B0, B1 = 7, 11 ops = ( torch.eq, lambda x, y: x == y, torch.gt, lambda x, y: x > y, torch.ge, lambda x, y: x >= y, torch.le, lambda x, y: x <= y, torch.lt, lambda x, y: x < y, torch.ne, lambda x, y: x != y, ) for op in ops: # Single vmap: op(Tensor, Tensor) test(op, (getter([B0, 3]), getter([B0, 3]))) test(op, (getter([B0]), getter([B0, 2, 3]))) test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1)) test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1), out_dims=1) test(op, (getter([B0]), getter([2, 3])), in_dims=(0, None)) test(op, (getter([2, 3]), getter([B0, 3])), in_dims=(0, None)) # Nested vmap: op(Tensor, Tensor) test(vmap(op), (getter([B0, B1, 2, 3]), getter([B0, B1, 3]))) test( vmap(op, in_dims=(None, 0)), (getter([B0, 2, 3]), getter([B1, 3])), in_dims=(0, None), ) # test number as inputs number = getter([]).item() self._test_unary( lambda t: op(t, number), getter, "cpu", check_propagates_grad=False ) def test_cross_batch_size_three(self): # Let's test corner case when batch_size is 3 and cross' dim argument is not specified # According to the cross API, dim will be assigned to the first dim with value 3 # In this test we ensure that found dim is not batch dim. op = torch.cross test = self._vmap_test B0 = B1 = 3 test(op, (torch.rand(B0, 2, 3), torch.rand(B0, 2, 3))) test( vmap(op, in_dims=(0, None)), (torch.rand(B0, B1, 2, 3), torch.rand(B0, B1, 2, 3)), in_dims=(None, 1), ) def test_diagonal(self): tensor = torch.randn(3, 5, 7, 11, 13) test = self._vmap_view_test op = torch.diagonal test(op, (tensor, 1, 0, 1), in_dims=(0, None, None, None)) test(op, (tensor, 0, 2, -1), in_dims=(0, None, None, None)) test(op, (tensor, 2, 1, 2), in_dims=(1, None, None, None)) test(op, (tensor, 0, -2, -1), in_dims=(1, None, None, None), out_dims=1) test(vmap(lambda t: op(t, 0, 0, -1)), (tensor,), in_dims=1, out_dims=1) test( vmap(vmap(lambda t: op(t, 0, 0, 1), in_dims=1), in_dims=3), (tensor,), in_dims=1, out_dims=1, ) def test_dot(self): op = torch.dot test = self._vmap_test B0, B1 = 7, 11 # shape mismatch msg = "" with self.assertRaisesRegex(RuntimeError, msg): vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2)) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2)) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2)) # left arg is vmapped test(op, (torch.rand(B0, 5), torch.rand(5)), in_dims=(0, None)) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 5), torch.rand(5)), in_dims=(1, None), ) # right arg is vmapped test(op, (torch.rand(5), torch.rand(B0, 5)), in_dims=(None, 0)) test( vmap(op, in_dims=(None, 0)), (torch.rand(5), torch.rand(B1, B0, 5)), in_dims=(None, 1), ) # both args are vmapped test(op, (torch.rand(B0, 5), torch.rand(B0, 5))) test(vmap(op), (torch.rand(B1, B0, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0)) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, 5), torch.rand(B0, 5)), in_dims=(None, 0), ) def test_expand_as(self): op = torch.Tensor.expand_as test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 test(op, (torch.rand(B0, 1, 5), torch.rand(B0, 2, 3, 5))) test(op, (torch.rand(B0, 1, 5), torch.rand(2, 3, 5)), in_dims=(0, None)) test(op, (torch.rand(1, 5), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0)) test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B0, B1, 2, 3, 5))) test( vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B1, B0, 2, 3, 5)), in_dims=(0, 1), ) test(vmap(op), (torch.rand(B0, B1), torch.rand(B1, 2, 3, 5)), in_dims=(0, None)) test(vmap(vmap(op)), (torch.rand(B0, B1, B2), torch.rand(B0, B1, B2, 2, 3, 5))) def test_fill_and_zero_inplace(self): test = functools.partial(self._vmap_test, check_propagates_grad=False) B0, B1 = 7, 11 ops = ( lambda t: t.fill_(0.1), lambda t: t.fill_(torch.tensor(0.2)), lambda t: t.zero_(), ) for op in ops: # Single vmap, various in_dims / out_dims test(op, [TensorFactory.randn([B0, 3])]) test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2) test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2, out_dims=2) # Doubly nested vmap test(vmap(op), [TensorFactory.randn([B0, B1])]) test(vmap(op), [TensorFactory.randn([B1, 2, 5, B0, 3])], in_dims=2) test( vmap(op, in_dims=2), [TensorFactory.randn([2, 5, B0, B1, 3])], in_dims=2, out_dims=2, ) # test when value is a batched tensor for fill_ operator B0, B1 = 3, 5 test(Tensor.fill_, [TensorFactory.randn([B0, B1]), TensorFactory.randn(B0)]) with self.assertRaisesRegex(RuntimeError, ""): # Runtime Error is thrown when the tensor being written to isn't being vmapped over vmap(Tensor.fill_, (None, 0))( TensorFactory.randn([B0, B1]), TensorFactory.randn([B0]) ) def _test_complex_views(self, op, dtypes): test = self._vmap_view_test def run_test(op, dtype): def get(shape): return torch.randn(shape, dtype=dtype) B0, B1 = 7, 11 # Single vmap, various in_dims / out_dims test(op, [get([B0, 3])]) test(op, [get([3, B0])], in_dims=1) test(op, [get([2, 5, B0, 3])], in_dims=2) test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2) # Doubly nested vmap test(vmap(op), [get([B0, B1])]) test(vmap(op), [get([B1, 2, 5, 3, B0])], in_dims=4) test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])], in_dims=2, out_dims=2) for dtype in dtypes: run_test(op, dtype) def test_real(self): self._test_complex_views(torch.real, dtypes=[torch.cfloat, torch.cdouble]) def test_imag(self): self._test_complex_views(torch.imag, dtypes=[torch.cfloat, torch.cdouble]) def test_view_as_real(self): self._test_complex_views( torch.view_as_real, dtypes=[torch.cfloat, torch.cdouble] ) def test_view_as_complex(self): def run_test(dtype): def get(shape): return torch.randn(shape, dtype=dtype) op = torch.view_as_complex test = self._vmap_view_test B0, B1 = 7, 11 # Single vmap, various in_dims / out_dims test(op, [get([B0, 3, 2])]) test(op, [get([2, 5, B0, 3, 2])], in_dims=2) test(op, [get([2, 5, B0, 3, 2])], in_dims=2, out_dims=2) # Doubly nested vmap test(vmap(op), [get([B0, B1, 2])]) test(vmap(op), [get([B1, 2, 5, B0, 3, 2])], in_dims=2) test( vmap(op, in_dims=2), [get([2, 5, B0, B1, 3, 2])], in_dims=2, out_dims=2 ) # Interesting case #1: Batch dim directly before dim of size 2 test(op, [get([3, B0, 2])], in_dims=1) test(vmap(op, in_dims=1), [get([3, B1, B0, 2])], in_dims=2) # Interesting case #2: Batch dim at end of tensor, success cases # view_as_complex requires that the dim with size 2 have stride 1 # in order for the view to function property test(op, [get([B0, 2]).transpose(0, 1)], in_dims=1) test(vmap(op, in_dims=1), [get([B0, B1, 2]).movedim(1, 2)]) test(vmap(op, in_dims=2), [get([B0, 3, B1, 2]).movedim(2, 3)]) # Interesting case #3: Batch dim at end of tensor, failure cases msg = "Tensor must have a last dimension with stride 1" with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=1)(get([2, B0])) with self.assertRaisesRegex(RuntimeError, msg): vmap(vmap(op, in_dims=1), in_dims=1)(get([2, B0, B1])) # Invalid input: no dimension of size 2 msg = "Input tensor must have one or more dimensions" with self.assertRaisesRegex(RuntimeError, msg): vmap(op)(get([B0])) with self.assertRaisesRegex(RuntimeError, msg): vmap(vmap(op))(get([B0, B1])) # Invalid input: Batch dim has size 2, but the logical last dim does # not have size 2 msg = "Tensor must have a last dimension of size 2" with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=1)(get([3, 2])) for dtype in [torch.float, torch.double]: run_test(dtype) def test_is_complex(self): ctensor = torch.randn(3, dtype=torch.cfloat) tensor = torch.randn(3) def foo(x): if x.is_complex(): return torch.tensor(1) else: return torch.tensor(0) self.assertEqual(vmap(foo)(ctensor), torch.tensor([1, 1, 1])) self.assertEqual(vmap(foo)(tensor), torch.tensor([0, 0, 0])) def test_is_floating_point(self): float_tensor = torch.tensor([1.0, 2.0, 3.0]) long_tensor = torch.tensor([1, 2, 3]) def foo(x): if x.is_floating_point(): return torch.tensor(1) else: return torch.tensor(0) self.assertEqual(vmap(foo)(float_tensor), torch.tensor([1, 1, 1])) self.assertEqual(vmap(foo)(long_tensor), torch.tensor([0, 0, 0])) @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") def test_is_contiguous(self): def foo(x): if x.is_contiguous(): return torch.tensor(1.0) else: return torch.tensor(0.0) B0, B1 = 3, 5 # Single batch dim contig = torch.randn(B0, 2, 7) self.assertEqual(vmap(foo)(contig), torch.ones(B0)) noncontig = torch.randn(2, B0, 7) self.assertEqual(vmap(foo, in_dims=1)(noncontig), torch.zeros(B0)) noncontig = torch.randn(2, B0, 7).movedim(1, 0) self.assertEqual(vmap(foo)(noncontig), torch.zeros(B0)) noncontig = torch.randn(2, 7, B0) self.assertEqual(vmap(foo, in_dims=2)(noncontig), torch.zeros(B0)) # Multiple batch dims contig = torch.randn(B0, B1, 3) self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1)) contig = torch.randn(B1, B0, 3) self.assertEqual(vmap(vmap(foo), in_dims=1)(contig), torch.ones(B0, B1)) contig = torch.randn(B1, B0, 3).movedim(0, 1) self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1)) noncontig = torch.randn(B0, 3, B1) self.assertEqual(vmap(vmap(foo, in_dims=1))(noncontig), torch.zeros(B0, B1)) # is_contiguous on empty tensor is True def bar(x): assert x.is_contiguous() return x vmap(bar)(torch.randn(B0, 0, 3)) vmap(bar, in_dims=1)(torch.randn(0, B0, 3)) vmap(bar)(torch.randn(B0, 0, 3).transpose(-1, -2)) # is_contiguous with other memory formats def baz(x, memory_format): x.is_contiguous(memory_format=memory_format) return x msg = "NYI: querying is_contiguous inside of vmap for memory_format" tensor = torch.randn(B0, 2, 7, 3) with self.assertRaisesRegex(RuntimeError, msg): vmap(functools.partial(baz, memory_format=torch.channels_last))(tensor) with self.assertRaisesRegex(RuntimeError, msg): vmap(functools.partial(baz, memory_format=torch.channels_last_3d))(tensor) for mf in (torch.channels_last, torch.channels_last_3d): @torch.compile(backend="eager", fullgraph=True) def f(x): if x.is_contiguous(memory_format=mf): return x.sin() return x.cos() with self.assertRaisesRegex(RuntimeError, msg): vmap(f)(torch.randn(3, 3)) def test_unsqueeze(self): op = torch.unsqueeze test = self._vmap_view_test B0, B1 = 7, 11 # unsqueeze dim 0 test(op, (torch.rand(B0, 2, 5), 0), in_dims=(0, None)) test(op, (torch.rand(2, B0, 5), 0), in_dims=(1, None)) # unsqueeze last dim (positive) test(op, (torch.rand(B0, 2, 5), 2), in_dims=(0, None)) test(op, (torch.rand(2, B0, 5), 2), in_dims=(1, None)) # unsqueeze last dim (negative) test(op, (torch.rand(B0, 2, 5), -1), in_dims=(0, None)) test(op, (torch.rand(2, B0, 5), -1), in_dims=(1, None)) # nested vmaps def unsqueeze_0(x): return torch.unsqueeze(x, 0) def unsqueeze_last(x): return torch.unsqueeze(x, -1) # bdims in canonical order test(vmap(unsqueeze_0), (torch.rand(B0, B1, 2),)) test(vmap(unsqueeze_last), (torch.rand(B0, B1, 2),)) # wild bdims test(vmap(unsqueeze_0), (torch.rand(B1, 2, B0),), in_dims=2) test(vmap(unsqueeze_0, in_dims=1), (torch.rand(2, B1, B0),), in_dims=2) test(vmap(unsqueeze_last), (torch.rand(B1, 2, B0),), in_dims=2) test(vmap(unsqueeze_last, in_dims=1), (torch.rand(2, B1, B0),), in_dims=2) def test_movedim(self): op = torch.movedim test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 # movedim(tensor, int, int) variant test(op, (torch.rand(B0, 2, 5), 0, 1), in_dims=(0, None, None)) test(op, (torch.rand(2, B0, 5), 0, 1), in_dims=(1, None, None)) test( vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 2, B0, 5), 0, 1), in_dims=(2, None, None), ) test( vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)), (torch.rand(B1, 2, B0, 5, B2), 0, 1), in_dims=(2, None, None), ) # movedim(tensor, intlist, intlist) variant test(op, (torch.rand(B0, 2, 3, 5), [1, 0], [0, 2]), in_dims=(0, None, None)) test(op, (torch.rand(2, 3, B0, 5), [1, 0], [0, 2]), in_dims=(1, None, None)) test( vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 2, B0, 5), [0, 1], [1, 0]), in_dims=(2, None, None), ) test( vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)), (torch.rand(B1, 2, B0, 5, B2), [0, 1], [1, 0]), in_dims=(2, None, None), ) def test_mm(self): op = torch.mm test = self._vmap_test B0, B1 = 7, 11 # shape mismatch msg = "Shape mismatch" with self.assertRaisesRegex(RuntimeError, msg): vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2)) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2)) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2)) # left arg is vmapped test(op, (torch.rand(B0, 2, 5), torch.rand(5, 2)), in_dims=(0, None)) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5, 2)), in_dims=(1, None), ) # right arg is vmapped test(op, (torch.rand(2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0)) test( vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5, 2)), in_dims=(None, 1), ) # both args are vmapped test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5, 2))) test( vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5, 2)), in_dims=(1, 0), ) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, 2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0), ) def test_mv(self): op = torch.mv test = self._vmap_test B0, B1 = 7, 11 # shape mismatch msg = "" with self.assertRaisesRegex(RuntimeError, msg): vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2)) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(0, None))(torch.randn(B0, 2, 2), torch.randn(2, 2)) with self.assertRaisesRegex(RuntimeError, msg): vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2)) # left arg is vmapped test(op, (torch.rand(B0, 2, 5), torch.rand(5)), in_dims=(0, None)) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5)), in_dims=(1, None), ) # right arg is vmapped test(op, (torch.rand(2, 5), torch.rand(B0, 5)), in_dims=(None, 0)) test( vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5)), in_dims=(None, 1), ) # both args are vmapped test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5))) test( vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0) ) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, 2, 5), torch.rand(B0, 5)), in_dims=(None, 0), ) def test_narrow(self): op = torch.narrow test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 test(op, (torch.rand(B0, 2, 5), -1, 1, 3), in_dims=(0, None, None, None)) test(op, (torch.rand(2, B0, 5), 1, 1, 3), in_dims=(1, None, None, None)) test( vmap(op, in_dims=(0, None, None, None)), (torch.rand(B1, 2, B0, 5), 1, 0, 0), in_dims=(2, None, None, None), ) test( vmap( vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None) ), (torch.rand(B1, 2, B0, 5, B2), -1, 2, 3), in_dims=(2, None, None, None), ) def test_new_empty(self): # Empty is non-deterministic so we just check that the shape of the # output tensor is what we expect and that the vmap fallback isn't used. op = Tensor.new_empty B0, B1 = 7, 11 result = vmap(lambda x: op(x, [2, 3]))(torch.randn(B0)) self.assertEqual(result.shape, [B0, 2, 3]) result = vmap(lambda x: op(x, []))(torch.randn(B0)) self.assertEqual(result.shape, [B0]) result = vmap(vmap(lambda x: op(x, [2, 