# Owner(s): ["module: linear algebra"] import unittest from itertools import product from functools import partial from typing import Optional import re import torch from torch.quantization._quantized_conversions import ( pack_int4_to_int8, quantized_weight_reorder_for_mixed_dtypes_linear_cutlass, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import ( SM53OrLater, SM90OrLater, _get_torch_cuda_version, PLATFORM_SUPPORTS_FP8 ) from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, onlyCUDA, tol as xtol, toleranceOverride, ) from torch.testing._internal.common_utils import ( IS_ARM64, IS_JETSON, IS_WINDOWS, parametrize, run_tests, skipIfRocmVersionLessThan, TEST_WITH_ROCM, skipIfRocm, TestCase, ) _IS_SM8X = False if torch.cuda.is_available(): _IS_SM8X = torch.cuda.get_device_capability(0)[0] == 8 # Protects against includes accidentally setting the default dtype assert torch.get_default_dtype() is torch.float32 @unittest.skipIf(IS_ARM64, "Issue with numpy version on arm") class TestMatmulCuda(TestCase): def setUp(self): super(self.__class__, self).setUp() torch.backends.cuda.matmul.allow_tf32 = False def tearDown(self): torch.backends.cuda.matmul.allow_tf32 = True super(self.__class__, self).tearDown() def cublas_addmm(self, size: int, dtype: torch.dtype, reduced_precision: bool = False): # # Check for catastrophic cuBLAS inaccuracy by measuring the deviation between # results from the CUDA invocation of torch.addmm and the CPU invocation # (which does not use CUDA backend). # # Get dims n, m, p = (size + 1, size, size + 2) # Disable reduced precision reductions in BFloat16 to bypass some kernels # which fail the threshold check orig_bf16 = torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction orig_fp16 = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = reduced_precision torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = reduced_precision # Make random tensors on CPU (seed set on common_utils.py import) # (Not using numpy because it does not support bfloat16) make_arg = partial(make_tensor, dtype=dtype, device="cpu") m_beta = make_arg(1) m_input = make_arg((n, p)) m_1 = make_arg((n, m)) m_2 = make_arg((m, p)) # *(B)FLOAT16 Special Handling* # Backend does not tensorize float16 on CPU, # and bloat16 may present accuracy issues, # so convert to float32 for these cases # (but keep same for other types, e.g. float32 and int*) if dtype == torch.float16 or dtype == torch.bfloat16: m_beta = m_beta.to(dtype=torch.float32) m_input = m_input.to(dtype=torch.float32) m_1 = m_1.to(dtype=torch.float32) m_2 = m_2.to(dtype=torch.float32) # Get CPU result res_cpu = torch.addmm(m_input, m_1, m_2, beta=m_beta.item()) # *(B)FLOAT16 Special Handling*`` # Convert back to (b)float16 if dtype == torch.float16 or dtype == torch.bfloat16: m_beta = m_beta.to(dtype=dtype) m_input = m_input.to(dtype=dtype) m_1 = m_1.to(dtype=dtype) m_2 = m_2.to(dtype=dtype) res_cpu = res_cpu.to(dtype=dtype) # Move arg tensors to CUDA m_beta = m_beta.to("cuda") m_input = m_input.to("cuda") m_1 = m_1.to("cuda") m_2 = m_2.to("cuda") # Get CUDA result res_cuda = torch.addmm(m_input, m_1, m_2, beta=m_beta.item()) # Move to CPU for comparison res_cuda = res_cuda.to("cpu") # Compare self.assertEqual(res_cpu, res_cuda) torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = orig_bf16 torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig_fp16 @onlyCUDA @skipIfRocmVersionLessThan((5, 2)) # imported 'tol' as 'xtol' to avoid aliasing in code above @toleranceOverride({torch.float16: xtol(atol=1e-1, rtol=1e-1), torch.bfloat16: xtol(atol=1e-1, rtol=1e-1), torch.float32: xtol(atol=1e-1, rtol=1e-1)}) @dtypes(torch.float16, torch.bfloat16, torch.float32) @parametrize("size", [100, 1000, 10000]) def test_cublas_addmm(self, size: int, dtype: torch.dtype): self.cublas_addmm(size, dtype, False) @onlyCUDA @skipIfRocmVersionLessThan((5, 2)) # imported 'tol' as 'xtol' to avoid aliasing in code above @toleranceOverride({torch.float16: xtol(atol=7e-1, rtol=2e-1), torch.bfloat16: xtol(atol=1e1, rtol=2e-1)}) @dtypes(torch.float16, torch.bfloat16) @parametrize("size", [100, 1000, 10000]) def test_cublas_addmm_reduced_precision(self, size: int, dtype: torch.dtype): self.cublas_addmm(size, dtype, True) @onlyCUDA @toleranceOverride({torch.float16: xtol(atol=1e-3, rtol=2e-3)}) @dtypes(torch.float16) def test_cublas_addmm_alignment(self, dtype): device = 'cuda' # perturb X, A, or B alignment for idx in range(0, 3): for offset in range(1, 3): offsets = [0, 0, 0] offsets[idx] = offset x_offset, a_offset, b_offset = offsets A = torch.rand((5120 * 2560 + a_offset), requires_grad=True, dtype=dtype, device=device) A = A[a_offset:].reshape(5120, 2560) X = torch.rand((26 * 2560 + x_offset), requires_grad=True, dtype=dtype, device=device) X = X[x_offset:].reshape(26, 1, 2560) B = torch.rand((5120 + b_offset), requires_grad=True, dtype=dtype, device=device) B = B[b_offset:].reshape(5120) out = torch.nn.functional.linear(X, A, B) self.assertEqual(out, torch.matmul(X, A.transpose(1, 0)) + B) @onlyCUDA @unittest.skipIf(IS_JETSON, "Too large for Jetson") @toleranceOverride({torch.float32: xtol(atol=1e-5, rtol=1.1e-5)}) @dtypes(*([torch.float32, torch.float16] + [torch.bfloat16] if TEST_WITH_ROCM or SM53OrLater else [])) @parametrize( "batch_size, N, M, P", [(2, 100, 100, 100), (2, 1000, 1000, 1000), (1, 10000, 1000, 10000), (1, 10000, 10000, 10000)], name_fn=lambda batch_size, N, M, P: f"{batch_size}_{N}_{M}_{P}", ) @skipIfRocm def test_cublas_baddbmm_large_input(self, device, batch_size, N, M, P, dtype): cpu_dtype = dtype if dtype == torch.float16 or dtype == torch.bfloat16: cpu_dtype = torch.float32 M1 = torch.rand((N, M), device=device, dtype=dtype) M2 = torch.rand((M, P), device=device, dtype=dtype) A = torch.rand((N, P), device=device, dtype=dtype) def _convert_to_cpu(t): return t.to(device='cpu', dtype=cpu_dtype) M1_cpu, M2_cpu, A_cpu = map(_convert_to_cpu, [M1, M2, A]) # linear out1_cpu = torch.nn.functional.linear(M1_cpu, M2_cpu.t(), A_cpu).to(dtype=dtype) out1_gpu = torch.nn.functional.linear(M1, M2.t(), A).cpu() self.assertEqual(out1_cpu, out1_gpu) # test multiply the identity matrix if N == M and M == P: M2_eye = torch.eye(N, device=device, dtype=dtype) out1_eye_gpu = torch.nn.functional.linear(M1, M2_eye.t(), torch.zeros_like(A)) self.assertEqual(M1_cpu.to(dtype=dtype), out1_eye_gpu.cpu()) # baddbmm def _expand_to_batch(t: torch.Tensor): return t.expand((batch_size, ) + t.size()) alpha, beta = 1.0, 1.0 M1, M2, A, M1_cpu, M2_cpu, A_cpu = map(_expand_to_batch, [M1, M2, A, M1_cpu, M2_cpu, A_cpu]) out2_cpu = torch.baddbmm(A_cpu, M1_cpu, M2_cpu, beta=beta, alpha=alpha).to(dtype=dtype) out2_gpu = torch.baddbmm(A, M1, M2, beta=beta, alpha=alpha).cpu() self.assertEqual(out2_cpu, out2_gpu) # test multiply the identity matrix if N == M and M == P: M2_eye = torch.eye(N, device=device, dtype=dtype).expand(batch_size, N, N) out2_eye_gpu = torch.baddbmm(torch.zeros_like(A), M1, M2_eye, beta=beta, alpha=alpha) self.assertEqual(M1_cpu.to(dtype=dtype), out2_eye_gpu.cpu()) # cross comparison self.assertEqual(out1_gpu, out2_gpu[0]) f8_msg = "FP8 is only supported on H100+ and sm_89 and MI300+ devices" if torch.version.hip: e4m3_type = torch.float8_e4m3fnuz e5m2_type = torch.float8_e5m2fnuz E4M3_MAX_POS = torch.finfo(torch.float8_e4m3fnuz).max E5M2_MAX_POS = torch.finfo(torch.float8_e5m2fnuz).max else: e4m3_type = torch.float8_e4m3fn e5m2_type = torch.float8_e5m2 E4M3_MAX_POS = torch.finfo(torch.float8_e4m3fn).max E5M2_MAX_POS = torch.finfo(torch.float8_e5m2).max # avoid division by zero when calculating scale EPS = 1e-12 def amax_to_scale( amax: torch.Tensor, float8_dtype: torch.dtype, orig_dtype: torch.dtype ): """ Converts the amax value of a tensor to the fp8 scale. Args: amax: The amax value of the tensor. float8_dtype: the float8 dtype. orig_dtype: The original dtype of the tensor. """ scale = torch.empty_like(amax, dtype=torch.float32) if float8_dtype == e4m3_type: res = E4M3_MAX_POS / torch.clamp(amax, min=EPS) elif float8_dtype == e5m2_type: res = E4M3_MAX_POS / torch.clamp(amax, min=EPS) else: raise ValueError(f"Unsupported float8_dtype: {float8_dtype}") # Ensure the scale is representable in float16, # this helps when amax is small. We are assuming that we don't need # to care about this for float32/bfloat16 if orig_dtype is torch.float16: res = torch.clamp(res, max=torch.finfo(torch.float16).max) scale.copy_(res) return scale def tensor_to_scale(x: torch.Tensor, float8_dtype: torch.dtype, dim=None): if dim is None: amax = torch.max(torch.abs(x)) else: amax = torch.max(torch.abs(x), dim=dim, keepdim=True).values return amax_to_scale(amax, float8_dtype, x.dtype) def mm_float8_emulated(x, x_scale, y, y_scale, out_dtype) -> torch.Tensor: # naive implementation: dq -> op -> q x_fp32 = x.to(torch.float) / x_scale y_fp32 = y.to(torch.float) / y_scale out_fp32 = torch.mm(x_fp32, y_fp32) return out_fp32.to(out_dtype) def addmm_float8_unwrapped( a_data: torch.Tensor, a_scale: torch.Tensor, b_data: torch.Tensor, b_scale: torch.tensor, output_dtype: torch.dtype, output_scale: Optional[torch.Tensor], bias: Optional[torch.Tensor] = None, ) -> torch.Tensor: a_inverse_scale = a_scale.reciprocal() b_inverse_scale = b_scale.reciprocal() if output_dtype == torch.float32 and bias is not None: # Bias is not supported by _scaled_mm when output is fp32 output = torch._scaled_mm( a_data, b_data, scale_a=a_inverse_scale, scale_b=b_inverse_scale, scale_result=output_scale, out_dtype=output_dtype, ) output += bias return output output = torch._scaled_mm( a_data, b_data, bias=bias, scale_a=a_inverse_scale, scale_b=b_inverse_scale, scale_result=output_scale, out_dtype=output_dtype, ) return output def mm_float8( a: torch.Tensor, b: torch.Tensor, a_scale: torch.Tensor, b_scale: torch.Tensor, output_dtype: torch.dtype, # output dtype output_scale: Optional[torch.Tensor] = None, # output scale, precomputed ) -> torch.Tensor: return addmm_float8_unwrapped( a, a_scale, b, b_scale, output_dtype, output_scale ) def to_fp8_saturated( x: torch.Tensor, fp8_dtype: torch.dtype ): if fp8_dtype == e4m3_type: x = x.clamp(min=-1 * E4M3_MAX_POS, max=E4M3_MAX_POS) elif fp8_dtype == e5m2_type: x = x.clamp(min=-1 * E5M2_MAX_POS, max=E5M2_MAX_POS) else: raise ValueError(f"to_fp8_saturated(): Unsupported fp8_dtype: {fp8_dtype}") return x.to(fp8_dtype) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not found") class TestFP8MatmulCuda(TestCase): @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) def _test_tautological_mm(self, device: str = "cuda", x_dtype: torch.dtype = e4m3_type, y_dtype: torch.dtype = e4m3_type, out_dtype: Optional[torch.dtype] = None, size: int = 16) -> None: x_fp8 = torch.rand(size, size, device=device).to(x_dtype) y_fp8 = torch.eye(size, device=device, dtype=y_dtype).t() out_fp32 = torch.mm(x_fp8.to(torch.float), y_fp8.to(torch.float)) scale_a = torch.tensor(1.0, device=device) scale_b = torch.tensor(1.0, device=device) out_fp8 = torch._scaled_mm(x_fp8, y_fp8, scale_a, scale_b, out_dtype=out_dtype) if out_dtype is not None: self.assertEqual(out_dtype, out_fp8.dtype) self.assertEqual(out_fp32, out_fp8.to(torch.float)) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) def test_float8_basics(self, device) -> None: self._test_tautological_mm(device, e4m3_type, e4m3_type, size=16) # hipblaslt does not yet support mixed e4m3_type input if torch.version.hip is None: self._test_tautological_mm(device, e4m3_type, e5m2_type, size=32) self._test_tautological_mm(device, e5m2_type, e4m3_type, size=48) # According to https://docs.nvidia.com/cuda/cublas/#id99 8F_E5M2 MM is unsupported with self.assertRaises(RuntimeError): self._test_tautological_mm(device, e5m2_type, e5m2_type) self._test_tautological_mm(device, size=64, out_dtype=torch.float16) self._test_tautological_mm(device, size=96, out_dtype=torch.float32) # hipblaslt does not yet support bfloat16 output if torch.version.hip is None: self._test_tautological_mm(device, size=80, out_dtype=torch.bfloat16) with self.assertRaises(RuntimeError): self._test_tautological_mm(device, out_dtype=e5m2_type) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) def test_float8_scale(self, device) -> None: size = (16, 16) x = torch.full(size, .5, device=device, dtype=e4m3_type) # hipblaslt does not yet support mixed e4m3_type input y_type = e4m3_type if torch.version.hip else e5m2_type y = torch.full(size, .5, device=device, dtype=y_type).t() scale_a = torch.tensor(1.5, device=device) scale_b = torch.tensor(0.66, device=device) out_fp8 = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b) self.assertEqual(out_fp8.to(torch.float), torch.full(size, 4., device=device)) out_fp8_s = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b) self.assertEqual(out_fp8, out_fp8_s) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) @parametrize("base_dtype", [torch.float16, torch.bfloat16, torch.float32]) def test_scaled_mm_vs_emulated(self, base_dtype): torch.manual_seed(42) input_dtype = e4m3_type output_dtype = base_dtype compare_type = torch.float32 x = torch.randn(16, 16, device="cuda", dtype=base_dtype) y = torch.randn(32, 