# Owner(s): ["module: inductor"] import torch from torch._inductor import config, metrics from torch._inductor.test_case import run_tests, TestCase from torch._inductor.utils import collect_defined_kernels from torch._inductor.wrapper_benchmark import get_kernel_category_by_source_code from torch.testing._internal.common_device_type import largeTensorTest from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU example_kernel = """ @triton_heuristics.reduction( size_hints=[1024, 2048], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={ 'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': 0, 'device_type': 'GPU_TYPE', 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(), ids_of_folded_args=(), divisible_by_8=(2, 3))]}, inductor_meta={ 'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'kernel_num_gb': 0.0083968 } ) @triton.jit def triton_red_fused_add_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 1024 rnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp2 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = _tmp2 + tmp1 _tmp2 = tl.where(rmask & xmask, tmp3, _tmp2) tmp2 = tl.sum(_tmp2, 1)[:, None] tmp4 = tl.load(in_out_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tmp4 + tmp2 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp5, xmask) """.replace( "GPU_TYPE", GPU_TYPE ) class TestMetrics(TestCase): def test_parse_proper_kernel_fn_code(self): proper_kernel_fn_code = metrics._parse_proper_kernel_fn_code(example_kernel) assert proper_kernel_fn_code.startswith("def ") def test_count_args(self): proper_kernel_fn_code = metrics._parse_proper_kernel_fn_code(example_kernel) self.assertEqual(6, metrics._count_args(proper_kernel_fn_code)) def test_count_pattern(self): proper_kernel_fn_code = metrics._parse_proper_kernel_fn_code(example_kernel) self.assertEqual(2, metrics._count_pattern(proper_kernel_fn_code, "tl.load")) self.assertEqual(1, metrics._count_pattern(proper_kernel_fn_code, "tl.store")) self.assertEqual(1, metrics._count_pattern(proper_kernel_fn_code, "for ")) def test_parse_reduction_hint(self): kernel_category = get_kernel_category_by_source_code(example_kernel) self.assertEqual("reduction", kernel_category) self.assertEqual( "INNER", metrics._parse_reduction_hint(kernel_category, example_kernel) ) @config.patch("fx_graph_remote_cache", False) def test_atomic_add(self): @torch.compile def f(lhs, index, rhs): return lhs.index_put_([index], rhs, accumulate=True) lhs = torch.randn(1024, device=GPU_TYPE) index = torch.randint(0, 1024, [32], device=GPU_TYPE, dtype=torch.int32) rhs = torch.randn(32, device=GPU_TYPE) kernel_list = [] with collect_defined_kernels(kernel_list): f(lhs, index, rhs) self.assertEqual(len(kernel_list), 1) kernel_code = kernel_list[0] self.assertEqual(metrics._count_pattern(kernel_code, "tl.atomic_add"), 1) @largeTensorTest(25e7 * 2 * 4, device=GPU_TYPE) @config.patch("fx_graph_remote_cache", False) @config.patch("benchmark_kernel", True) def test_kernel_args_num_gb(self): @torch.compile def f(x): return x + 1 x = torch.randn(int(25e7), device=GPU_TYPE) kernel_list = [] with collect_defined_kernels(kernel_list): f(x) self.assertEqual(len(kernel_list), 1) kernel_code = kernel_list[0] self.assertEqual( metrics._parse_kernel_args_num_gb(kernel_code, "pointwise"), 2.0 ) if __name__ == "__main__": if HAS_GPU: run_tests()