3])))(torch.randn(B0, B1)) self.assertEqual(result.shape, [B0, B1, 2, 3]) def test_new_empty_strided(self): # Empty is non-deterministic so we just check that the size and shape # of the output are what we expect and that the vmap fallback isn't used B0, B1 = 7, 11 def _test_single_vmap(size, stride, B0): x = torch.randn(B0) result = vmap(lambda x: x.new_empty_strided(size, stride))(x) S = torch.empty_strided(size, stride).storage().size() self.assertEqual(result.shape, [B0] + size) self.assertEqual(result.stride(), [S] + stride) def _test_double_vmap(size, stride, B0, B1): x = torch.randn(B0, B1) result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)))(x) S = torch.empty_strided(size, stride).storage().size() self.assertEqual(result.shape, [B0, B1] + size) self.assertEqual(result.stride(), [B1 * S, S] + stride) x = torch.randn(B1, B0) result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)), in_dims=1)( x ) S = x.new_empty_strided(size, stride).storage().size() self.assertEqual(result.shape, [B0, B1] + size) self.assertEqual(result.stride(), [B1 * S, S] + stride) # contiguous case _test_single_vmap([2, 3, 5], [3 * 5, 5, 1], B0) _test_double_vmap([2, 3, 5], [3 * 5, 5, 1], B0, B1) # expanded _test_single_vmap([2, 3, 5], [0, 5, 1], B0) _test_double_vmap([2, 3, 5], [0, 5, 1], B0, B1) # some of these cases are pretty strange, just verifying that if # empty_strided allows them then BatchedTensor.new_empty_strided # can as well for shape in [[2, 3, 4], [0, 2, 0]]: for strides in [[12, 4, 1], [2, 4, 6], [0, 0, 0]]: _test_single_vmap(shape, strides, B0) _test_double_vmap(shape, strides, B0, B1) def test_new_zeros(self): op = Tensor.new_zeros test = functools.partial(self._vmap_test, check_propagates_grad=False) B0, B1 = 7, 11 test(lambda x: op(x, 2, 3), (torch.rand(B0),)) test(lambda x: op(x, []), (torch.rand(B0),)) test(vmap(lambda x: op(x, 3, 5)), (torch.rand(B0, B1),)) def test_select(self): op = torch.select test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 test(op, (torch.rand(B0, 2, 5), 0, 0), in_dims=(0, None, None)) test(op, (torch.rand(2, B0, 5), 1, 1), in_dims=(1, None, None)) test(vmap(lambda t: op(t, 1, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2) test( vmap(vmap(lambda t: op(t, 1, 1), in_dims=1)), (torch.rand(B1, 2, B0, B2, 5),), in_dims=2, ) def test_roll_no_dims(self): op = torch.roll test = self._vmap_test B0, B1, B2 = 7, 11, 13 test(op, (torch.rand(B0, 2, 5), 2), in_dims=(0, None)) test(op, (torch.rand(2, B0, 5), 3), in_dims=(1, None)) test(vmap(lambda t: op(t, 3)), (torch.rand(B1, 2, B0, 5),), in_dims=2) test( vmap(vmap(lambda t: op(t, 3), in_dims=1)), (torch.rand(B1, 2, B0, B2, 5),), in_dims=2, ) def test_stack(self): test = self._vmap_test B0, B1 = 5, 7 # Quick hack b/c vmap can't accept a list of tensors as an argument def get_op(dim): def op(*tensors): return torch.stack(tensors, dim=dim) return op test(get_op(0), (torch.rand(B0, 3), torch.rand(B0, 3))) test(get_op(0), (torch.rand(3), torch.rand(B0, 3)), in_dims=(None, 0)) test(get_op(0), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2)) test(get_op(-1), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2)) test( vmap(get_op(0), in_dims=(0, None)), (torch.rand(B1, 2), torch.rand(B0, 2)), in_dims=(None, 0), ) test( vmap(get_op(0), in_dims=(0, 0)), (torch.rand(B1, 2), torch.rand(B0, B1, 2)), in_dims=(None, 0), ) def test_slice(self): test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 test(lambda t: t[0:1], (torch.rand(B0, 3, 5),)) test(lambda t: t[:, 1:3], (torch.rand(3, 5, B0),), in_dims=2) test( vmap(lambda t: t[:, 0:1], in_dims=2), (torch.rand(3, 5, B0, B1),), in_dims=2 ) test( vmap(vmap(lambda t: t[0:1], in_dims=2), in_dims=2), (torch.rand(3, 5, B0, B1, B2),), in_dims=2, ) @xfailIfTorchDynamo def test_squeeze(self): def verify_behavior(op, min_ndim=1): test = self._vmap_view_test B0, B1 = 1, 11 # These tests cannot be used with an operator that requires more # than 1 dimension after batching. if min_ndim <= 1: test(op, (torch.rand(B0),)) test(op, (torch.rand(B1),)) test(vmap(op), (torch.rand(B0, B1, 1),)) test(vmap(op), (torch.rand(B1, 1, B0),), in_dims=2) test(op, (torch.rand(B0, 3, 5),)) test(op, (torch.rand(1, B0, 5),), in_dims=1) test(op, (torch.rand(B0, 0, 1, 5, 1),)) test(op, (torch.rand(B0, 1, 1, 1, 1),)) test(vmap(op), (torch.rand(B0, B1, 1, 3, 4),)) test(vmap(op), (torch.rand(B1, 1, B0, 4, 5),), in_dims=2) verify_behavior(torch.squeeze) verify_behavior(lambda x: torch.squeeze(x, dim=0), min_ndim=1) verify_behavior(lambda x: torch.squeeze(x, dim=1), min_ndim=2) verify_behavior(lambda x: torch.squeeze(x, dim=-1), min_ndim=2) verify_behavior(lambda x: torch.squeeze(x, dim=-2), min_ndim=3) msg = "" try: torch.squeeze(torch.rand(10), dim=1) except IndexError as err: msg = str(err) with self.assertRaises(RuntimeError, msg=msg): vmap(lambda x: torch.squeeze(x, dim=1))(torch.rand(10)) def _test_mean_sum_dim(self, op): test = self._vmap_test B0, B1 = 5, 7 # Single vmap, various in_dims / out_dims test(lambda x: op(x, 0), [torch.randn([B0])]) test(lambda x: op(x, -1), [torch.randn([B0])]) test(lambda x: op(x, 0), [torch.randn([B0, 3])]) test(lambda x: op(x, -1), [torch.randn([2, 5, B0, 3])], in_dims=2) test(lambda x: op(x, 2), [torch.randn([2, 5, B0, 3])], in_dims=2, out_dims=2) # Doubly nested vmap test(vmap(lambda x: op(x, 0)), [torch.randn([B0, B1])]) test(vmap(lambda x: op(x, -1)), [torch.randn([B0, B1])]) test(vmap(lambda x: op(x, -2)), [torch.randn([B1, 2, 5, B0, 3])], in_dims=2) test( vmap(lambda x: op(x, 2), in_dims=2), [torch.randn([2, 5, B0, B1, 3])], in_dims=2, out_dims=2, ) def test_sum_dim(self): self._test_mean_sum_dim(torch.sum) def test_mean_dim(self): self._test_mean_sum_dim(torch.mean) def test_argmax_dim(self): def test(f, args): for loop_out, batched_out in get_fallback_and_vmap_exhaustive(f, args, {}): self.assertEqual(loop_out, batched_out) B0 = 5 test(lambda x: torch.argmax(x), [torch.randn(B0)]) test(lambda x: torch.argmax(x), [torch.randn(B0, 2, 3)]) test(lambda x: torch.argmax(x, 0), [torch.randn(B0, 2, 3)]) test(lambda x: torch.argmax(x, -1), [torch.randn(B0, 2, 3)]) test(lambda x: torch.argmax(x, 2), [torch.randn(B0, 2, 3)]) def _test_sum_mean(self, op): test = self._vmap_test B0, B1 = 5, 7 # Single vmap, various in_dims / out_dims test(op, [torch.randn([B0])]) test(op, [torch.randn([B0, 3])]) test(op, [torch.randn([2, 5, B0, 3])], in_dims=2) test(op, [torch.randn([2, 5, B0, 3])], in_dims=2) # Doubly nested vmap test(vmap(op), [torch.randn([B0, B1])]) test(vmap(op), [torch.randn([B1, 2, 5, B0, 3])]) test(vmap(op), [torch.randn([2, 5, B0, B1, 3])], in_dims=2) def test_sum(self): self._test_sum_mean(torch.sum) def test_mean(self): self._test_sum_mean(torch.mean) def test_repeat(self): test = self._vmap_test B0 = 7 op = Tensor.repeat test(lambda x: op(x, (2, 3)), (torch.rand(B0, 1, 1),)) test(lambda x: op(x, (2, 3)), (torch.rand(1, B0, 1),), in_dims=1) @skipIfTorchDynamo() def test_slogdet(self): test = functools.partial(self._vmap_test, check_propagates_grad=False) B0 = 7 op = torch.linalg.slogdet test(op, (torch.rand(B0, 1, 1),)) test(op, (torch.rand(B0, 2, 2),)) test(op, (torch.rand(B0, 3, 2, 2),)) test(op, (torch.rand(3, 2, 2, B0),), in_dims=3) def test_reshape(self): test = self._vmap_test B0, B1, B2 = 7, 11, 13 op = torch.reshape test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None), check_view=True) test( op, (torch.rand(2, B0, 5), [1, 1, 10]), in_dims=(1, None), check_view=False ) test( vmap(lambda t: t.reshape([-1])), (torch.rand(B0, B1, 2, 5),), check_view=True, ) test( vmap(vmap(lambda t: t.reshape([-1]), in_dims=2), in_dims=1), (torch.rand(3, B1, 2, B2, 5, B0),), in_dims=5, check_view=False, ) def test_reshape_as(self): test = self._vmap_test B0, B1, B2 = 7, 11, 13 op = torch.Tensor.reshape_as test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)), check_view=True) test( op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0), check_view=True, ) test( op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None), check_view=True, ) test( op, (torch.rand(2, B0, 5), torch.rand(1, 1, 10)), in_dims=(1, None), check_view=False, ) test( vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)), check_view=True, ) test( vmap(vmap(op, in_dims=(2, None)), in_dims=(1, None)), (torch.rand(3, B1, 2, B2, 5, B0), torch.rand(B0, 3 * 2 * 5)), in_dims=(5, 0), check_view=False, ) def test_result_type(self): def scalar_tensor_with_dtype(op): def wrapped(*args, **kwargs): dtype = op(*args, **kwargs) return torch.ones([], dtype=dtype) return wrapped test = self._vmap_test op = scalar_tensor_with_dtype(torch.result_type) B0 = 2 test( op, (torch.randn(B0), torch.randn(B0, dtype=torch.float64)), check_propagates_grad=False, ) test( op, (torch.randn(B0), torch.randint(10, [B0], dtype=torch.int64)), check_propagates_grad=False, ) test(lambda x: op(x, 1), (torch.randn(B0),), check_propagates_grad=False) test(lambda x: op(x, 1.6), (torch.randn(B0),), check_propagates_grad=False) test( lambda x: op(x, torch.tensor(1)), (torch.randn(B0),), check_propagates_grad=False, ) test( lambda x: op(x, torch.tensor(1.6, dtype=torch.double)), (torch.randn(B0),), check_propagates_grad=False, ) test( op, (torch.randn(B0, 2), torch.randn(B0, 2, dtype=torch.float64)), check_propagates_grad=False, ) test( op, (torch.randn(B0, 2), torch.randint(10, [B0, 2], dtype=torch.int64)), check_propagates_grad=False, ) test(lambda x: op(x, 1), (torch.randn(B0, 2),), check_propagates_grad=False) test(lambda x: op(x, 1.6), (torch.randn(B0, 2),), check_propagates_grad=False) test( lambda x: op(x, torch.tensor(1)), (torch.randn(B0, 2),), check_propagates_grad=False, ) test( lambda x: op(x, torch.tensor(1.6, dtype=torch.double)), (torch.randn(B0, 2),), check_propagates_grad=False, ) test( op, (torch.randn(B0, 2), torch.randn(B0, dtype=torch.float64)), check_propagates_grad=False, ) test( op, (torch.randn(B0, 2), torch.randint(10, [B0], dtype=torch.int64)), check_propagates_grad=False, ) def test_tensor_split(self): test = self._vmap_view_test op = torch.tensor_split B0, B1, B2 = 7, 11, 13 # tests for torch.tensor_split(self, indices_or_sections: int, dim) test(op, (torch.rand(B0, 2, 1024), 5, -1), in_dims=(0, None, None)) test(op, (torch.rand(2, B0, 1024), 150, 1), in_dims=(1, None, None)) test( vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0), in_dims=(2, None, None), ) test( vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)), (torch.rand(B1, 2, B0, 64, B2),), in_dims=2, ) # tests for torch.tensor_split(self, indices_or_sections: List[int], dim) test( op, (torch.rand(B0, 2, 1024), [50, 100, 378, 890], -1), in_dims=(0, None, None), ) test( op, (torch.rand(2, B0, 1024), [50, 100, 212, 345, 0, 378, 890], 1), in_dims=(1, None, None), ) test( vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [50, 100, 212, 345, 0, 378, 890], 0), in_dims=(2, None, None), ) test( vmap(vmap(lambda t: op(t, [4, 8, 9, 34, 29], 1), in_dims=2)), (torch.rand(B1, 2, B0, 64, B2),), in_dims=2, ) @skipIfTorchDynamo("really slow") def test_split(self): test = self._vmap_view_test op = torch.split B0, B1, B2 = 7, 11, 13 # tests for torch.split(self, split_size: int, dim) test(op, (torch.rand(B0, 2, 1024), 101, -1), in_dims=(0, None, None)) test(op, (torch.rand(2, B0, 1024), 130, 1), in_dims=(1, None, None)) test( vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0), in_dims=(2, None, None), ) test( vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)), (torch.rand(B1, 2, B0, 64, B2),), in_dims=2, ) # tests for torch.split(self, split_size: List[int], dim) test(op, (torch.rand(B0, 2, 1024), [1, 1020, 3], -1), in_dims=(0, None, None)) test( op, (torch.rand(2, B0, 1024), [100] * 10 + [24], 1), in_dims=(1, None, None) ) test( vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [256] * 3 + [255], 0), in_dims=(2, None, None), ) test( vmap(vmap(lambda t: op(t, [4] * 8 + [8] * 4, 1), in_dims=2)), (torch.rand(B1, 2, B0, 64, B2),), in_dims=2, ) def test_trace(self): op = torch.trace test = self._vmap_test B0, B1, B2 = 7, 11, 13 test(op, (torch.rand(B0, 2, 5),)) test(op, (torch.rand(2, B0, 5),), in_dims=1) test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2) test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2) def test_transpose(self): op = torch.transpose test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 test(lambda x: op(x, 0, 1), (torch.rand(B0, 2, 5),)) test(lambda x: op(x, -1, -2), (torch.rand(B0, 2, 5),)) test(lambda x: op(x, 3, 1), (torch.rand(B0, 2, 5, 4, 6),)) test(lambda x: op(x, 1, 0), (torch.rand(2, B0, 5),), in_dims=1) test(vmap(lambda x: op(x, 0, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2) test( vmap(vmap(lambda x: op(x, 0, 1), in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2, ) # Special case: scalar tensor for dim1, dim2 in itertools.product([0, -1], [0, -1]): x = torch.rand(B0) result = vmap(lambda x: op(x, dim1, dim2))(x) self.assertTrue(result is x) def test_t(self): op = torch.t test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 test(op, (torch.rand(B0, 2, 5),)) test(op, (torch.rand(2, B0, 5),), in_dims=1) test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2) test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2) def test_T_numpy(self): def op(t): return t.T test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 test(op, (torch.rand(B0, 2, 3, 5),)) test(op, (torch.rand(2, B0, 3, 5),), in_dims=1) test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2) test(vmap(op), (torch.rand(B1, 2, B0, 3, 5),), in_dims=2) test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 3, B2, 5),), in_dims=2) def test_to(self): test = self._vmap_test B0, B1 = 7, 11 test(lambda t: t.to("cpu"), (torch.rand(B0),)) test(lambda t: t.to(torch.double), (torch.rand(B0),)) test( lambda t, o: t.to(o), (torch.rand(B0), torch.randn(B0, dtype=torch.float64)) ) test( lambda t, o: t.to(o), (torch.rand(B0), torch.randn(B0, dtype=torch.float64)), in_dims=(0, None), ) test(vmap(lambda t: t.to(torch.double)), (torch.rand(B0, B1, 3),)) # also test some casting methods test(lambda t: t.double(), (torch.rand(B0),)) test(lambda t: t.float(), (torch.rand(B0),)) test(lambda t: t.int(), (torch.rand(B0),), check_propagates_grad=False) test(lambda t: t.long(), (torch.rand(B0),), check_propagates_grad=False) def test_unfold(self): op = torch.Tensor.unfold test = self._vmap_view_test B0, B1, B2 = 3, 2, 5 test(op, (torch.rand(B0, 7, 11), 0, 2, 1), in_dims=(0, None, None, None)) test(op, (torch.rand(7, B0, 11), 1, 4, 2), in_dims=(1, None, None, None)) test( vmap(op, in_dims=(0, None, None, None)), (torch.rand(B1, 7, B0, 11), 1, 5, 1), in_dims=(2, None, None, None), ) test( vmap( vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None) ), (torch.rand(B1, 7, B0, 11, B2), -1, 2, 4), in_dims=(2, None, None, None), ) def test_unbind(self): test = self._vmap_view_test op = torch.unbind B0, B1, B2 = 7, 11, 13 test(op, (torch.rand(B0, 2, 