16, device="cuda", dtype=base_dtype).t() x_scale = tensor_to_scale(x, input_dtype).float() y_scale = tensor_to_scale(y, input_dtype).float() x_fp8 = to_fp8_saturated(x * x_scale, input_dtype) y_fp8 = to_fp8_saturated(y * y_scale, input_dtype) # Calculate actual F8 mm out_scaled_mm = mm_float8( x_fp8, y_fp8, a_scale=x_scale, b_scale=y_scale, output_dtype=output_dtype ) # Calculate emulated F8 mm out_emulated = mm_float8_emulated( x_fp8, x_scale, y_fp8, y_scale, output_dtype ) if output_dtype != base_dtype: out_scaled_mm = out_scaled_mm.to(compare_type) out_scaled_mm = out_scaled_mm / tensor_to_scale(out_scaled_mm, input_dtype) out_emulated = out_emulated.to(compare_type) out_emulated = out_emulated / tensor_to_scale(out_emulated, input_dtype) if base_dtype in {torch.bfloat16, torch.float16}: atol, rtol = 7e-2, 7e-2 else: atol, rtol = 3e-3, 3e-3 torch.testing.assert_close(out_scaled_mm, out_emulated, atol=atol, rtol=rtol) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) @parametrize("base_dtype", [torch.float16, torch.bfloat16, torch.float32]) def test_scaled_mm_change_stride(self, base_dtype): torch.manual_seed(42) input_dtype = e4m3_type output_dtype = base_dtype compare_type = torch.float32 x = torch.empty_strided((16, 16), (16, 1), device="cuda", dtype=base_dtype) y = torch.empty_strided((16, 32), (1, 64), device="cuda", dtype=base_dtype) x_scale = tensor_to_scale(x, input_dtype).float() y_scale = tensor_to_scale(y, input_dtype).float() x_fp8 = to_fp8_saturated(x * x_scale, input_dtype) y_fp8 = to_fp8_saturated(y * y_scale, input_dtype) # Calculate actual F8 mm out_scaled_mm = mm_float8( x_fp8, y_fp8, a_scale=x_scale, b_scale=y_scale, output_dtype=output_dtype ) # Calculate emulated F8 mm out_emulated = mm_float8_emulated( x_fp8, x_scale, y_fp8, y_scale, output_dtype ) if output_dtype != base_dtype: out_scaled_mm = out_scaled_mm.to(compare_type) out_scaled_mm = out_scaled_mm / tensor_to_scale(out_scaled_mm, input_dtype) out_emulated = out_emulated.to(compare_type) out_emulated = out_emulated / tensor_to_scale(out_emulated, input_dtype) if base_dtype in {torch.bfloat16, torch.float16}: atol, rtol = 7e-2, 7e-2 else: atol, rtol = 3e-3, 3e-3 torch.testing.assert_close(out_scaled_mm, out_emulated, atol=atol, rtol=rtol) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) def test_float8_bias(self, device) -> None: (k, l, m) = (16, 48, 32) x = torch.ones((k, l), device=device).to(e4m3_type) y = torch.full((m, l), .25, device=device, dtype=e4m3_type).t() bias = torch.full((m,), 4.0, device=device, dtype=torch.half) scale_a = torch.tensor(1.0, device=device) scale_b = torch.tensor(1.0, device=device) out_fp8 = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b) outb_fp8 = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b, bias=bias) # this fails on ROCm currently because hipblaslt doesn't have amax op out_fp32 = out_fp8.to(torch.float32) outb_fp32 = outb_fp8.to(torch.float32) difference = torch.abs(out_fp32 - outb_fp32) self.assertEqual(difference, torch.tensor(4.0, device=device).expand_as(out_fp32)) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) @parametrize("bias", [True, False]) def test_non_divisible_leading_dim(self, device, bias: bool) -> None: x = torch.rand((17, 16), device=device).to(e4m3_type) y = torch.rand((16, 