1024), -1), in_dims=(0, None)) test(op, (torch.rand(B0, 2, 0),)) test(op, (torch.rand(2, B0, 7), 0), in_dims=(1, None)) test( vmap(op, in_dims=(0, None)), (torch.rand(B1, 1023, B0, 5), 1), in_dims=(2, None), ) test( vmap(vmap(lambda t: op(t, dim=1), in_dims=2)), (torch.rand(B1, 2, B0, 32, B2),), in_dims=2, ) def test_view(self): test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 op = torch.Tensor.view # We should error out if the view would produce an incorrect result with self.assertRaises(RuntimeError): vmap(op, in_dims=(1, None))(torch.rand(2, B0, 5), [10]) test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None)) test(op, (torch.rand(B0, 4, 5), [1, 2, 1, 10]), in_dims=(0, None)) test(vmap(lambda t: t.view([-1])), (torch.rand(B0, B1, 2, 5, 3),)) test( vmap(vmap(lambda t: t.reshape([-1])), in_dims=1), (torch.rand(B2, B0, B1, 3, 2, 5),), in_dims=1, ) def test_view_as(self): test = self._vmap_view_test B0, B1, B2 = 7, 11, 13 op = torch.Tensor.view_as # We should error out if the view would produce an incorrect result with self.assertRaises(RuntimeError): vmap(op, in_dims=(1, 0))(torch.rand(2, B0, 5), torch.rand(B0, 10)) test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5))) test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0)) test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None)) test(op, (torch.rand(B0, 4, 5), torch.rand(2, 1, 1, 10)), in_dims=(0, None)) test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10))) test( vmap(vmap(op, in_dims=(0, None)), in_dims=(0, None)), (torch.rand(B1, B2, B0, 3, 2, 5), torch.rand(B0, 3 * 2 * 5)), in_dims=(2, 0), ) def test_conv2d(self): conv_setups = [ (torch.nn.Conv1d, torch.conv1d, [2, 4, 15]), (torch.nn.Conv2d, torch.conv2d, [2, 4, 15, 20]), (torch.nn.Conv3d, torch.conv3d, [2, 4, 15, 20, 25]), # (torch.nn.ConvTranspose2d, torch.conv_transpose2d, [2, 4, 15, 20]) ] for conv_mod, conv_fn, inp_shape in conv_setups: mod = conv_mod(4, 8, kernel_size=3) arg_values = [torch.randn(inp_shape), mod.weight, mod.bias] kwarg_values = {} for loop_out, batched_out in get_fallback_and_vmap_exhaustive( conv_fn, arg_values, kwarg_values ): self.assertEqual(loop_out, batched_out) arg_values = [torch.randn(inp_shape), mod.weight, None] for loop_out, batched_out in get_fallback_and_vmap_exhaustive( conv_fn, arg_values, kwarg_values ): self.assertEqual(loop_out, batched_out) mod2 = conv_mod( 4, 8, kernel_size=3, groups=2, stride=3, padding=1, dilation=2 ) arg_values = [torch.randn(inp_shape), mod2.weight, mod2.bias] kwarg_values = dict(groups=2, stride=3, padding=1, dilation=2) for loop_out, batched_out in get_fallback_and_vmap_exhaustive( conv_fn, arg_values, kwarg_values ): self.assertEqual(loop_out, batched_out) arg_values = [torch.randn(inp_shape), mod2.weight, None] for loop_out, batched_out in get_fallback_and_vmap_exhaustive( conv_fn, arg_values, kwarg_values ): self.assertEqual(loop_out, batched_out) def test_one_hot(self): sample_inputs = [ (torch.randint(0, 3, []), 3), (torch.randint(0, 3, [2, 3, 4]), 4), ] for args in sample_inputs: for loop_out, batched_out in get_fallback_and_vmap_exhaustive( F.one_hot, args, {} ): self.assertEqual(loop_out, batched_out) def test_conj_bit(self): x = torch.tensor([1 + 1j, 2 + 1j]) def foo(x): assert not x.is_conj() y = x.conj() assert y.is_conj() return y res = vmap(foo)(x) self.assertEqual(res, x.conj()) def test_mode_key(self): def vmap_f(x): return x + torch.randn(()) def naive_f(x, shape): return x + torch.randn(shape) torch.manual_seed(0) out1 = vmap(vmap(vmap_f, randomness="different"), randomness="different")( torch.ones(2, 3) ) torch.manual_seed(0) out2 = naive_f(torch.ones(2, 3), (2, 3)) self.assertEqual(out1, out2) torch.manual_seed(0) out1 = vmap(vmap(vmap_f, randomness="different"), randomness="different")( torch.ones(2, 3, 4) ) torch.manual_seed(0) out2 = naive_f(torch.ones(2, 3, 4), (2, 3, 1)) self.assertEqual(out1, out2) self.assertTrue(torch.randn(()).dim() == 0) @parametrize("in_dim", [0, 1, 2]) @parametrize("out_dim", [0, 1, 2]) @parametrize("randomness", ["error", "same"]) def test_chunk_vmap(self, in_dim, out_dim, randomness): x = torch.randn(4, 5, 6) def f(x): y = x.sin() if randomness != "error": y = y + torch.rand_like(x) return y rs = torch.get_rng_state() expected = vmap(f, in_dims=in_dim, out_dims=out_dim, randomness=randomness)(x) for chunks in [1, 2, 3, 4, 7, 10, 16]: torch.set_rng_state(rs) output = chunk_vmap( f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunks=chunks, )(x) self.assertEqual(output, expected) @parametrize("in_dim", [0, 1, 2]) @parametrize("out_dim", [0, 1, 2]) @parametrize("randomness", ["error", "same"]) def test_vmap_chunksize(self, in_dim, out_dim, randomness): x = torch.randn(4, 5, 6) y = torch.randn_like(x) # fn: Single Input/Single Output def f(x): y = x.sin() if randomness != "error": y = y + torch.rand_like(x) return y f_args = (x,) f_kwargs = {"in_dims": in_dim, "out_dims": out_dim, "randomness": randomness} # fn: Nested Input/Single Output def f1(pair): x, y = pair z = x.sin() + y.cos() if randomness != "error": z = z + torch.rand_like(z) return z f1_args = ((x, y),) f1_kwargs = { "in_dims": ((in_dim,) * 2,), "out_dims": out_dim, "randomness": randomness, } # fn: Single Input/Nested Output def f2(x): y = x.sin() if randomness != "error": y = y + torch.rand_like(x) return {"out": y, "out1": y + 2} f2_args = (x,) f2_kwargs = {"in_dims": in_dim, "out_dims": out_dim, "randomness": randomness} # fn: Nested Input/Nested Output (first tensor is not vmapped). def f3(inp_dict): x = inp_dict["inp"] y = inp_dict["inp1"] z = x.sin() + y.cos() if randomness != "error": z = z + torch.rand_like(z) return {"z": z, "tuple": (z, z + 1)} f3_args = ( { "inp": x.index_select(in_dim, torch.tensor([0])).squeeze(in_dim), "inp1": y, }, ) f3_kwargs = { "in_dims": ({"inp": None, "inp1": in_dim},), "out_dims": out_dim, "randomness": randomness, } # fn: Nested Input/Nested Output (first argument is not a Tensor). def f4(inp_dict): x = inp_dict["inp"] y = inp_dict["inp1"] z = x + y.cos() if randomness != "error": z = z + torch.rand_like(z) return {"z": z, "tuple": (z, z + 1)} f4_args = ({"inp": 2.0, "inp1": y},) f4_kwargs = { "in_dims": ({"inp": None, "inp1": in_dim},), "out_dims": out_dim, "randomness": randomness, } fns_and_args = ( (f, f_args, f_kwargs), (f1, f1_args, f1_kwargs), (f2, f2_args, f2_kwargs), (f3, f3_args, f3_kwargs), (f4, f4_args, f4_kwargs), ) for fn, args, kwargs in fns_and_args: rs = torch.get_rng_state() expected_vmap = vmap(fn, **kwargs)(*args) for chunk_size in (1, 2, 3, 4, 7, 10, 16, 100): torch.set_rng_state(rs) output = vmap(fn, chunk_size=chunk_size, **kwargs)(*args) self.assertEqual(output, expected_vmap) @parametrize("in_dim", [0, 1]) @parametrize("out_dim", [0, 1]) @parametrize("randomness", ["error", "same"]) def test_vmap_chunksize_error(self, in_dim, out_dim, randomness): x = torch.randn(4, 5, 6) def f(x): y = x.sin() if randomness != "error": y = y + torch.rand_like(x) return y # Incorrect `chunk_size` for chunk_size in (-1, 0): with self.assertRaisesRegex( ValueError, "vmap: chunk_size should be None or greater than 0." ): vmap( f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunk_size=chunk_size, )(x) # Incorrect `out_dims` msg = "out_dims is not compatible with the structure of `outputs`" with self.assertRaisesRegex(ValueError, msg): vmap( f, in_dims=in_dim, out_dims=(out_dim, out_dim), randomness=randomness, chunk_size=2, )(x) @parametrize("in_dim", [0, 1]) @parametrize("out_dim", [0, 1]) @parametrize("randomness", ["error", "same"]) def test_vmap_chunksize_composition(self, in_dim, out_dim, randomness): x = torch.randn(4, 5, 6) y = torch.randn_like(x) # fn: Single Input/Single Output def f(x): y = x.sin() if randomness != "error": y = y + torch.rand_like(x) return y f_args = (x,) # fn: Nested Input/Single Output def f1(pair): x, y = pair z = x.sin() + y.cos() if randomness != "error": z = z + torch.rand_like(z) return z f1_args = ((x, y),) # fn: Single Input/Nested Output def f2(x): y = x.sin() if randomness != "error": y = y + torch.rand_like(x) return {"out": y, "out1": y + 2} f2_args = (x,) # fn: Nested Input/Nested Output def f3(inp_dict): x = inp_dict["inp"] y = inp_dict["inp1"] z = x.sin() + y.cos() if randomness != "error": z = z + torch.rand_like(z) return {"z": z, "tuple": (z, z + 1)} f3_args = ({"inp": x, "inp1": y},) for fn, args in ((f, f_args), (f1, f1_args), (f2, f2_args), (f3, f3_args)): rs = torch.get_rng_state() expected = vmap( vmap(fn, in_dims=in_dim, out_dims=out_dim, randomness=randomness), in_dims=in_dim, out_dims=out_dim, randomness=randomness, )(*args) for chunk_size in (1, 2, 3, 4, 7, 10, 16, 100): torch.set_rng_state(rs) actual = vmap( vmap( fn, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunk_size=chunk_size, ), in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunk_size=chunk_size, )(*args) self.assertEqual(actual, expected) instantiate_parametrized_tests(TestVmapOperators) def construct_v(output, batch_size, contig=False): if contig: return torch.randn( batch_size, *output.shape, dtype=output.dtype, device=output.device ) result = torch.randn( *output.shape, batch_size, dtype=output.dtype, device=output.device ) return result.movedim(-1, 0) def as_tuple(x): if isinstance(x, tuple): return x elif isinstance(x, list): return tuple(x) else: return (x,) def differentiable(args): return tuple( arg for arg in as_tuple(args) if isinstance(arg, torch.Tensor) and arg.requires_grad ) def _get_rand_no_zeros(*args, **kwargs): requires_grad = kwargs.get("requires_grad", False) kwargs_without_requires_grad = kwargs.copy() kwargs_without_requires_grad["requires_grad"] = False result = torch.rand(*args, **kwargs_without_requires_grad) return result.clamp_min_(0.1).requires_grad_(requires_grad) @markDynamoStrictTest class TestVmapBatchedGradient(Namespace.TestVmapBase): def _vmap_test(self, *args, **kwargs): return _vmap_test(self, *args, **kwargs) # Tests batched gradient computation of outputs = op(*args, **kwargs) # by comparing it to a sequential map+stack fallback. # # output_process_fn: a function that maps the outputs to the part # that should be differentiated. # batch_size: the batch dim size for the batched grad def _batched_grad_test( self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3 ): if kwargs is None: kwargs = {} outputs = op(*args, **kwargs) outputs = differentiable(output_process_fn(outputs)) for contig in [True, False]: batched_vectors = tuple( construct_v(out, batch_size, contig) for out in outputs ) def vector_jacobian_product(*vectors): return torch.autograd.grad( outputs, differentiable(args), vectors, retain_graph=True ) self._vmap_test( vector_jacobian_product, batched_vectors, check_propagates_grad=False ) # Tests batched second grad computation of outputs = op(*args, **kwargs). # by comparing it to a sequential map+stack fallback. # # output_process_fn: a function that maps the outputs to the part # that should be differentiated. # batch_size: the batch dim size for the batched grad # # NB: we only test computing batched gradients in the second gradient # computation. One specific use case that does this is computing the hessian # matrix of a scalar-valued function; this is useful in Bayesian Logistic # Regression. # It might be useful to have a test that computes batched first gradients and # then uses those to compute batched second gradients in the future. def _batched_grad_grad_test( self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3 ): if kwargs is None: kwargs = {} outputs = op(*args, **kwargs) outputs = differentiable(output_process_fn(outputs)) ones = tuple(torch.ones_like(out) for out in outputs) # Same thing as summing together all of the outputs and calling .backward() first_grads = torch.autograd.grad( outputs, differentiable(args), ones, create_graph=True ) first_grads = differentiable(first_grads) self.assertNotEqual( len(first_grads), 0, "None of the first grads depend on the input!" ) for contig in [True, False]: batched_vectors = tuple( construct_v(grad, batch_size, contig) for grad in first_grads ) def vector_hessian_product(*vectors): outputs = torch.autograd.grad( first_grads, differentiable(args), vectors, retain_graph=True, allow_unused=True, ) outputs = tuple(out for out in outputs if out is not None) assert len(outputs) > 0 return outputs self._vmap_test( vector_hessian_product, batched_vectors, check_propagates_grad=False ) def _test_arithmetic(self, op, device, test_grad_grad=True): x = torch.randn(2, 3, requires_grad=True, device=device) y = _get_rand_no_zeros(2, 3, device=device, requires_grad=True) scalar = 3.14 self._batched_grad_test(op, (x, y)) self._batched_grad_test(op, (scalar, y)) self._batched_grad_test(op, (x, scalar)) if test_grad_grad: self._batched_grad_grad_test(op, (x, y)) def test_add(self, device): self._test_arithmetic(torch.add, device, test_grad_grad=False) self._test_arithmetic(lambda x, y: x + y, device, test_grad_grad=False) def test_sub(self, device): self._test_arithmetic(torch.sub, device, test_grad_grad=False) self._test_arithmetic(lambda x, y: x - y, device, test_grad_grad=False) def test_mul(self, device): self._test_arithmetic(torch.mul, device) self._test_arithmetic(lambda x, y: x * y, device) def test_div(self, device): self._test_arithmetic(torch.div, device) self._test_arithmetic(lambda x, y: x / y, device) def test_binary_cross_entropy(self, device): x = F.sigmoid(torch.randn(3, 2, device=device, requires_grad=True)) target = torch.rand(3, 2, device=device) op = functools.partial(F.binary_cross_entropy, target=target) self._batched_grad_test(op, (x,), {}) self._batched_grad_grad_test(op, (x,), {}) def test_log_softmax(self, device): op = functools.partial(torch.log_softmax, dim=-1) x = torch.randn(3, 2, device=device, requires_grad=True) self._batched_grad_test(op, (x,), {}) self._batched_grad_grad_test(op, (x,), {}) def test_expand(self, device): x = torch.randn(2, 3, device=device, requires_grad=True) def op(x): return x.expand(5, 5, 2, 3) self._batched_grad_test(op, (x,)) @allowVmapFallbackUsage def test_index(self, device): x = torch.randn(2, 3, requires_grad=True, device=device) index = torch.tensor([[0, 0], [1, 1]], device=device) def op(x): y = x * x return y[index] self._batched_grad_test(op, (x,)) self._batched_grad_grad_test(op, (x,)) def test_lgamma(self, device): x = torch.randn(2, 3, requires_grad=True, device=device) self._batched_grad_test(Tensor.lgamma, (x,)) self._batched_grad_grad_test(Tensor.lgamma, (x,)) def test_log(self, device): x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True) self._batched_grad_test(torch.log, (x,)) self._batched_grad_grad_test(torch.log, (x,)) def test_logsumexp(self, device): x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True) def op(x): return torch.logsumexp(x, -1) self._batched_grad_test(op, (x,)) self._batched_grad_grad_test(op, (x,)) def