16), device=device).to(e4m3_type).t() scale_a = torch.tensor(1.0, device=device) scale_b = torch.tensor(1.0, device=device) input_bias = None if bias: input_bias = torch.rand((16,), device=device).to(torch.half) _ = torch._scaled_mm(x, y, scale_a, scale_b, bias=input_bias) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) def test_float8_bias_relu_edgecase(self, device) -> None: (k, l, m) = (16, 48, 32) x = torch.full((k, l), 0.0, device=device).to(e4m3_type) y = torch.full((m, l), 1.0, device=device, dtype=e4m3_type).t() bias = torch.full((m,), -3.0, device=device, dtype=torch.half) scale_a = torch.tensor(1.0, device=device) scale_b = torch.tensor(1.0, device=device) outb_fp8 = torch._scaled_mm(x, y, scale_a, scale_b, bias=bias) outb_fp32 = outb_fp8.to(torch.float32) self.assertEqual(outb_fp32, torch.tensor(-3.0, device=device).expand_as(outb_fp32)) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) def test_float32_output_errors_with_bias(self, device) -> None: (k, l, m) = (16, 48, 32) x = torch.rand((k, l), device=device).to(e4m3_type) y = torch.full((m, l), .25, device=device, dtype=e4m3_type).t() scale_a = torch.tensor(1.0, device=device) scale_b = torch.tensor(1.0, device=device) bias = torch.full((m,), 4.0, device=device, dtype=torch.bfloat16) self.assertRaisesRegex( RuntimeError, "Bias is not supported when out_dtype is set to Float32", lambda: torch._scaled_mm(x, y, scale_a, scale_b, bias=bias, out_dtype=torch.float32), ) @unittest.skipIf(PLATFORM_SUPPORTS_FP8, "This test is only for devices with compute capability < 8.9") def test_error_message_fp8_pre_sm89(self, device) -> None: (k, l, m) = (16, 48, 32) x = torch.rand((k, l), device=device).to(e4m3_type) y = torch.rand((m, l), device=device).to(e4m3_type).t() scale_a = torch.tensor(1.0, device=device) scale_b = torch.tensor(1.0, device=device) self.assertRaisesRegex( RuntimeError, r"torch\.\_scaled\_mm is only supported on CUDA devices with compute capability \>\= 9\.0 or 8\.9, or ROCm MI300\+", lambda: torch._scaled_mm(x, y, scale_a, scale_b, out_dtype=torch.float32), ) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) def test_float8_scale_fast_accum(self, device) -> None: size = (16, 16) x = torch.full(size, .5, device=device, dtype=e4m3_type) # hipblaslt does not yet support mixed e4m3_type input y_type = e4m3_type if torch.version.hip else e5m2_type y = torch.full(size, .5, device=device, dtype=y_type).t() scale_a = torch.tensor(1.5, device=device) scale_b = torch.tensor(0.66, device=device) out_fp8 = torch._scaled_mm(x, y, scale_a, scale_b, use_fast_accum=True) self.assertEqual(out_fp8.to(torch.float), torch.full(size, 4., device=device)) out_fp8_s = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b, use_fast_accum=True) self.assertEqual(out_fp8, out_fp8_s) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8 or IS_WINDOWS, f8_msg) @skipIfRocm() @parametrize("use_fast_accum", [True, False]) def test_float8_rowwise_scaling_sanity(self, device, use_fast_accum: bool) -> None: M, K, N = (1024, 512, 2048) fill_value = 0.5 x = torch.full((M, K), fill_value, device=device) y = torch.full((N, K), fill_value, device=device) x_scales = torch.ones((x.shape[0], 1), device=device, dtype=torch.float32) y_scales = torch.ones((1, y.shape[0]), device=device, dtype=torch.float32) x_fp8 = x.to(torch.float8_e4m3fn) y_fp8 = y.to(torch.float8_e4m3fn).t() out_fp8 = torch._scaled_mm( x_fp8, y_fp8, scale_a=x_scales, scale_b=y_scales, out_dtype=torch.bfloat16, use_fast_accum=use_fast_accum, ) self.assertEqual( out_fp8.to(torch.float32), torch.full((M, N), K * (fill_value**2), device=device) ) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8 or IS_WINDOWS, f8_msg) @skipIfRocm() def test_float8_error_messages(self, device) -> None: M, K, N = (1024, 512, 2048) fill_value = 0.5 x = torch.full((M, K), fill_value, device=device) y = torch.full((N, K), fill_value, device=device) x_fp8 = x.to(torch.float8_e4m3fn) y_fp8 = y.to(torch.float8_e4m3fn).t() with self.assertRaisesRegex( RuntimeError, re.escape( "For RowWise scaling, scale_a should be (1024, 1) and scale_b " "should be (1, 2048). Got scale_a.size()=(1, 1) and scale_b.size()=(1, 2)" ), ): torch._scaled_mm( x_fp8, y_fp8, scale_a=torch.ones((1, 1), device="cuda"), scale_b=torch.ones((1, 2), device="cuda"), out_dtype=torch.bfloat16, ) with self.assertRaisesRegex( RuntimeError, re.escape( " For RowWise scaling, scale_a should be (1024, 1) and scale_b " "should be (1, 2048). Got scale_a.size()=(1024, 1) and scale_b.size()=(1, 2049)" ), ): torch._scaled_mm( x_fp8, y_fp8, scale_a=torch.ones((M, 1), device="cuda"), scale_b=torch.ones((1, N + 1), device="cuda"), out_dtype=torch.bfloat16, ) with self.assertRaisesRegex( RuntimeError, re.escape("For non-TensorWise scaling, scale tensors must be 2-dimensional"), ): torch._scaled_mm( x_fp8, y_fp8, scale_a=torch.ones((M), device="cuda"), scale_b=torch.ones((N, N), device="cuda"), out_dtype=torch.bfloat16, ) with self.assertRaisesRegex( RuntimeError, re.escape( "Both scale_a and scale_b must be contiguous for RowWise scaling." ), ): torch._scaled_mm( x_fp8, y_fp8, scale_a=torch.ones((M, 1), device="cuda"), scale_b=torch.ones((1, N * 2), device="cuda")[:, ::2], out_dtype=torch.bfloat16, ) with self.assertRaisesRegex( RuntimeError, re.escape("For RowWise scaling the second input is required to be a float8_e4m3fn dtype."), ): torch._scaled_mm( x_fp8, y_fp8.to(torch.float8_e5m2), scale_a=torch.ones((M, 1), device="cuda"), scale_b=torch.ones((1, N), device="cuda"), out_dtype=torch.bfloat16, ) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8 or IS_WINDOWS, f8_msg) @unittest.skipIf(not SM90OrLater, "rowwise implementation is currently sm90 specific") @skipIfRocm() @parametrize("base_dtype", [torch.bfloat16]) def test_scaled_mm_vs_emulated_row_wise(self, base_dtype): torch.manual_seed(42) input_dtype = e4m3_type output_dtype = base_dtype x = torch.randn(16, 16, device="cuda", dtype=base_dtype) y = torch.randn(32, 16, device="cuda", dtype=base_dtype).t() x_scales = tensor_to_scale(x, input_dtype, dim=1).float() y_scales = tensor_to_scale(y, input_dtype, dim=0).float() x_fp8 = to_fp8_saturated(x * x_scales, e4m3_type) y_fp8 = to_fp8_saturated(y * y_scales, e4m3_type) # Calculate actual F8 mm out_scaled_mm = mm_float8( x_fp8, y_fp8, a_scale=x_scales, b_scale=y_scales, output_dtype=output_dtype ) # Calculate emulated F8 mm out_emulated = mm_float8_emulated( x_fp8, x_scales, y_fp8, y_scales, output_dtype ) if base_dtype in {torch.bfloat16, torch.float16}: atol, rtol = 7e-2, 7e-2 else: atol, rtol = 2e-3, 2e-3 