test_log1p(self, device): x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True) self._batched_grad_test(torch.log1p, (x,)) self._batched_grad_grad_test(torch.log1p, (x,)) @allowVmapFallbackUsage def test_max(self, device): x = torch.randn(2, 3, requires_grad=True, device=device) self._batched_grad_test(torch.max, (x,)) @allowVmapFallbackUsage def test_median(self, device): x = torch.randn(2, 3, requires_grad=True, device=device) self._batched_grad_test(torch.median, (x,)) @allowVmapFallbackUsage def test_min(self, device): x = torch.randn(2, 3, requires_grad=True, device=device) self._batched_grad_test(torch.min, (x,)) def test_permute(self, device): x = torch.randn(2, 3, 5, requires_grad=True, device=device) def op(x): return x.permute(2, 0, 1) self._batched_grad_test(op, (x,)) def test_reshape(self, device): x = torch.randn(2, 3, 5, requires_grad=True, device=device) def op(x): return x.reshape([2 * 3, 5]) self._batched_grad_test(op, (x,)) def test_sigmoid(self, device): x = torch.randn(2, 3, requires_grad=True, device=device) self._batched_grad_test(Tensor.sigmoid, (x,)) self._batched_grad_grad_test(Tensor.sigmoid, (x,)) def test_stack(self, device): x = torch.randn(2, 3, device=device, requires_grad=True) y = torch.randn(2, 3, device=device, requires_grad=True) def op(x, y): return torch.stack([x, y]) self._batched_grad_test(op, (x, y)) def test_select(self, device): x = torch.randn(2, 3, device=device, requires_grad=True) self._batched_grad_test(lambda x: x[1], (x,)) self._batched_grad_test(lambda x: x.select(1, 2), (x,)) self._batched_grad_test(lambda x: x.select(-1, 0), (x,)) def test_slice(self, device): x = torch.randn(2, 3, 5, device=device, requires_grad=True) self._batched_grad_test(lambda x: x[0:1], (x,)) self._batched_grad_test(lambda x: x[:, 1:3], (x,)) self._batched_grad_test(lambda x: x[..., 1:3], (x,)) def test_trace(self, device): x = torch.randn(2, 3, device=device, requires_grad=True) self._batched_grad_test(Tensor.trace, (x,)) x = torch.randn(3, 2, 2, device=device) def sum_grad_trace(x): return grad(torch.trace)(x).sum() output = vmap(grad(sum_grad_trace))(x) self.assertEqual(output, torch.zeros_like(output)) def test_where(self, device): x = torch.randn(3, 2, device=device) y = torch.ones(3, 2, device=device) def f(x, y): return torch.where(x > 0, x, y) # Check that there is no runtime error, exactness tests are done with opinfo vmap(f)(x, y) x = torch.randint(0, 2, size=(4, 3), dtype=torch.float) def f(t): return torch.where(t) with self.assertRaisesRegex( RuntimeError, r"Attempted to vmap over aten::where" ): vmap(f)(x) def test_threshold(self, device): x = torch.randn(2, 3, device=device, requires_grad=True) self._batched_grad_test(lambda x: F.threshold(x, 0.5, 0.0), (x,)) @parametrize("backend", PLATFORM_SPECIFIC_SDPA) def test_sdpa(self, device, backend): if device == "cpu": raise unittest.SkipTest("This test is only for CUDA for now") def T(*args): return torch.randn(*args, dtype=torch.float16, device=device) backend_ctx = sdpa_kernel([backend]) with backend_ctx: for batching in [ (True, True, True), (True, False, False), (False, True, True), ]: size = [8, 4, 128, 64] if batching[0]: query = T(3, *size) else: query = T(*size) if batching[1]: key = T(3, *size) else: key = T(*size) if batching[2]: value = T(3, *size) else: value = T(*size) in_dims = tuple(0 if b else None for b in batching) attention = F.scaled_dot_product_attention self._vmap_test( attention, (query, key, value), in_dims=in_dims, ) # Backwards test doesn't work yet # self._batched_grad_test( # lambda query, key, value: F.scaled_dot_product_attention( # query, key, value # ), # (query, key, value), # ) B = 4 query = torch.rand(4, 32, B, 8, 128, dtype=torch.float16, device=device) key = torch.rand(4, B, 32, 8, 128, dtype=torch.float16, device=device) value = torch.rand(4, 32, 8, 128, dtype=torch.float16, device=device) self._vmap_test( F.scaled_dot_product_attention, (query, key, value), in_dims=(2, 1, None), ) @parametrize("backend", PLATFORM_SPECIFIC_SDPA) @parametrize("randomness", ["error", "same", "different"]) def test_randomness(self, device, randomness, backend): if device == "cpu": raise unittest.SkipTest("This test is only for CUDA for now") backend_ctx = sdpa_kernel([backend]) with backend_ctx: B = 4 query = torch.rand(B, 4, 32, 8, 128, dtype=torch.float16, device=device) key = torch.rand(B, 4, 32, 8, 128, dtype=torch.float16, device=device) value = torch.rand(B, 4, 32, 8, 128, dtype=torch.float16, device=device) def f(q, k, v, dropout): return F.scaled_dot_product_attention(q, k, v, dropout_p=dropout) # No matter the randomness mode, dropout=0.0 should pass vmap( functools.partial(f, dropout=0.0), in_dims=(0, 0, 0), randomness=randomness, )(query, key, value) fail_with_randomness = randomness == "error" if backend != SDPBackend.MATH: fail_with_randomness |= randomness == "same" context = ( self.assertRaises(RuntimeError) # We currently don't support randomness == "same", and "error" should always error with randomness if fail_with_randomness else contextlib.nullcontext() ) with context: vmap( functools.partial(f, dropout=0.5), in_dims=(0, 0, 0), randomness=randomness, )(query, key, value) @allowVmapFallbackUsage def test_inplace_view(self, device): leaf = torch.randn(4, 5, requires_grad=True) def func(leaf): # Make sure the function is non-trivially twice differentiable base = leaf * leaf view = base[0] view.cos_() return view self._batched_grad_test(func, (leaf,), {}) self._batched_grad_grad_test(func, (leaf,), {}) @allowVmapFallbackUsage def test_inplace_manyview(self, device): leaf = torch.randn(4, 4, 5, requires_grad=True) def func(leaf): # Make sure the function is non-trivially twice differentiable base = leaf * leaf view = base.transpose(0, 2) view = view[1] view = view.diagonal() view = view[::2] view.cos_() return view self._batched_grad_test(func, (leaf,), {}) self._batched_grad_grad_test(func, (leaf,), {}) def test_diagonal(self, device): x = torch.randn(4, 5, device=device, requires_grad=True) self._batched_grad_test(lambda x: x.diagonal(1, 0, 1), (x,)) x = torch.randn(3, 4, 5, device=device, requires_grad=True) self._batched_grad_test(lambda x: x.diagonal(0, -1, -2), (x,)) @allowVmapFallbackUsage def test_unrelated_output(self, device): B0 = 3 x = torch.randn([], requires_grad=True) y = torch.randn([], requires_grad=True) gy = torch.randn(B0, requires_grad=True) def vjp(v): (res,) = torch.autograd.grad(y, x, v, allow_unused=True) return torch.zeros_like(x) if res is None else res result = vmap(vjp)(gy) self.assertEqual(result, torch.zeros(B0, *x.shape, device=device)) @allowVmapFallbackUsage def test_unrelated_output_multiple_grad(self, device): B0 = 3 x = torch.randn([], requires_grad=True) y = torch.randn([], requires_grad=True) gy = torch.randn(B0, requires_grad=True) def vjp(v): (res,) = torch.autograd.grad(y, x, v, allow_unused=True) return torch.zeros_like(x) if res is None else res _ = vjp(gy[0]) result = vmap(vjp)(gy) self.assertEqual(result, torch.zeros(B0, *x.shape, device=device)) def discover_variants(opinfo): aliases = [] inplace_variants = [] if opinfo.inplace_variant: inplace_variants.append(opinfo.inplace_variant) aliases.append(opinfo.op) for alias in opinfo.aliases: aliases.append(alias.op) if alias.inplace_variant: inplace_variants.append(alias.inplace_variant) return aliases, inplace_variants # TODO: enable this when we get a bit closer to getting torch.vmap x torch.compile working. # @markDynamoStrictTest @unMarkDynamoStrictTest class TestVmapOperatorsOpInfo(TestCase): def vmap_outplace_test( self, func, args, kwargs, in_dims, check_shape_only=False, postprocess_fn=None, out_dim=0, ): for vmap_out, loop_out in compute_quantities_for_vmap_test( func, args, kwargs, in_dims, out_dim=out_dim ): if postprocess_fn is not None: loop_out = postprocess_fn(loop_out) vmap_out = postprocess_fn(vmap_out) if check_shape_only: self.assertEqual(vmap_out.shape, loop_out.shape) continue self.assertEqual(vmap_out, loop_out) def vmap_inplace_test( self, func, args, kwargs, in_dims, postprocess_fn=None, out_dim=0 ): # NB: This test assumes that the first argument is being modified. # This is OK because it's what every other OpInfo-based test assumes, # but it is going to need a more robust solution eventually. if in_dims[0] is None: # Check that we correctly raise an error when vmap is impossible # on the in-place operation with self.assertRaises(RuntimeError): for _ in compute_quantities_for_vmap_test( func, args, kwargs, in_dims, out_dim=out_dim, compute_loop_out=False, clone_inputs=True, ): pass return for vmap_out, loop_out in compute_quantities_for_vmap_test( func, args, kwargs, in_dims, clone_inputs=True, out_dim=out_dim, ): if postprocess_fn is not None: loop_out = postprocess_fn(loop_out) vmap_out = postprocess_fn(vmap_out) self.assertEqual(vmap_out, loop_out) def opinfo_vmap_test( self, device, dtype, op, check_has_batch_rule, skip_inplace=(), postprocess_fn=None, ): def test(): # Error inputs check if op.error_inputs_func is not None: error_inputs = op.error_inputs(device) for error_input in error_inputs: sample_input = error_input.sample_input args = (sample_input.input,) + tuple(sample_input.args) kwargs = sample_input.kwargs for batched_args, in_dims, _ in generate_vmap_inputs(args, {}): with self.assertRaises(Exception): vmap(op, in_dims)(*batched_args, **kwargs) # Sample inputs check sample_inputs_op = { # Take too long with reference inputs "special.chebyshev_polynomial_t", "special.chebyshev_polynomial_u", "special.chebyshev_polynomial_v", "special.chebyshev_polynomial_w", "special.hermite_polynomial_he", "special.laguerre_polynomial_l", "special.legendre_polynomial_p", "special.shifted_chebyshev_polynomial_t", "special.shifted_chebyshev_polynomial_u", "special.shifted_chebyshev_polynomial_v", "special.shifted_chebyshev_polynomial_w", } if op.name in sample_inputs_op: sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False) else: sample_inputs_itr = op.reference_inputs( device, dtype, requires_grad=False ) aliases, inplace_aliases = discover_variants(op) check_shape_only = op.name in ("empty_like", "new_empty") for sample_input in sample_inputs_itr: args = (sample_input.input,) + sample_input.args if not any(isinstance(arg, torch.Tensor) for arg in args): # Atleast one tensor required for vmap. continue kwargs = sample_input.kwargs is_batch_norm_and_training = is_batch_norm_training(op.name, kwargs) out_dim = 0 if op.name == "NumpySplitCopyWithIntCustomOp": # special case for this custom op def sample_vmap_out_dim_numpy_split_copy_with_int(x, splits, dim): return [0 for _ in range(len(splits) + 1)], None out_dim = sample_vmap_out_dim_numpy_split_copy_with_int(*args) for batched_args, in_dims, _ in generate_vmap_inputs( args, {}, is_batch_norm_and_training=is_batch_norm_and_training ): for func in aliases: self.vmap_outplace_test( func, batched_args, kwargs, in_dims, check_shape_only, postprocess_fn, out_dim=out_dim, ) if op.name in skip_inplace: continue if not is_valid_inplace_sample_input( sample_input, op, op.inplace_variant ): continue for func in inplace_aliases: self.vmap_inplace_test( func, batched_args, kwargs, in_dims, postprocess_fn ) if check_has_batch_rule: check_vmap_fallback(self, test, op) else: test() vmap_fail = { # -------------------- ALLOWED FAILURES -------------------------------- # These are things that we either cannot fix or are not actually problems xfail("resize_"), xfail("resize_as_"), xfail("to_sparse"), xfail("__getitem__"), # dynamic mask xfail("index_put"), # dynamic mask xfail( "nn.functional.dropout" ), # works, can't check against for loop because of randomness inconsistency xfail("nn.functional.scaled_dot_product_attention"), # randomness xfail("nn.functional.multi_head_attention_forward"), # randomness xfail("masked_select"), # dynamic op xfail("nonzero"), # dynamic op xfail("unique", ""), # dynamic op xfail("unique_consecutive", ""), # dynamic op xfail("allclose"), # returns a boolean xfail("uniform"), # randomness is tested separately xfail("rand_like"), # randomness is tested separately xfail("randint_like"), # randomness is tested separately xfail("randn_like"), # randomness is tested separately xfail("bernoulli", ""), # randomness is tested separately xfail("normal", ""), # randomness is tested separately xfail("normal", "number_mean"), # randomness is tested separately xfail("multinomial", ""), # randomness xfail("nn.functional.embedding", ""), # we only support some cases xfail("nn.functional.rrelu"), # randomness xfail("nn.functional.dropout2d", ""), # randomness xfail("nn.functional.dropout3d", ""), # randomness xfail("nn.functional.alpha_dropout", ""), # randomness xfail("nn.functional.feature_alpha_dropout", "with_train"), # randomness xfail("as_strided"), # Our test runner can't handle this; manual test exists xfail("as_strided_copy"), xfail( "as_strided_scatter" ), # no batching rule implemented, default doesnt work skip( "new_empty_strided" ), # empty tensor data is garbage so it's hard to make comparisons with it xfail("nn.functional.fractional_max_pool3d"), # randomness xfail("nn.functional.fractional_max_pool2d"), # randomness xfail("pca_lowrank", ""), # random operation xfail("svd_lowrank", ""), # random operation xfail("sparse.sampled_addmm"), # sparse xfail("sparse.mm", "reduce"), # sparse xfail( "NumpyCubeNotComposableAutogradFunction" ), # Not composable autograd.Function skip("_softmax_backward_data"), skip( "linalg.eigh", "" ), # not always return the same result for the same input, see test_linalg_eigh for manual test skip("to"), # RuntimeError: required rank 4 tensor to use channels_last format # UnimplementedError: data-dependent operators cannot be vmapped xfail("NumpyNonzeroCustomOp"), xfail("NumpyNMSCustomOp"), # ---------------------------------------------------------------------- # ---------------------------- BUGS ------------------------------------ # entries in here don't work and need to be fixed. # Each one of these is a bug decorate("frexp", decorator=skipIfTorchDynamo()), xfail("clamp_min", ""), # Exception not raised on error input xfail("clamp_max", ""), # Exception not raised on error input xfail( "view_as_complex" ), # RuntimeError: Tensor must have a last dimension with stride 1 xfail("tensor_split"), # data_ptr xfail( "histogramdd" ), # expected Tensor as element 0 in argument 0, but got tuple xfail("nn.functional.gaussian_nll_loss"), # data-dependent control flow error xfail( "nn.functional.embedding_bag" ), # embedding renorm vmap inplace incompatible xfail("narrow"), # Batching rule not implemented for aten::narrow.Tensor # required rank 4 tensor to use channels_last format xfail("bfloat16"), xfail("bool"), xfail("byte"), xfail("char"), xfail("double"), xfail("float"), xfail("half"), xfail("int"), xfail("long"), xfail("short"), xfail("cdouble"), xfail("cfloat"), xfail( "jiterator_binary", device_type="cuda" ), # NYI: querying is_contiguous inside of vmap