torch.testing.assert_close(out_scaled_mm, out_emulated, atol=atol, rtol=rtol) @unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS") @unittest.skipIf(IS_WINDOWS, "Windows doesn't support CUTLASS extensions") @unittest.skipIf(not _IS_SM8X, "mixed dtypes linear only supported on SM 8.x") class TestMixedDtypesLinearCuda(TestCase): @dtypes(torch.float16, torch.bfloat16) def test_mixed_dtypes_linear(self, dtype: torch.dtype, device: str = "cuda"): version = _get_torch_cuda_version() if version < (11, 8): self.skipTest("_mixed_dtypes_linear only compiled for CUDA 11.8+") def run_test( batch_shape, m, n, k, add_bias, activation, dtype, dtypeq, device, rtol, atol, ): if not add_bias and activation != "none": return val_lo, val_hi = -1, 1 valq_lo, valq_hi = -2, 2 input = make_tensor( *batch_shape, m, k, low=val_lo, high=val_hi, dtype=dtype, device=device ) weight = make_tensor( n, k, low=valq_lo, high=valq_hi, dtype=torch.int8, device=device ) scale = make_tensor( (n,), low=val_lo, high=val_hi, dtype=input.dtype, device=device ) bias = ( make_tensor( (n,), low=val_lo, high=val_hi, dtype=input.dtype, device=device ) if add_bias else None ) input_ref = input.reshape(-1, input.shape[-1]) # First, test plain multiplication. weight_ref = weight.T.to(input.dtype) * scale.view(1, n) weightq = ( pack_int4_to_int8(weight.T) if dtypeq == torch.quint4x2 else weight.T ) output_ref = torch.mm(input_ref, weight_ref).reshape(*input.shape[:-1], n) output = torch.ops.aten._mixed_dtypes_linear( input, quantized_weight_reorder_for_mixed_dtypes_linear_cutlass( weightq, dtypeq, transpose=False ), scale, ) torch.testing.assert_close(output, output_ref, rtol=rtol, atol=atol) # Second, test the linear operator itself. weight_ref = weight.to(input.dtype) * scale.view(n, 1) weightq = pack_int4_to_int8(weight) if dtypeq == torch.quint4x2 else weight bias_ref = bias.view(1, n) if add_bias else None output_ref = torch.nn.functional.linear( input_ref, weight_ref, bias=bias_ref ).reshape(*input.shape[:-1], n) if activation == "relu": relu = torch.nn.ReLU() output_ref = relu(output_ref) elif activation == "silu": silu = torch.nn.SiLU() output_ref = silu(output_ref) output = torch.ops.aten._mixed_dtypes_linear( input, quantized_weight_reorder_for_mixed_dtypes_linear_cutlass( weightq, dtypeq, transpose=True ), scale, bias=bias, activation=activation, ) torch.testing.assert_close(output, output_ref, rtol=rtol, atol=atol) dtypeqs = [torch.int8, torch.quint4x2] batch_shapes = [[], [2], [2, 1]] shapes = [ [8, 64, 64], [8, 64, 128], [8, 128, 64], [8, 128, 128], [8, 128, 192], [8, 128, 256], [8, 256, 128], [8, 256, 384], [8, 384, 256], ] activations = [None, "relu", "silu"] rtol, atol = 1e-3, 1e-3 if dtype == torch.bfloat16: rtol, atol = 1e-2, 1e-3 for dtypeq, batch_shape, (m, n, k), add_bias, activation in product( dtypeqs, batch_shapes, shapes, (False, True), activations ): run_test( batch_shape, m, n, k, add_bias, activation, dtype, dtypeq, device, rtol, atol, ) instantiate_device_type_tests(TestMatmulCuda, globals(), except_for="cpu") instantiate_device_type_tests(TestFP8MatmulCuda, globals(), except_for="cpu") instantiate_device_type_tests(TestMixedDtypesLinearCuda, globals(), except_for="cpu") if __name__ == '__main__': TestCase._default_dtype_check_enabled = True run_tests()