xfail( "jiterator_binary_return_by_ref", device_type="cuda" ), # NYI: querying is_contiguous inside of vmap xfail( "jiterator_4inputs_with_extra_args", device_type="cuda" ), # NYI: querying is_contiguous inside of vmap xfail( "equal", "" ), # TypeError: object of type 'bool' has no len(); likely testrunner problem xfail( "jiterator_unary", device_type="cuda" ), # NYI: querying is_contiguous inside of vmap xfail( "jiterator_2inputs_2outputs", device_type="cuda" ), # NYI: querying is_contiguous inside of vmap # --------------------------------------------------------------------- # TypeError: expected Tensor as element 0 in argument 0, but got NotImplementedType xfail("__rsub__"), # RuntimeError: Batching rule not implemented for aten::moveaxis.int; # the fallback path doesn't work on out= or view ops. xfail("movedim"), # RuntimeError: NYI: querying is_contiguous inside of vmap for # memory_format other than torch.contiguous_format xfail("contiguous"), # RuntimeError: NYI: Tensor.clone(memory_format) inside vmap is only supported # with memory_format torch.preserve_format or torch.contiguous_format (got ChannelsLast) xfail("clone"), # RuntimeError: When vmap-ing torch.nn.functional.one_hot, # please provide an explicit positive num_classes argument. xfail("nn.functional.one_hot"), # RuntimeError: Expected all tensors to be on the same device, # but found at least two devices, cuda:0 and cpu! xfail("eq", device_type="cuda"), xfail("ge", device_type="cuda"), xfail("gt", device_type="cuda"), xfail("le", device_type="cuda"), xfail("lt", device_type="cuda"), xfail("ne", device_type="cuda"), # RuntimeError: aten::_flash_attention_forward hit the vmap fallback which is currently disabled xfail("torch.ops.aten._flash_attention_forward"), } @with_tf32_off # https://github.com/pytorch/pytorch/issues/86798 @ops( op_db + additional_op_db + autograd_function_db + custom_op_db, dtypes=OpDTypes.any_one, ) @opsToleranceOverride( "TestVmapOperatorsOpInfo", "test_vmap_exhaustive", ( tol1( "linalg.det", {torch.float32: tol(atol=1e-04, rtol=1e-04)}, device_type="cuda", ), # The following is often flaky, but just on windows. # We should investigate if it's actually a problem or not. tol1( "nn.functional.conv_transpose3d", {torch.float32: tol(atol=1e-04, rtol=1e-02)}, device_type="cuda", ), ), ) @toleranceOverride( { torch.float32: tol(atol=1e-04, rtol=1e-04), torch.complex64: tol(atol=1e-04, rtol=1e-04), } ) @skipOps( "TestVmapOperatorsOpInfo", "test_vmap_exhaustive", vmap_fail.union( { # RuntimeError: Batch norm got a batched tensor as input while the running_mean or running_var, # which will be updated in place, were not batched. xfail("native_batch_norm"), xfail("_native_batch_norm_legit"), # TODO: implement batching rule xfail("_batch_norm_with_update"), xfail("tril"), # Exception not raised on error input xfail("triu"), # Exception not raised on error input xfail("as_strided", "partial_views"), # RuntimeError: output with shape [4, 4] doesn't match the broadcast shape [1, 4, 4] xfail("addcdiv"), xfail("addcmul"), xfail("clamp"), xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints # TypeError: expected Tensor as element 0 in argument 0, but got float xfail("item"), } ), ) def test_vmap_exhaustive(self, device, dtype, op): # needs to be fixed inplace_failure_list = () self.opinfo_vmap_test( device, dtype, op, check_has_batch_rule=False, skip_inplace=inplace_failure_list, ) @with_tf32_off @ops( op_db + additional_op_db + autograd_function_db + custom_op_db, dtypes=OpDTypes.any_one, ) @opsToleranceOverride( "TestVmapOperatorsOpInfo", "test_op_has_batch_rule", ( tol1( "linalg.det", {torch.float32: tol(atol=1e-04, rtol=1e-04)}, device_type="cuda", ), ), ) @toleranceOverride( { torch.float32: tol(atol=1e-04, rtol=1e-04), torch.complex64: tol(atol=1e-04, rtol=1e-04), } ) @skipOps( "TestVmapOperatorsOpInfo", "test_op_has_batch_rule", vmap_fail.union( { xfail("as_strided", "partial_views"), skip( "to" ), # RuntimeError: required rank 4 tensor to use channels_last format xfail("fill"), # Batch norm got a batched tensor as input while the running_mean or running_var, # which will be updated in place, were not batched. xfail("native_batch_norm"), xfail("_native_batch_norm_legit"), # TODO: implement batching rule xfail("_batch_norm_with_update"), xfail("histogram"), xfail("scatter_reduce", "sum"), xfail("scatter_reduce", "mean"), xfail("scatter_reduce", "amax"), xfail("scatter_reduce", "amin"), # `index_put` OpInfo in pytorch/pytorch has # masked index as input which is not supported xfail("index_put", ""), xfail("isin"), xfail("masked_fill"), xfail("masked_scatter"), xfail("masked_select"), xfail("nanquantile"), xfail("ormqr"), xfail("put"), xfail("quantile"), xfail("renorm"), xfail("resize_as_"), xfail("take"), xfail("tensor_split"), xfail("to_sparse"), # TypeError: expected Tensor as element 0 in argument 0, but got float xfail("item"), xfail("tril"), # Exception not raised on error input xfail("triu"), # Exception not raised on error input xfail("__getitem__", ""), xfail("count_nonzero"), xfail( "nn.functional.dropout" ), # works, can't check against for loop because of randomness inconsistency xfail("nn.functional.scaled_dot_product_attention"), # randomness xfail("nn.functional.multi_head_attention_forward"), # randomness xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints xfail("resize_"), xfail("view_as_complex"), xfail("matrix_exp"), xfail("fft.ihfft2"), xfail("fft.ihfftn"), xfail("allclose"), xfail("argwhere"), xfail("unique_consecutive"), xfail("unique"), xfail("nn.functional.ctc_loss"), xfail("nn.functional.gaussian_nll_loss"), xfail("histc"), xfail("as_strided"), xfail("as_strided_copy"), xfail("t_copy"), xfail("unsqueeze_copy"), xfail("istft"), xfail("nonzero"), xfail("nn.functional.fractional_max_pool2d"), xfail("stft"), xfail("isclose"), xfail("nn.functional.fractional_max_pool3d"), xfail("nn.functional.bilinear"), xfail("nn.functional.embedding_bag"), xfail("linalg.tensorsolve"), xfail("bernoulli", ""), xfail("nn.functional.feature_alpha_dropout", "with_train"), xfail("native_dropout_backward"), xfail("nn.functional.kl_div", ""), xfail("multinomial", ""), xfail("pca_lowrank", ""), xfail("normal", ""), xfail("nn.functional.dropout2d", ""), xfail("normal", "number_mean"), xfail("svd_lowrank", ""), xfail("diagflat", ""), xfail("special.log_ndtr"), xfail( "narrow" ), # Batching rule not implemented for aten::narrow.Tensor xfail("nn.functional.triplet_margin_loss", ""), xfail("nn.functional.pdist", ""), xfail("scatter_reduce", "sum"), xfail("scatter_reduce", "amax"), xfail("nn.functional.max_unpool1d", "grad"), xfail("nn.functional.multi_margin_loss", ""), xfail("scatter_reduce", "prod"), xfail("nn.functional.multilabel_margin_loss", ""), xfail("scatter_reduce", "amin"), xfail("nn.functional.max_unpool3d", "grad"), xfail("nn.functional.max_unpool2d", ""), xfail("nn.functional.max_unpool2d", "grad"), xfail("nn.functional.margin_ranking_loss", ""), xfail("nn.functional.max_unpool1d", ""), xfail("nn.functional.soft_margin_loss", ""), xfail("scatter_reduce", "mean"), xfail("nn.functional.max_unpool3d", ""), xfail("linalg.ldl_solve", "", device_type="cpu"), xfail("chalf", ""), xfail("clamp_max", ""), xfail("jiterator_binary_return_by_ref", device_type="cuda"), xfail("jiterator_unary", device_type="cuda"), xfail("jiterator_2inputs_2outputs", device_type="cuda"), xfail("special.airy_ai"), xfail("clamp_min", ""), xfail("sparse.sampled_addmm"), xfail("sparse.mm", "reduce"), xfail("special.chebyshev_polynomial_u"), xfail("_segment_reduce", "offsets"), xfail("index_reduce", "prod"), xfail("index_reduce", "mean"), xfail("index_reduce", "amin"), xfail("index_reduce", "amax"), xfail("special.laguerre_polynomial_l"), xfail("special.hermite_polynomial_h"), xfail("jiterator_binary", device_type="cuda"), xfail("jiterator_4inputs_with_extra_args", device_type="cuda"), xfail("_segment_reduce", "lengths"), xfail("lu_solve", ""), xfail("special.hermite_polynomial_he"), xfail("nn.functional.dropout3d", ""), xfail("special.chebyshev_polynomial_t"), xfail("as_strided_scatter", ""), xfail("equal", ""), xfail("linalg.lu", ""), skip("linalg.ldl_solve", ""), skip("_softmax_backward_data"), # One or more of the overload doesn't have a Batch rule. xfail("bincount"), # RuntimeError: Expected all tensors to be on the same device, # but found at least two devices, cuda:0 and cpu! xfail("ge", device_type="cuda"), xfail( "searchsorted" ), # aten::searchsorted.Scalar hit the vmap fallback which is currently disabled } ), ) def test_op_has_batch_rule(self, device, dtype, op): # needs to be fixed inplace_failures = ( "addbmm", "addcdiv", "addcmul", "addmm", "addmv", "addr", "baddbmm", "clamp", "conj_physical", "cumprod", "cumsum", "floor_divide", "fmod", "heaviside", "hypot", "igamma", "igammac", "index_copy", "ldexp", "lerp", "neg", "nextafter", "polygamma", "pow", "remainder", "scatter_add", "scatter", "square", "sub", "trunc", "xlogy", ) self.opinfo_vmap_test( device, dtype, op, check_has_batch_rule=True, skip_inplace=inplace_failures ) def test_linalg_svd(self, device): # linalg_svd returns a tuple of three tensors, (U, S, Vh). # Given the same input, it may return different tensors, # because svd isn't unique. To test that the svd is correct, we multiply # U @ diag(S) @ Vh and check that the output from vmap matches the # output from a for-loop. def compute_A(out): U, S, Vh = out m = U.shape[-1] n = Vh.shape[-2] diag_S = S.new_zeros(*S.shape[:-1], m, n) diag_S.diagonal(offset=0, dim1=-2, dim2=-1).copy_(S) return U @ diag_S @ Vh opinfos = [op for op in op_db if op.name == "linalg.svd"] assert len(opinfos) > 0 for op in opinfos: self.opinfo_vmap_test( device, torch.float, op, check_has_batch_rule=True, postprocess_fn=compute_A, ) def test_linalg_eigh(self, device): # linalg_svd returns two tensors, (Q, L). # Given the same input, it may return different tensors, # because the eig decomposition isn't unique. # To test that eigh is correct, we multiply # Q @ diag(L) @ Qh and check that the output from vmap matches the # output from a for-loop. def compute_A(out): L, Q = out n = Q.shape[-1] diag_L = L.new_zeros(*L.shape[:-1], n, n) diag_L.diagonal(offset=0, dim1=-2, dim2=-1).copy_(L) Qh = Q.transpose(-2, -1).conj() return Q @ diag_L @ Qh opinfos = [op for op in op_db if op.name == "linalg.eigh"] assert len(opinfos) > 0 for op in opinfos: self.opinfo_vmap_test( device, torch.float, op, check_has_batch_rule=True, postprocess_fn=compute_A, ) @skipIfTorchDynamo() def test_slogdet(self, device): # There's no OpInfo for this def test(): B = 2 x = torch.randn(B, 5, 5, device=device) self.vmap_outplace_test(torch.slogdet, (x,), {}, (0,)) check_vmap_fallback(self, test, torch.slogdet) def test_index_fill(self, device): # There's no OpInfo for these tests B = 2 def test1(): # negative dim x = torch.randn(B, 5, 5, device=device) dim = -2 index = torch.tensor([[2, 3], [0, 4]], device=device) value = 5.0 self.vmap_outplace_test( torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None) ) def test2(): # self batched, self logical rank 1, index logical rank 1 x = torch.zeros(B, 3, device=device) dim = 0 index = torch.tensor([[0], [1]], device=device) for value in (1.0, torch.rand((), device=device)): self.vmap_outplace_test( torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None) ) def test3(): # self batched, self logical rank 1, index logical rank 0 x = torch.zeros(B, 3, device=device) dim = 0 index = torch.tensor([0, 1], device=device) for value in (1.0, torch.rand((), device=device)): self.vmap_outplace_test( torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None) ) def test4(): # self not batched, self logical rank 0, index logical rank 1 x = torch.zeros([], device=device) dim = 0 index = torch.tensor([[0], [0]], device=device) for value in (1.0, torch.rand((), device=device)): self.vmap_outplace_test( torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None) ) def test5(): # self not batched, self logical rank 0, index logical rank 0 x = torch.zeros([], device=device) dim = 0 index = torch.tensor([0, 0], device=device) for value in (1.0, torch.rand((), device=device)): self.vmap_outplace_test( torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None) ) def test6(): # self not batched, self logical rank 0, index logical rank 1 x = torch.zeros(3, device=device) dim = 0 index = torch.tensor([[0], [1]], device=device) for value in (1.0, torch.rand((), device=device)): self.vmap_outplace_test( torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None) ) def test7(): # self not batched, self logical rank 0, index logical rank 0 x = torch.zeros(3, device=device) dim = 0 index = torch.tensor([0, 1], device=device) for value in (1.0, torch.rand((), device=device)): self.vmap_outplace_test( torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None) ) def test8(): # self batched, self logical rank > 1, index logical rank 0 x = torch.zeros(B, 3, 3, device=device) dim = 0 index = torch.tensor([0, 1], device=device) for value in (1.0, torch.rand((), device=device)): self.vmap_outplace_test( torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None) ) for test in (test1, test2, test3, test4, test5, test6, test7, test8): check_vmap_fallback(self, test, torch.index_fill) def test_fill__Tensor(self, device): # There's no OpInfo for fill_.Tensor, so here's an extra test for it. def test(): B = 2 args = (torch.randn(B, 3, device=device), torch.randn(B)) self.vmap_inplace_test(Tensor.fill_, args, {}, (0, 0)) args = (torch.randn(3, B, device=device), torch.randn(B)) self.vmap_inplace_test(Tensor.fill_, args, {}, (-1, 0)) args = (torch.randn(3, device=device), torch.randn(B)) self.vmap_inplace_test(Tensor.fill_, args, {}, (None, 0)) args = (torch.randn(3, B, device=device), torch.randn([])) self.vmap_inplace_test(Tensor.fill_, args, {}, (1, None)) check_vmap_fallback(self, test, Tensor.fill_) def test_conv_double_backward(self, device): images = torch.randn(2, 1, 5, 5, device=device) weight = torch.randn(2, 1, 2, 2, device=device) bias = torch.randn(2, device=device) ggI = torch.randn_like(images) ggW = torch.randn_like(weight) ggb = torch.randn_like(bias) stride = (1, 1) padding = (0, 0) dilation = (1, 1) transposed = False output_padding = (0, 0) groups = 1 output_mask = (True, True, True) gO = torch.randn_like( F.conv2d(images, weight, bias, stride, padding, dilation, groups) ) args = ( ggI, ggW, ggb, gO, weight, images, stride, padding, dilation, transposed, output_padding, groups, output_mask, ) op = torch.ops.aten._convolution_double_backward generator = get_fallback_and_vmap_exhaustive(op, args, {}) is_cuda_sm86 = device.startswith("cuda") and torch.cuda.get_device_capability( 0 ) == (8, 6) atol, rtol = (1e-3, 1e-3) if is_cuda_sm86 else (1e-4, 1e-4) def test(): for loop_out, batched_out in generator: self.assertEqual(loop_out, batched_out, atol=atol, rtol=rtol) check_vmap_fallback(self, test, op) def test_isnan(self, device): test = functools.partial(_vmap_test, check_propagates_grad=False) B, N, C, H, W = 2, 3, 24, 5, 7 op = torch.isnan x = torch.randn(B, N, C, H, W) x[x > 0] = float("nan") test(self, op, (x,), in_dims=(0)) def test_sum_scalar(self, device): x = torch.tensor([10.0], device=device) y = vmap(torch.sum)(x) self.assertEqual(y, x) y = vmap(lambda x: x.sum(0))(x) self.assertEqual(y, x) y = vmap(lambda x: x.sum(-1))(x) self.assertEqual(y, x) def test_isinf(self, device): test = functools.partial(_vmap_test, check_propagates_grad=False) B, N, C, H, W = 2, 3, 24, 5, 7 op = torch.isinf x = torch.randn(B, N, C, H, W) x[x > 0] = float("inf") test(self, op, (x,), in_dims=(0)) def test_foo_like(self, device): # vfdev-5: Probably, we can remove this line. Flake8 reported as unused # test = functools.partial(_vmap_test, check_propagates_grad=False) B, N, C, H, W = 2, 3, 24, 5, 7 for op in [torch.ones_like, torch.zeros_like]: x = torch.randn(B, N, C, H, W) # todo(chilli): test these better # Not testing correctness, just that they run vmap(op, in_dims=(0,))( x, ) def test_flatten(self, device): test = functools.partial(_vmap_test, check_propagates_grad=False) op = torch.flatten x = torch.randn(2, 3, 4, 5) test(self, op, (x, 1, 2), in_dims=(0, None, None)) def test_group_norm(self, device): test = functools.partial(_vmap_test, check_propagates_grad=False) B, N, C, H, W = 2, 3, 24, 5, 7 op = F.group_norm x = torch.randn(B, N, C, H, W) weight = torch.randn(C) bias = torch.randn(C) test(self, op, (x, 3, weight, bias), in_dims=(0, None, None, None)) x = torch.randn(B, N, C, H, W) weight = torch.randn(B, C) bias = torch.randn(B, C) test(self, op, (x, 4, weight, bias), in_dims=(0, None, 0, 0)) def test_index_put(self, device): def test(f, t, idx, values): base = f(t[0], idx[0], values[0]) self.assertEqual(vmap(f, in_dims=(0, 0, 0))(t, idx, values)[0], base) self.assertEqual( vmap(f, in_dims=(0, None, None))(t, idx[0], values[0])[0], base ) self.assertEqual(vmap(f, in_dims=(0, None, 0))(t, idx[0], values)[0], base) self.assertEqual(vmap(f, in_dims=(0, 0, None))(t, idx, values[0])[0], base) def f(x, y, z): x[y] = z return x x = torch.randn(3, 4, 5, device=device) y = torch.zeros((3, 2), device=device).long() z = torch.randn(3, 2, 5, device=device) test(f, x, y, z) # indexing innermost dim def f(t, idx, values): t[:, idx] = values return t t = torch.zeros((3, 2, 3)) values = torch.ones((3, 1, 2)) idx = torch.tensor([[1, 2]]).expand((3, 2)) test(f, t, idx, values) # indexing middle dim def f(t, idx, values): t[:, idx, :] = values return t t = torch.zeros((3, 2, 3, 3)) values = torch.ones((3, 1, 2, 3)) idx = torch.tensor([[0, 2]]).expand((3, 2)) test(f, t, idx, values) # indexing with slices def f(t, values): t[:, :2, :] = values return t base = f(t[0], values[0]) self.assertEqual(vmap(f, in_dims=(0, 0))(t, values)[0], base) self.assertEqual(vmap(f, in_dims=(0, None))(t, values[0])[0], base) # index_put_ tensor = torch.zeros(3, 3, 4) value = torch.ones(3, 2) idxs = ( torch.tensor([[0], [1], [2]]), torch.tensor([[0]]), torch.tensor([1, 2]), ) expected = torch.index_put_(tensor.clone(), idxs, value) def f(t, idx, v): torch.index_put_(t, idx, v) return t self.assertEqual( vmap(f, in_dims=(0, (None, None), 0))(tensor, idxs[1:], value), expected ) self.assertEqual( vmap(f, in_dims=(0, (None, None), None))(tensor, idxs[1:], value[0]), expected, ) # boolean mask B = 2 x = torch.randn(1, 3, 3) gy = torch.randn(B, 1, 3, 3) def f(x, gy): mask = x < 1e-09 zeros = torch.zeros([]) index_put = torch.ops.aten.index_put.default(gy, [mask], zeros) return index_put self.vmap_outplace_test(f, (x, gy), {}, in_dims=(None, 0)) @onlyCUDA @parametrize("inplace", [True, False]) def test_0d_tensor_index_put(self, device, inplace): def f(t, idx, v): fn = torch.index_put_ if inplace else torch.index_put return fn(t, idx, v) N = 2 t = torch.zeros((N, 5), device="cuda") idx = torch.tensor([1, 3]) v = torch.tensor(1, dtype=t.dtype, device="cpu") expected = torch.tensor([[0, 1, 0, 1, 0], [0, 1, 0, 1, 0]], dtype=t.dtype) self.assertEqual(expected, vmap(f, in_dims=(0, None, None))(t, (idx,), v)) @parametrize("training", [True, False]) @parametrize("track_running_stats", [True, False]) @parametrize("affine", [True, False]) def test_batch_norm(self, device, affine, track_running_stats, training): if not track_running_stats and not training: return test = functools.partial(_vmap_test, check_propagates_grad=False) BN = torch.nn.BatchNorm2d ensemble_size = 10 hidden_dim = 3 weights, buffers, _, _, _ = functional_init_with_buffers(BN, [ensemble_size])( hidden_dim, affine=affine, track_running_stats=track_running_stats ) inputs = [torch.randn(ensemble_size, 32, hidden_dim, 16, 16, device=device)] in_dims = [0] def append(inp, in_dim): inputs.append(inp) in_dims.append(in_dim) if track_running_stats: running_mean, running_var, _ = buffers append(running_mean.to(device), 0) append(running_var.to(device), 0) else: append(None, None) append(None, None) if affine: weight, bias = weights append(weight.to(device), 0) append(bias.to(device), 0) else: append(None, None) append(None, None) append(training, None) def op(inp, running_mean, running_var, weight, bias, training): res = F.batch_norm(inp, running_mean, running_var, weight, bias, training) if track_running_stats: return res, running_mean, running_var return res test(self, op, tuple(inputs), in_dims=tuple(in_dims)) def test_torch_return_types_returns(self, device): t = torch.randn(3, 2, 2, device=device) self.assertTrue( isinstance(vmap(torch.min, (0, None))(t, 0), torch.return_types.min) ) self.assertTrue( isinstance(vmap(torch.max, (0, None))(t, 0), torch.return_types.max) ) self.assertTrue( isinstance( vmap(torch.topk, (0, None, None))(t, 1, 0), torch.return_types.topk ) ) self.assertTrue( isinstance(vmap(torch.linalg.eig, (0))(t), torch.return_types.linalg_eig) ) def test_namedtuple_returns(self, device): Point = namedtuple("Point", ["x", "y"]) def f(x, y): return Point(x=x, y=y) x = torch.randn(2, 5, device=device) y = torch.randn(2, 3, device=device) self.assertTrue(isinstance(vmap(f)(x, y), Point)) def test_inplace_on_view(self, device): def func(leaf): base = leaf * leaf view = base.transpose(0, 1) view[2:4, 2:4] *= 2 view[0:2, 0:2].diagonal().sin_() view = view[1:3, 1:3] view.cos_() return view def push_vjp(leaf, gout): _, vjp_fn = vjp(func, leaf) (result,) = vjp_fn(gout) return result leaf = torch.randn(4, 4, device=device) gout = torch.randn(2, 2, device=device) args = (leaf, gout) for ( batched_args, in_dims, _, ) in generate_vmap_inputs(args, {}): if in_dims[1] is None: # triggers some composite compliance problem continue self.vmap_outplace_test(push_vjp, batched_args, {}, in_dims) def test_advanced_indexing(self, device): def test(f, args): for loop_out, batched_out in get_fallback_and_vmap_exhaustive(f, args, {}): self.assertEqual(loop_out, batched_out) def f(x, idx): return x[:, idx] def f2(x, idx): return x[idx, :] def f3(x, idx): return x[:, :, idx] inps = ( torch.randn(5, 5, 5, device=device), torch.randn(5, 5, 5, 5, device=device), torch.randn(5, 5, 5, 5, 5, device=device), ) idxes = ( torch.tensor([0, 1, 2], device=device), torch.tensor([0, 1, 2], device=device).reshape(3, 1), torch.tensor([0, 1, 2], device=device).reshape(3, 1, 1), ) for inp, idx in itertools.product(inps, idxes): test(f, (inp, idx)) test(f2, (inp, idx)) test(f3, (inp, idx)) def test_nested_advanced_indexing(self, device): e = torch.rand(7, 4, device=device) idx = torch.tensor([0, 1], device=device).view(2, 1) # simple reference implementation for comparison def _fake_vmap(f, in_dims=0, out_dims=0): def w(input): r = [f(input.select(in_dims, i)) for i in range(input.size(in_dims))] return torch.stack(r, out_dims) return w def with_vmap(_vmap): def g(idx_): def f(e_): return e_[idx_] return _vmap(f, in_dims=1)(e) r = _vmap(g)(idx) return r a = with_vmap(vmap) b = with_vmap(_fake_vmap) self.assertEqual(a, b) @ops( filter(lambda op: "linalg" in op.name, op_db + additional_op_db), allowed_dtypes=(torch.float,), ) @skipOps( "TestVmapOperatorsOpInfo", "test_vmap_linalg_failure_1D_input", { xfail("linalg.vector_norm"), # can accept vector inputs xfail("linalg.norm"), # can accept vector inputs xfail("linalg.norm", "subgradients_at_zero"), # can accept vector inputs xfail("linalg.vander"), # can accept vector inputs skip( "linalg.multi_dot" ), # accepts list of tensor inputs, has its own special test xfail("linalg.vecdot"), # throws in vmap on CUDA # IndexError: Dimension out of range (expected to be in range of [-1, 0], but got -2) # https://github.com/pytorch/pytorch/runs/8110653462?check_suite_focus=true # but it passes locally xfail("linalg.diagonal"), skip("linalg.matrix_norm", ""), skip("linalg.ldl_solve", ""), }, ) def test_vmap_linalg_failure_1D_input(self, device, dtype, op): for sample in op.sample_inputs(device, dtype, requires_grad=False): if sample.input.dim() != 2 or sample.input.shape[0] == 0: continue test_input = sample.input[ 0 ] # using the sample input avoids numerical inconsistency issues with self.assertRaisesRegex(RuntimeError, "dimension"): op(test_input, *sample.args, **sample.kwargs) def op_wrapper(inp): return op(inp, *sample.args, **sample.kwargs) # square inputs are more likely to pass linalg checks test_input = test_input.expand(test_input.shape[0], test_input.shape[0]) with self.assertRaisesRegex(RuntimeError, "dimension"): return vmap(op_wrapper)(test_input) def test_vmap_multi_dot_failure_1D_input(self): # special exception for first and last tensors so making giving 3 items avoids special cases inputs = (torch.randn(3, 3), torch.randn(3), torch.randn(3, 3)) with self.assertRaisesRegex(RuntimeError, "tensor 1 must be 2D but got 1D"): torch.linalg.multi_dot(inputs) # square inputs are more likely to pass linalg checks inputs = tuple(i.expand(i.shape[0], i.shape[0]) for i in inputs) with self.assertRaisesRegex(RuntimeError, "tensor 1 must be 2D but got 1D"): return vmap(torch.linalg.multi_dot)(inputs) def test_vmap_escaped_error(self): escaped = None def f(x): nonlocal escaped escaped = x return x**2 x = torch.randn([3, 3, 3, 3, 3]) vmap(f)(x) common_message = ( r"your tensor may have escaped from inside a function being vmapped.*{0}.*" ) # Note: These are not a complete set of tests for all possible functions calling 'vmap_check_escaped' with self.assertRaisesRegex( RuntimeError, common_message.format("gen_vmap_plumbing") ): escaped.sin() with self.assertRaisesRegex( RuntimeError, common_message.format("boxed_tensor_inputs_batch_rule") ): escaped.sin_() with self.assertRaisesRegex( RuntimeError, common_message.format("gen_vmap_inplace_plumbing") ): escaped.mul_(1) with self.assertRaisesRegex( RuntimeError, common_message.format("binary_cross_entropy_plumbing") ): torch.nn.functional.binary_cross_entropy(escaped, torch.zeros([3, 3, 3, 3])) with self.assertRaisesRegex( RuntimeError, common_message.format("boxed_existing_bdim_all_batch_rule") ): torch.nn.functional.adaptive_max_pool2d(escaped, output_size=(1, 1)) with self.assertRaisesRegex( RuntimeError, common_message.format("boxed_reduction_batch_rule") ): escaped.argmin() a = torch.zeros([4, 4, 4, 4]) b = torch.zeros([4, 4, 4, 4], dtype=torch.long) with self.assertRaisesRegex( RuntimeError, common_message.format("boxed_all_tensors_have_optional_bdim") ): torch.ops.aten.adaptive_max_pool2d_backward(escaped, a, b) vmap(f)(torch.tensor([[0, 0], [0, 0]], dtype=torch.int)) with self.assertRaisesRegex( RuntimeError, common_message.format("gen_vmap_plumbing_no_returns") ): torch.ops.aten._linalg_check_errors(escaped, "linalg.inv", is_matrix=False) def test_vmap_with_anomaly_detection(self): with torch.autograd.set_detect_anomaly(True): x = torch.zeros(3) - 1 def fn(x): return x.sum() per_sample_grad = vmap(grad(fn))(x) self.assertEqual(per_sample_grad, torch.ones_like(x)) def bad_fn(x): return x.sqrt().sum() err_msg = "Function 'SqrtBackward0' returned nan values in its 0th output." with self.assertRaisesRegex(RuntimeError, err_msg): vmap(grad(bad_fn))(x) def test_searchsorted_bucketize(self, device): # OpInfo generates test with repeated samples in batch dim. # Thus we test explicitly with different samples across a batch. def test(): boundaries = torch.tensor( [[1, 4, 5, 7, 9], [1, 2, 6, 8, 10]], device=device ) v = torch.tensor(3, device=device) self.vmap_outplace_test(torch.searchsorted, (boundaries, v), {}, (0, None)) self.vmap_outplace_test(torch.bucketize, (v, boundaries), {}, (None, 0)) boundaries = torch.tensor([[1, 4, 5, 7, 9], [1, 2, 4, 8, 9]], device=device) v = torch.tensor([3, 4], device=device) self.vmap_outplace_test(torch.searchsorted, (boundaries, v), {}, (0, 0)) self.vmap_outplace_test(torch.bucketize, (v, boundaries), {}, (0, 0)) test() @markDynamoStrictTest class TestRandomness(TestCase): def _reset_random(self, generator, orig_state, use_generator, seed): return ( generator.set_state(orig_state) if use_generator else torch.manual_seed(seed) ) def _get_image(self, batched_input, batch_size, device): if batched_input == "first": return torch.ones([batch_size, 3, 3, 14, 14], device=device) if batched_input == "last": return torch.ones([3, 3, 14, 14, batch_size], device=device) assert batched_input == "none" return torch.ones([3, 3, 14, 14], device=device) def _assert_all_slices_equal(self, tensor): expected = tensor[0] self.assertTrue((tensor == expected).all()) def _assert_all_slices_unique(self, tensor): B0 = tensor.shape[0] slices_equal = vmap(vmap(lambda x, y: (x == y).all(), (0, None)), (None, 0))( tensor, tensor ) assert slices_equal.shape == (B0, B0) slices_equal.diagonal().zero_() self.assertEqual(slices_equal, torch.zeros_like(slices_equal)) def _assert_throws_in_error_mode(self, fn, args, in_dims): with self.assertRaisesRegex( RuntimeError, r"called random operation while in randomness error mode" ): vmap(fn, in_dims=in_dims, randomness="error")(*args) def _assert_throws_in_different_mode_inplace(self, fn, args, in_dims): with self.assertRaisesRegex( RuntimeError, r"different inplace randomness on an unbatched tensor" ): vmap(fn, in_dims=in_dims, randomness="different")(*args) def _assert_throws_in_same_mode_batched(self, fn, args, in_dims): with self.assertRaisesRegex( RuntimeError, r"Vmap does not currently support same randomness with a batched tensor input", ): vmap(fn, in_dims=in_dims, randomness="same")(*args) def _in_dims(self, *batched_strings): def get_in_dim(batched_string): if batched_string == "first": return 0 if batched_string == "last": return -1 assert batched_string == "none" return None batched_strings = batched_strings + ( "first", ) # for the always batched as first dim dummy argument return tuple(get_in_dim(batched_string) for batched_string in batched_strings) @parametrize("randomness", ["same", "different", "error"]) @parametrize("use_generator", [True, False]) def test_factory_ops(self, device, randomness, use_generator): generator = torch.Generator(device=device) orig_state = generator.get_state() kwargs = ( {"device": device, "generator": generator} if use_generator else {"device": device} ) ops = [ lambda _, shape: torch.randn(shape, **kwargs), lambda _, shape: torch.rand(shape, **kwargs), lambda _, shape: torch.randint(100, shape, **kwargs), lambda _, shape: torch.randint(5, 100, shape, **kwargs), lambda _, shape: torch.normal(0.0, 1.0, shape, **kwargs), ] B0 = 4 shape = (3, 3) seed = 1234567 for op in ops: passed = torch.randn(B0, device=device) if randomness == "error": self._assert_throws_in_error_mode( op, (passed, shape), in_dims=(0, None) ) return generator = self._reset_random(generator, orig_state, use_generator, seed) vmap_result = vmap(op, in_dims=(0, None), randomness=randomness)( passed, shape ) generator = self._reset_random(generator, orig_state, use_generator, seed) if randomness == "different": expected = op(passed, [B0, *shape]) self._assert_all_slices_unique(vmap_result) self.assertEqual(vmap_result, expected) else: expected = op(passed, shape) self._assert_all_slices_equal(vmap_result) for i in range(B0): self.assertEqual(vmap_result[i], expected) @parametrize("randomness", ["same", "different", "error"]) @parametrize("use_generator", [True, False]) def test_randperm(self, device, randomness, use_generator): # needs a special case because randperm doesn't take a batch size B0 = 4 seed = 1234567 passed = torch.randn(B0, device=device) torch.manual_seed(seed) generator = torch.Generator(device=device) orig_state = generator.get_state() kwargs = ( {"device": device, "generator": generator} if use_generator else {"device": device} ) if randomness == "error": with self.assertRaisesRegex( RuntimeError, r"called random operation while in randomness error mode" ): vmap(lambda _: torch.randperm(10, **kwargs), randomness=randomness)( passed ) return vmap_result = vmap( lambda _: torch.randperm(10, **kwargs), randomness=randomness )(passed) generator = generator.set_state(orig_state) torch.manual_seed(seed) if randomness == "different": for i in range(B0): expected = torch.randperm(10, **kwargs) # RNG differs between eager and via dynamo trace on CUDA if TEST_WITH_TORCHDYNAMO and torch.device(device).type == "cuda": self._assert_all_slices_unique(vmap_result) else: self.assertEqual(vmap_result[i], expected) else: expected = torch.randperm(10, **kwargs) # RNG differs between eager and via dynamo trace on CUDA if TEST_WITH_TORCHDYNAMO and torch.device(device).type == "cuda": self._assert_all_slices_equal(vmap_result) else: for i in range(B0): self.assertEqual(vmap_result[i], expected) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) def test_dropout(self, device, randomness, batched_input): def op(t, ignored): return torch.nn.functional.dropout(torch.ones_like(t), training=True) B0 = 4 always_batched = torch.randn((B0,)) passed = self._get_image(batched_input, B0, device) in_dims = self._in_dims(batched_input) if randomness == "error": with self.assertRaisesRegex( RuntimeError, r"called random operation while in randomness error mode" ): vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched) return vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)( passed, always_batched ) # Check that the randomness is within bounds... # ideally this is close to 0.5 p_estimate = vmap_result.mean() / 2 self.assertTrue(p_estimate < 0.75) self.assertTrue(p_estimate > 0.25) if randomness == "different": self._assert_all_slices_unique(vmap_result) return assert randomness == "same" self._assert_all_slices_equal(vmap_result) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) def test_alpha_dropout(self, device, randomness, batched_input): def op(t, ignored): return torch.nn.functional.alpha_dropout(torch.ones_like(t), training=True) B0 = 4 always_batched = torch.randn((B0,)) passed = self._get_image(batched_input, B0, device) in_dims = self._in_dims(batched_input) if randomness == "error": with self.assertRaisesRegex( RuntimeError, r"called random operation while in randomness error mode" ): vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched) return # I have no clue how to actually test correctness of alpha dropout because the docs # seem wrong: https://github.com/pytorch/pytorch/issues/74004 vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)( passed, always_batched ) if randomness == "different": self._assert_all_slices_unique(vmap_result) return assert randomness == "same" self._assert_all_slices_equal(vmap_result) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) @parametrize("dim", [2, 3]) def test_feature_dropout(self, device, randomness, batched_input, dim): def op(t, ignored): f = ( torch.nn.functional.dropout2d if dim == 2 else torch.nn.functional.dropout3d ) return f(torch.ones_like(t), training=True) B0 = 4 always_batched = torch.randn((B0,)) passed = self._get_image(batched_input, B0, device) if dim == 3: unsqueeze_dim = -2 if batched_input == "last" else -1 passed = passed.unsqueeze(unsqueeze_dim) in_dims = self._in_dims(batched_input) if randomness == "error": with self.assertRaisesRegex( RuntimeError, r"called random operation while in randomness error mode" ): vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched) return vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)( passed, always_batched ) # Check the "feature" pattern dims = [-1, -2] if dim == 2 else [-1, -2, -3] planes_numel = ( 2 * vmap_result.numel() / (vmap_result.shape[0] * vmap_result.shape[1] * vmap_result.shape[2]) ) planes = vmap_result.sum(dims) result = (planes == 0) ^ (planes == planes_numel) self.assertEqual(result, torch.ones_like(result, dtype=torch.bool)) if randomness == "different": self._assert_all_slices_unique(vmap_result) return assert randomness == "same" self._assert_all_slices_equal(vmap_result) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) def test_feature_alpha_dropout(self, device, randomness, batched_input): def op(t, ignored): return torch.nn.functional.feature_alpha_dropout( torch.ones_like(t), training=True ) B0 = 4 always_batched = torch.randn((B0,)) passed = self._get_image(batched_input, B0, device) unsqueeze_dim = -2 if batched_input == "last" else -1 passed = passed.unsqueeze(unsqueeze_dim) in_dims = self._in_dims(batched_input) if randomness == "error": with self.assertRaisesRegex( RuntimeError, r"called random operation while in randomness error mode" ): vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched) return vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)( passed, always_batched ) # I have no clue how to actually test correctness of alpha dropout because the docs # seem wrong: https://github.com/pytorch/pytorch/issues/74004 # Check the "feature" pattern dims = [-1, -2, -3] planes = vmap_result.sum(dims) max_elt = planes.max() min_elt = planes.min() result = (planes == min_elt) ^ (planes == max_elt) self.assertEqual(result, torch.ones_like(result, dtype=torch.bool)) if randomness == "different": self._assert_all_slices_unique(vmap_result) return assert randomness == "same" self._assert_all_slices_equal(vmap_result) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) def test_like_functions(self, device, randomness, batched_input): seed = 1234567 supported_ops = [ lambda t, _: torch.randint_like(t, 20), lambda t, _: torch.randint_like(t, 0, 20), lambda t, _: torch.rand_like(t), lambda t, _: torch.randn_like(t), ] B0 = 4 for op in supported_ops: always_batched = torch.randn(B0) passed = self._get_image(batched_input, B0, device) in_dims = self._in_dims(batched_input) if randomness == "error": with self.assertRaisesRegex( RuntimeError, r"called random operation while in randomness error mode", ): vmap(op, in_dims=in_dims, randomness=randomness)( passed, always_batched ) return torch.manual_seed(seed) vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)( passed, always_batched ) torch.manual_seed(seed) if batched_input == "last": passed = passed.movedim(-1, 0) if randomness == "different": if batched_input == "none": passed = passed.expand(B0, *passed.shape) expected = op(passed, 0) self._assert_all_slices_unique(vmap_result) # RNG differs between eager and via dynamo trace on CUDA if not (TEST_WITH_TORCHDYNAMO and torch.device(device).type == "cuda"): self.assertEqual(expected, vmap_result) return assert randomness == "same" if batched_input != "none": passed = passed[0] expected = op(passed, 0) self._assert_all_slices_equal(vmap_result) # RNG differs between eager and via dynamo trace on CUDA if not (TEST_WITH_TORCHDYNAMO and torch.device(device).type == "cuda"): for i in range(B0): self.assertEqual(expected, vmap_result[i]) @parametrize("use_generator", [True, False]) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) def test_random_unary_inplace( self, device, use_generator, randomness, batched_input ): generator = torch.Generator(device=device) orig_state = generator.get_state() kwargs = {"generator": generator} if use_generator else {} ops = [ lambda t, _: t.random_(**kwargs), lambda t, _: t.random_(100, **kwargs), lambda t, _: t.random_(-5, 100, **kwargs), lambda t, _: t.normal_(**kwargs), lambda t, _: t.bernoulli_(**kwargs), lambda t, _: t.cauchy_(**kwargs), lambda t, _: t.exponential_(**kwargs), lambda t, _: t.geometric_(0.5, **kwargs), lambda t, _: t.log_normal_(**kwargs), lambda t, _: t.uniform_(**kwargs), ] B0 = 4 seed = 1234567 in_dims = self._in_dims(batched_input) for op in ops: # because of in place updates, clone inputs always_batched = torch.randn(B0, device=device) passed = self._get_image(batched_input, B0, device) passed_expected = passed.clone() if randomness == "error": self._assert_throws_in_error_mode( op, (passed, always_batched), in_dims=in_dims ) return if randomness == "different" and batched_input == "none": self._assert_throws_in_different_mode_inplace( op, (passed, always_batched), in_dims=in_dims ) return generator = self._reset_random(generator, orig_state, use_generator, seed) vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)( passed, always_batched ) if batched_input == "last": passed_expected = passed_expected.movedim(-1, 0) generator = self._reset_random(generator, orig_state, use_generator, seed) if randomness == "different": expected = op(passed_expected, always_batched) self._assert_all_slices_unique(vmap_result) self.assertEqual(vmap_result, expected) else: if batched_input != "none": passed_expected = passed_expected[ 0 ].clone() # bug in pytorch, normal_ on views doesn't work expected = op(passed_expected, always_batched) self._assert_all_slices_equal(vmap_result) for i in range(B0): self.assertEqual(vmap_result[i], expected) @parametrize("use_generator", [True, False]) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) @parametrize("batched_probability", ["first", "last", "none"]) def test_bernoulli_in_place( self, device, use_generator, randomness, batched_input, batched_probability ): B0 = 4 seed = 1234567 generator = torch.Generator(device=device) orig_state = generator.get_state() kwargs = {"generator": generator} if use_generator else {} in_dims = self._in_dims(batched_input, batched_probability) def op(t, p, ignored): return t.bernoulli_(p, **kwargs) # because of in place updates, clone inputs always_batched = torch.randn(B0, device=device) input = self._get_image(batched_input, B0, device) input_expected = input.clone() probability = self._get_image(batched_probability, B0, device) - 0.5 if randomness == "error": self._assert_throws_in_error_mode( op, (input, probability, always_batched), in_dims=in_dims ) return if randomness == "same" and batched_probability != "none": self._assert_throws_in_same_mode_batched( op, (input, probability, always_batched), in_dims=in_dims ) return if batched_input == "none" and batched_probability != "none": regex = r"there exists a Tensor `other` in extra_args that has more elements than `self`" with self.assertRaisesRegex(RuntimeError, regex): vmap(op, in_dims=in_dims, randomness=randomness)( input, probability, always_batched ) return if randomness == "different" and batched_input == "none": self._assert_throws_in_different_mode_inplace( op, (input, probability, always_batched), in_dims=in_dims ) return self._reset_random(generator, orig_state, use_generator, seed) vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)( input, probability, always_batched ) self._reset_random(generator, orig_state, use_generator, seed) if batched_input == "last": input_expected = input_expected.movedim(-1, 0) if batched_probability == "last": probability = probability.movedim(-1, 0) if randomness == "different": expected = op(input_expected, probability, always_batched) self._assert_all_slices_unique(vmap_result) self.assertEqual(vmap_result, expected) else: if batched_input != "none": input_expected = input_expected[0] expected = op(input_expected, probability, always_batched) self._assert_all_slices_equal(vmap_result) for i in range(B0): self.assertEqual(vmap_result[i], expected) @parametrize("use_generator", [True, False]) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) @parametrize("batched_other", ["first", "last", "none"]) def test_random_binary_out_of_place( self, device, use_generator, randomness, batched_input, batched_other ): generator = torch.Generator(device=device) orig_state = generator.get_state() kwargs = {"generator": generator} if use_generator else {} ops = [ lambda t, o, _: torch.normal(t, o, **kwargs), lambda t, o, _: torch.binomial(t, (o - 0.5), **kwargs), ] B0 = 4 seed = 1234567 in_dims = self._in_dims(batched_input, batched_other) for op in ops: always_batched = torch.randn(B0, device=device) input = self._get_image(batched_input, B0, device) other = self._get_image(batched_other, B0, device) if randomness == "error": self._assert_throws_in_error_mode( op, (input, other, always_batched), in_dims=in_dims ) return if randomness == "same" and ( batched_input != "none" or batched_other != "none" ): self._assert_throws_in_same_mode_batched( op, (input, other, always_batched), in_dims=in_dims ) return generator = self._reset_random(generator, orig_state, use_generator, seed) vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)( input, other, always_batched ) if batched_input == "last": input = input.movedim(-1, 0) if batched_other == "last": other = other.movedim(-1, 0) generator = self._reset_random(generator, orig_state, use_generator, seed) if randomness == "different": if batched_input == "none": input = input.expand(B0, *input.shape) expected = op(input, other, always_batched) self._assert_all_slices_unique(vmap_result) self.assertEqual(vmap_result, expected) else: assert batched_input == "none" and batched_other == "none" expected = op(input, other, always_batched) self._assert_all_slices_equal(vmap_result) for i in range(B0): self.assertEqual(vmap_result[i], expected) @parametrize("use_generator", [True, False]) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_input", ["first", "last", "none"]) def test_random_unary_out_of_place( self, device, use_generator, randomness, batched_input ): generator = torch.Generator(device=device) orig_state = generator.get_state() kwargs = {"generator": generator} if use_generator else {} ops = [ lambda t, _: torch.normal(0.0, torch.abs(t), **kwargs), lambda t, _: torch.normal(t, 1.0, **kwargs), lambda t, _: torch.bernoulli(t - 0.5, **kwargs), lambda t, _: torch.bernoulli(t, 0.5, **kwargs), lambda t, _: torch._standard_gamma(t, **kwargs), lambda t, _: torch._sample_dirichlet(t, **kwargs), lambda t, _: torch.poisson(t, **kwargs), ] B0 = 4 seed = 1234567 in_dims = self._in_dims(batched_input) for op in ops: always_batched = torch.randn(B0, device=device) passed = self._get_image(batched_input, B0, device) if randomness == "error": self._assert_throws_in_error_mode( op, (passed, always_batched), in_dims=in_dims ) return if randomness == "same" and batched_input != "none": self._assert_throws_in_same_mode_batched( op, (passed, always_batched), in_dims=in_dims ) return generator = self._reset_random(generator, orig_state, use_generator, seed) vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)( passed, always_batched ) generator = self._reset_random(generator, orig_state, use_generator, seed) if randomness == "different": if batched_input == "none": passed = passed.expand(B0, *passed.shape) if batched_input == "last": passed = passed.movedim(-1, 0) expected = op(passed, always_batched) self._assert_all_slices_unique(vmap_result) self.assertEqual(vmap_result, expected) else: expected = op(passed, always_batched) self._assert_all_slices_equal(vmap_result) for i in range(B0): self.assertEqual(vmap_result[i], expected) @parametrize("use_generator", [True, False]) @parametrize("randomness", ["error", "same", "different"]) @parametrize("batched_call", [True, False]) @parametrize("batched_input", ["first", "last", "none"]) def test_multinomial( self, device, use_generator, randomness, batched_call, batched_input ): def flatten_input(input, batch_call, batch_location): if batch_call and batch_location != "none": final_size = 3 # [B0, B, N] elif not batch_call and batch_location == "none": final_size = 1 # [N] else: final_size = 2 # [B0, N] or [B, N] start_idx = final_size - 1 end_idx = -1 if batch_location == "last": start_idx -= 1 end_idx -= ( 1 # gets to correct final size because using negative indices ) ret = input.flatten(start_idx, end_idx) assert ret.dim() == final_size return ret def op(input, _): return torch.multinomial(input, 10, **kwargs) generator = torch.Generator(device=device) orig_state = generator.get_state() kwargs = {"generator": generator} if use_generator else {} B0 = 4 seed = 1234567 in_dims = self._in_dims(batched_input) always_batched = torch.randn(B0, device=device) passed = self._get_image(batched_input, B0, device) passed = flatten_input(passed, batched_call, batched_input) if randomness == "error": self._assert_throws_in_error_mode( op, (passed, always_batched), in_dims=in_dims ) return if randomness == "same" and batched_input != "none": self._assert_throws_in_same_mode_batched( op, (passed, always_batched), in_dims=in_dims ) return generator = self._reset_random(generator, orig_state, use_generator, seed) vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)( passed, always_batched ) generator = self._reset_random(generator, orig_state, use_generator, seed) if randomness == "different": if batched_input == "none": passed = passed.expand(B0, *passed.shape) if batched_input == "last": passed = passed.movedim(-1, 0) orig_passed_size = passed.shape[:2] if batched_call else passed.shape[:1] passed = passed.flatten(0, 1) if batched_call else passed expected = op(passed, always_batched) expected = expected.reshape(*orig_passed_size, 10) self._assert_all_slices_unique(vmap_result) self.assertEqual(vmap_result, expected) else: expected = op(passed, always_batched) self._assert_all_slices_equal(vmap_result) for i in range(B0): self.assertEqual(vmap_result[i], expected) def test_unsupported_random(self, device): x = torch.randn(3, device=device) y = x.abs() z = x.abs() with self.assertRaisesRegex(RuntimeError, "calling out variants"): def f(x): return torch.randn(3, device=device, out=y) vmap(f, randomness="same")(x) with self.assertRaisesRegex(RuntimeError, "calling out variants"): def f(x0, x1): return torch.normal(x, y, out=x) vmap(f, randomness="same")(z, z) with self.assertRaisesRegex(RuntimeError, "do not yet support"): def f(z): return torch.rrelu(x) vmap(f, randomness="same")(z) @parametrize("in_dim", [0, 1, 2]) @parametrize("out_dim", [0, 1, 2]) def test_chunk_vmap(self, in_dim, out_dim): randomness = "different" x = torch.randn(4, 5, 6) def f(x): y = x.sin() + torch.rand_like(x) return y for chunks in [1, 2, 3, 4, 7, 10, 16]: output = chunk_vmap( f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunks=chunks, )(x) self._assert_all_slices_unique(output) @parametrize("in_dim", [0, 1, 2]) @parametrize("out_dim", [0, 1, 2]) def test_vmap_chunksize(self, in_dim, out_dim): randomness = "different" x = torch.randn(4, 5, 6) def f(x): y = x.sin() + torch.rand_like(x) return y for chunk_size in [1, 2, 3, 4, 7, 10, 16, 100]: output = vmap( f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunk_size=chunk_size, )(x) self._assert_all_slices_unique(output) def test_jacfwd_with_random(self): # checks on behavior are above, this just checks that jacfwd respects # the randomness param x = torch.rand(3, 4) with self.assertRaisesRegex( RuntimeError, r"called random operation while in randomness error mode" ): jacfwd(torch.bernoulli)(x) # x isn't batched so use bernoulli since it doesn't do inplace randomness jacfwd(torch.bernoulli, randomness="same")(x) jacfwd(torch.bernoulli, randomness="different")(x) @parametrize("randomness", ["error", "same", "different"]) def test_dropout_unbatched(self, device, randomness): x = torch.randn(3, device=device) y = torch.randn(1, 3, device=device) def fn(x, y): # output from dropout should be a Tensor[B, 1, 3] (B=3) return x + torch.nn.functional.dropout(y, p=0.5).mean(1) # We just verify that this doesn't raise an error for # `same` and `different` randomness. # Ref: https://github.com/pytorch/pytorch/issues/92283 context = ( self.assertRaises(RuntimeError) if randomness == "error" else contextlib.nullcontext() ) with context: vmap(fn, in_dims=(0, None), randomness=randomness)(x, y) @markDynamoStrictTest class TestTransformFailure(TestCase): @skipIfTorchDynamo() @parametrize( "transform", ["vmap", "grad", "grad_and_value", "vjp", "jvp", "jacrev", "jacfwd"], ) def test_fails_with_autograd_function(self, device, transform): failed_build_envs = ("linux-focal-py3.8-clang10", "linux-focal-py3.11-clang10") if ( device == "cpu" and transform in ["grad", "vmap"] and TEST_WITH_TORCHDYNAMO and os.getenv("BUILD_ENVIRONMENT", "") in failed_build_envs ): raise unittest.SkipTest( "Unexpected successes on focal with dynamo," + " see https://github.com/pytorch/pytorch/issues/107173" ) class Test(torch.autograd.Function): @staticmethod def forward(_, input): return input @staticmethod def backward(_, grad_input): return grad_input transform = getattr(functorch, transform) def f(x): return Test.apply(x) if transform in (grad, grad_and_value): input = torch.tensor(4.0) else: input = torch.randn(5) if transform == vjp: transform = functools.partial(transform, f) elif transform == jvp: input = (input,) transform = functools.partial(transform, f, input) else: transform = transform(f) with self.assertRaisesRegex(RuntimeError, "autograd.Function"): transform(input) @markDynamoStrictTest class TestVmapDeviceType(Namespace.TestVmapBase): def _vmap_test(self, *args, **kwargs): return _vmap_test(self, *args, **kwargs) def test__is_all_true(self, device): def test(): def f(x, *, expected_result): result = torch.ops.aten._is_all_true(x) self.assertFalse(torch._C._functorch.is_batchedtensor(result)) self.assertEqual(result.shape, torch.Size([])) self.assertEqual(result.item(), expected_result) return result x = torch.rand(10, device=device) vmap(f)(x >= 0, expected_result=True) vmap(f)(x < 0, expected_result=False) x[random.choice(range(10))] *= -1 vmap(f)(x >= 0, expected_result=False) vmap(f)(x < 0, expected_result=False) x = -torch.rand(10, device=device) vmap(f)(x > 0, expected_result=False) vmap(f)(x <= 0, expected_result=True) check_vmap_fallback(self, test, torch._is_all_true) def test__is_any_true(self, device): def test(): def f(x, *, expected_result): result = torch.ops.aten._is_any_true(x) self.assertFalse(torch._C._functorch.is_batchedtensor(result)) self.assertEqual(result.shape, torch.Size([])) self.assertEqual(result.item(), expected_result) return result x = torch.zeros(10, device=device, dtype=torch.bool) vmap(f)(x > 0, expected_result=False) x[5] = True vmap(f)(x > 0, expected_result=True) vmap(f)(x[1::2], expected_result=True) vmap(f)(x[0::2], expected_result=False) check_vmap_fallback(self, test, torch._is_any_true) def test_check_tensor(self, device): def test(): test_sizes = [ (1,), (10,), (1, 1), (1, 10), (10, 1), (10, 10), (1, 1, 1), (10, 1, 1), (1, 10, 1), (10, 10, 10), ] def check_gte_0(t): return torch._test_check_tensor(t >= 0) error_message = "Test message for TORCH_CHECK_TENSOR_ALL" for size in test_sizes: t_all_gte_0 = torch.rand(size, device=device) t_all_lt_0 = t_all_gte_0 - 1 vmap(check_gte_0)(t_all_gte_0) if len(size) >= 2: vmap(vmap(check_gte_0))(t_all_gte_0) with self.assertRaisesRegex(RuntimeError, error_message): vmap(check_gte_0)(t_all_lt_0) if len(size) >= 2: with self.assertRaisesRegex(RuntimeError, error_message): vmap(vmap(check_gte_0))(t_all_lt_0) if t_all_gte_0.numel() > 1: t_all_gte_0_but_one = t_all_gte_0.clone() idx = (random.choice(range(dim_size)) for dim_size in size) t_all_gte_0_but_one[(..., *idx)] = -1 with self.assertRaisesRegex(RuntimeError, error_message): vmap(check_gte_0)(t_all_gte_0_but_one) if len(size) >= 2: with self.assertRaisesRegex(RuntimeError, error_message): vmap(vmap(check_gte_0))(t_all_gte_0_but_one) check_vmap_fallback(self, test, torch._test_check_tensor) @markDynamoStrictTest class TestVmapNestedTensor(Namespace.TestVmapBase): def _vmap_test(self, *args, **kwargs): return _vmap_test(self, *args, **kwargs) # dims should be something like [5, None, 10], with None indicating that a # random ragged structure should be used def _create_nt(self, dims, device): sizes = [ [ d if d is not None else torch.randint(2, 10, size=(1,)).item() for d in dims[1:] ] for d in range(dims[0]) ] return torch.nested.nested_tensor( [torch.randn(*size) for size in sizes], device=device ) # Creates an NT matching another NT's number of components and # shape / ragged structure for all dims specified to be -1. def _nt_from_similar(self, other, dims): assert len(dims) == other.dim() assert dims[0] == -1 or dims[0] == other.size(0) ret_sizes = [] for t in other.unbind(): other_size = t.shape ret_size = [] for i, d in enumerate(dims[1:]): if d == -1: ret_size.append(other_size[i]) else: ret_size.append(d) ret_sizes.append(ret_size) return torch.nested.nested_tensor( [torch.randn(*size) for size in ret_sizes], device=other.device ) @allowVmapFallbackUsage def test_fallback_unary(self, device): def f(x): return x.sin() * 5.0 + 4.0 nt = self._create_nt([4, None, 3], device=device) self._vmap_test(f, (nt,)) @allowVmapFallbackUsage def test_fallback_binary(self, device): def f(x, y): return x @ y x = self._create_nt([5, None, 3], device=device) y = self._create_nt([5, 3, None], device=device) self._vmap_test(f, (x, y)) @allowVmapFallbackUsage def test_fallback_binary_nt_and_unbatched_dense(self, device): def f(x, y): return x @ y x = self._create_nt([5, None, 3], device=device) y = torch.randn(3, 4, device=device) self._vmap_test(f, (x, y), in_dims=(0, None)) @allowVmapFallbackUsage def test_fallback_binary_nt_and_batched_dense(self, device): def f(x, y): return x @ y x = self._create_nt([5, None, 3], device=device) y = torch.randn(5, 3, 4, device=device) self._vmap_test(f, (x, y)) def test_nt_acts_as_dense_in_vmap(self, device): def f(x): assert not x.is_nested return x x = self._create_nt([5, None, 3], device=device) self._vmap_test(f, (x,)) def test_cat_batching_rule(self, device): def f(x, y, dim): return torch.cat([x, y], dim=dim) # Different nested structure, same other dims x = self._create_nt([3, None, 2], device=device) y = self._create_nt([3, None, 2], device=device) self._vmap_test(functools.partial(f, dim=0), (x, y)) x = self._create_nt([3, 2, None], device=device) y = self._create_nt([3, 2, None], device=device) self._vmap_test(functools.partial(f, dim=1), (x, y)) # Same nested structure, different other dims x = self._create_nt([3, 2, None], device=device) y = self._nt_from_similar(x, [-1, 4, -1]) self._vmap_test(functools.partial(f, dim=0), (x, y)) x = self._create_nt([3, None, 2], device=device) y = self._nt_from_similar(x, [-1, -1, 4]) self._vmap_test(functools.partial(f, dim=1), (x, y)) # .shape calls don't work on NTs # TODO: Fix this somehow? @unittest.expectedFailure def test_shape_call(self, device): def f(x): x.shape[0] return x x = self._create_nt([3, None, 2]) self._vmap_test(f, (x,)) def test_nt_with_nonzero_in_dim_raises(self, device): def f(x): return x x = self._create_nt([3, None, 2], device=device) with self.assertRaisesRegex( RuntimeError, "Nested tensors can only be vmapped over dim=0" ): vmap(f, in_dims=2)(x) def test_nt_with_nonzero_out_dim_raises(self, device): def f(x): return x x = self._create_nt([3, None, 2], device=device) with self.assertRaisesRegex( RuntimeError, "Nested tensors can only be vmapped over dim=0" ): vmap(f, out_dims=2)(x) def test_fallback_with_nt_and_batched_dense_with_nonzero_bdim_raises(self, device): def f(x, y): return x @ y x = self._create_nt([5, None, 3], device=device) y = torch.randn(3, 5, 4, device=device) with self.assertRaisesRegex( RuntimeError, "Fallback not supported for mixed nested / non-nested arguments without bdim=0", ): vmap(f, in_dims=(0, 1))(x, y) def test_multilevel_vmap_raises(self, device): def f(x): return x.sin() * 4.0 + 3.0 x = self._create_nt([2, 2, 2, None], device=device) with self.assertRaisesRegex( RuntimeError, "Only one level of vmap is supported" ): vmap(vmap(f))(x) with self.assertRaisesRegex( RuntimeError, "Only one level of vmap is supported" ): vmap(vmap(vmap(f)))(x) only_for = ("cpu", "cuda") instantiate_device_type_tests(TestVmapOperatorsOpInfo, globals(), only_for=only_for) instantiate_device_type_tests( TestVmapBatchedGradient, globals(), only_for=only_for, ) instantiate_device_type_tests(TestTransformFailure, globals(), only_for=only_for) instantiate_device_type_tests(TestRandomness, globals(), only_for=only_for) instantiate_device_type_tests(TestVmapDeviceType, globals(), only_for=only_for) instantiate_device_type_tests(TestVmapNestedTensor, globals(), only_for=only_for) if __name__ == "__main__": run_tests()